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Abstract—This paper presents the design and validation of a 

modular architecture for smart microcredits, aimed at expanding 

credit access for populations excluded from the traditional 

financial system. The solution integrates three key technological 

components: data acquisition through Open Finance, automated 

risk assessment using Artificial Intelligence (AI) models, and the 

execution of smart contracts on blockchain. A functional 

prototype was developed to process applications manually 

submitted by users without prior financial history, utilizing a 

LightGBM model trained on real, anonymized data. The model 

was integrated into the system workflow to generate automatic 

credit conditions and register decisions on the blockchain without 

direct human intervention. During the validation phase, the model 

achieved an Area Under the Curve (AUC) of 0.94, supporting its 

discriminative power within the automated flow. The overall 

technical validation demonstrates the feasibility of offering 

personalized, traceable, and secure credit services through open 

and decentralized technologies. The use of alternative 

unstructured data, as well as the expansion into production 

environments, is proposed as a future line of development. In our 

system, Open Finance provides consented financial data off-chain; 

the ML model estimates default probability and outputs an 

eligibility decision; a rule engine maps the score to personalized 

loan terms; and blockchain smart contracts only record loan terms 

and execution events on-chain (no personal data). This separation 

ensures auditability (on-chain) and privacy (off-chain). 

Keywords—Smart microcredits; artificial intelligence; open 

finance; blockchain; smart contracts; financial inclusion 

I. INTRODUCTION 

Access to formal credit remains a significant barrier for 
millions of people in Latin America and other regions of the 
world [1][2], particularly for informal workers, young 
individuals without a credit history, and small entrepreneurs. 
Despite the advancement in the digitalization of financial 
services [2][3], traditional credit scoring models and banking 
intermediation continue to exclude large segments of the 
population [4][2], perpetuating cycles of informality and 
inequality [5]. 

In response to this challenge, emerging technologies offer a 
concrete opportunity to redesign financial services from a more 
inclusive, automated, and adaptive perspective [1][3][6]. In 
particular, the convergence of Open Finance [3], Artificial 
Intelligence (AI) [4][7], and blockchain technology [8][9] 
enables the conception and development of new architectures 
that decentralize decision-making, reduce operational costs, 

and personalize financial products according to the applicant’s 
real characteristics [11]. 

Recent advances create a concrete opportunity to redesign 
this workflow end-to-end. Open Finance enables consented 
access to user financial data; machine learning (ML) can 
estimate default risk from structured inputs; and blockchain 
offers programmable execution and immutable audit trails. Yet, 
most existing efforts treat these components in isolation (AI-
only scoring, sandbox blockchain pilots, or partial integrations) 
and rarely present a modular, low-cost, and implementation-
oriented architecture suitable for constrained environments. 

This paper introduces and validates a modular architecture 
for smart microcredits that combines consented data ingestion 
(off-chain), ML-based risk estimation, policy-driven 
personalization of loan terms, and on-chain recording of loan 
execution events. The approach emphasizes separation of 
concerns (prediction vs. decisioning vs. auditability), privacy 
by design (no personally identifiable information on-chain), 
and progressive deployment in both urban and low-connectivity 
contexts. It is inspired by validated software engineering 
practices [12] and supported by open-source technologies 
[13][14]. The goal is not to introduce a new financial product 
concept, but rather to offer a feasible, scalable, and adaptable 
technical solution [17] that can be implemented in real-world 
settings with reduced costs and significant social impact [1]. 

Scope and Roles. In this work, personalized microcredits 
are loans whose amount, rate and term are automatically 
tailored to each applicant based on an ML-derived risk score 
and policy rules. Open Finance acts as a consented data source 
(off-chain). The ML model estimates default risk from 
structured features and returns a score/label. A decisioning rule 
engine converts that output into loan terms (personalization). 
Finally, blockchain executes and immutably records contract 
terms and events (hashes/IDs only, no PII on-chain). This 
explicit separation clarifies responsibilities: ML = prediction, 
rule engine = product personalization, blockchain = execution 
+ auditability. 

Additionally, this study includes a comparative analysis of 
transaction costs (gas fees) and latency across different 
blockchain networks (Ethereum Sepolia, Polygon Mumbai, 
Gnosis Chain), aiming to assess the economic feasibility and 
scalability of the proposed architecture in production 
environments [34][35]. The results of this analysis are 
presented in Section VI. 
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From a technical standpoint, this proposal is distinguished 
by its modular design [12], interoperability capabilities [13], 
and the potential for progressive deployment [14][15]. It targets 
developers, financial institutions, fintechs, and cooperation 
entities seeking to globalize technology-based solutions aimed 
at sustainable financial inclusion [1][17]. 

Research questions. We investigate the following: RQ1: 
Can a modular architecture that separates ML prediction, 
policy-based personalization, and on-chain execution be 
implemented end-to-end with low operational cost? RQ2: Does 
recording only non-PII artifacts on-chain (hashes/IDs) preserve 
auditability while respecting privacy-by-design? RQ3: Under 
realistic constraints (low connectivity, low-end devices), is the 
approach operationally viable in terms of latency, traceability, 
and maintainability? 

Organization of the paper. The remainder of the paper is 
organized as follows. Section II reviews related work at the 
intersection of microcredit, Open Finance, ML-based credit 
scoring, and blockchain. Section III describes the methodology 
and development process. Section IV details the proposed 
architecture and its modules. Section V presents application 
scenarios that illustrate the end-to-end flow. Section VI reports 
prototype validation results, including a comparison of gas fees 
and latencies across networks. Section VII discusses 
implications, limitations, and ethical/regulatory considerations. 
Section VIII concludes and outlines future work. Appendix A 
provides implementation details of the functional prototype 
(codebase, data flow, and artifacts). 

II. RELATED WORK 

The literature and prior projects in this domain can be 
grouped into four main categories: 

1) Digital microfinance with AI: AI‑based Credit Scoring 

Models in Microfinance (2025) [18] analyzes how AI models 

enable the assessment of loan applicants without banking 

history by leveraging alternative data sources such as mobile 

consumption and social media activity. It highlights benefits 

such as broader coverage and risk reduction, while also noting 

challenges related to privacy and algorithmic bias. 

2) Efficient credit scoring: Credit Scoring for Good (2020) 

[19] demonstrates how mobile applications use machine 

learning and feature engineering to improve financial inclusion 

through efficient predictive scoring models. 

3) AI + Blockchain integration for risk assessment: 

Blockchain‑Based Deep Learning Model LSTM‑X (2024) [20] 

proposes a system in which an LSTM model analyzes financial 

time series, while blockchain ensures data integrity and 

decentralized institutional access—enhancing both accuracy 

and trust. 

Robust Integration of Blockchain and Explainable 
Federated Learning for Automated Credit Scoring (2024) [22] 
combines blockchain with federated learning to enable 
decentralized credit scoring models, emphasizing user privacy. 

Hybrid Blockchain + XAI for Credit Scoring (2024) [32] 
focuses on automating credit decisions in a reliable and 
auditable manner using explainable artificial intelligence (XAI). 

4) Open finance / open banking + credit scoring: A recent 

MDPI publication shows that transaction data obtained through 

Open Banking APIs, when combined with deep learning 

techniques, can outperform conventional models used by a 

Norwegian bank in predicting defaults, thus closing the gap for 

new customers [23]. 

Additionally, the synergy between AI and Open Banking is 
acknowledged as a key enabler for delivering personalized and 
secure financial services through fintech solutions. 

TABLE I  IDENTIFIED GAPS IN CURRENT LITERATURE ON EMERGING 

TECHNOLOGIES APPLIED TO MICROCREDIT 

Incomplete Approaches 

Many studies implement AI or blockchain 

separately or within institutional settings, 

but do not integrate them into solutions for 

low-value microcredits. 

Lack of Concrete Modular 

Architecture 

There are no proposals that integrate AI, 

Open Finance, and smart contracts into a 

technical architecture designed for 

progressive deployment. 

Limited Focus on Real-

World Implementation 

Most existing studies present theoretical 

models or proof-of-concept prototypes, 

without offering a practical path for 

developers or direct implementation. 

Absence of Blockchain 

Operational Cost Analysis 

Existing works lack comparative analyses 

of gas fees and latency across different 

blockchain networks—an essential factor in 

assessing the economic feasibility of such 

solutions. 

5) Comparative analysis of transaction costs and latency 

in low-cost blockchain networks: Pérez and Santos (2025) [34] 

present a study of gas fees on Ethereum Sepolia, Polygon 

(Mumbai), and Gnosis Safe, showing savings of up to 80% in 

transaction costs and latencies ranging from 4 to 10 seconds on 

Layer 2 testnets. 

Ivanov et al. (2025) [35] confirm these findings and discuss 
how these parameters affect the economic feasibility of large-
scale deployments. 

In summary, as outlined in Table I, existing studies have 
made progress in various directions, yet still lack an integrated, 
modular, and development-oriented solution. The following 
section introduces an architecture designed to address these 
gaps through an applied and replicable approach. 

Advantages over prior approaches. Unlike prior work that 
treats ML, Open Finance, and blockchain in isolation, our 
system: 1) separates concerns (prediction vs. rule-based 
personalization vs. on-chain execution); 2) keeps no PII on-
chain while preserving auditability; 3) provides 
implementation-ready modules (UI/API/model/contracts); 
4) reports operational evidence (gas/latency) to inform 
feasibility; and 5) targets low-connectivity scenarios via 
lightweight clients and asynchronous signing. 

Comparative positioning with prior work. To enable a like-
for-like comparison, Table II summarizes representative studies 
across seven dimensions: data source (Open Finance vs. 
forms/alt-data), ML technique, the role of blockchain, product 
personalization, on-chain privacy, cost/latency analysis, and 
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implementation maturity. This complements Table I (identified 
gaps) with an operational view of scope and deliverables. 

III. METHODOLOGY 

We evaluate the prototype on the Loan Approval Prediction 
dataset [37]. Basic demographics, income, employment, and 
loan attributes are included. 

Dataset and preprocessing. We use the Kaggle Loan 
Approval Prediction dataset [37]. We select structured features 
(demographics, income, employment, housing, and loan 
attributes), normalize types, and handle missing values via 
simple imputation (median/mode). Categorical variables are 
one-hot encoded; numerical features are standardized only 
when required by the model. We split data into 
train/validation/test with stratification on the target and handle 
class imbalance through model-level weighting (e.g. 
scale_pos_weight). All steps are scripted and versioned to 
enable reproducibility (see Appendix A and [36]). 

Fig. 1 illustrates our project-specific development process: 
a Waterfall backbone with six phases (A–F), complemented by 
2-week Agile MLOps sprints for model training/validation 
between Design and Validation. This adaptation preserves clear 
stage-gates and deliverables while enabling rapid iteration on 
the ML component. As shown, project activities are organized 
into sequential phases, where the start of each stage depends on 
the successful completion of the previous one. This 
methodology provided structure, clarity in planning, and strict 
control over the development process, making it suitable for 
projects with clearly defined objectives, such as the 
construction of a functional prototype for smart microcredits 
based on emerging technologies. 

While the Waterfall model offers clear deliverables and 
rigorous control at each stage, we suggest complementing this 
approach with Agile development sprints for the MLOps 
component. After completing the initial design phase, each 
iteration of model training and validation can be managed in 2-
week sprints, allowing for rapid adjustments to data and 
parameters before proceeding to the next Waterfall phase. 

 

Fig. 1. Project-specific development process: Waterfall phases (A–F) with 

agile MLOps sprints (2-week cycles) for model iteration. 

A. Phase 1 – Initiation 

1) Project scope and objective definition: In this initial 

phase, both functional and non-functional objectives were 

established, thereby delimiting the scope of the proposed 

solution. The main goal was defined as the development of a 

Minimum Viable Prototype (MVP) aimed at managing digital 

microcredits with high potential for scalability, security, and 

reproducibility. 

TABLE II COMPARATIVE POSITIONING AGAINST PRIOR WORK (✓ = EXPLICITLY ADDRESSED; — = NOT ADDRESSED;  ? = UNCLEAR) 

+Work (ref.) 
Open Finance 

data 

ML 

technique 

Blockchain 

role 

Personalized 

loan terms 

PII stored 

on-chain 

Gas/latency 

analysis 

Implementation 

maturity 

[18] AI-based Credit 

Scoring in 

Microfinance (2025) 

— (alt-data) 
AI scoring 

(various) 
— — — — Conceptual / partial.  

[23] Open Banking + 

Deep Learning 

(MDPI) 
✓  (OB APIs) 

Deep 

learning 
— — — — 

Empirical scoring; no 

chain.  

[20] LSTM-X + 

Blockchain (2024) 
— LSTM 

Integrity / 

decentralized 

access control 

— ? — 
Prototype; not 

microcredit-specific.  

[22] Federated 

Learning + Blockchain 

(2024) 

— 

Federated 

learning + 

XAI 

Decentralized 

model mgmt / 

privacy 

— 
No (privacy-

oriented) 
— 

Method paradigm; no 

product terms.  

[32] XAI + Blockchain 

for Credit Modeling 

(2024) 

— 
XAI over 

ML 

Auditability / 

secure 

modeling 

— ? — 
Automation focus; no 

OB.  

This work (ours) 
✓  (consented 

Open Finance) + 

form 

LightGBM 
Execution + 

audit trail 
✓  (policy-

driven) 

No 

(hashes/IDs 

only) 

✓  (Section 

VI) 

MVP: end-to-end 

UI/API/model/contracts. 

Notes. Personalization = mapping ML risk (PD) → amount/APR/term via rules (Section IV). On-chain PII = whether personally identifiable data is written to the ledger (we store only refs/hashes). Implementation 
maturity reflects reported artifacts (code, UI, contracts). See the cited works in Section II and our prototype details in Appendix A.
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2) Project Deliverables 

• Scope document and specification of functional and 
technical requirements. 

• Analysis of the microcredit life cycle and identification 
of technological intervention points. 

• Design of a modular architecture based on Open Finance, 
Artificial Intelligence, and blockchain. 

• Development of a minimum viable prototype with 
automated scoring and smart contract deployment on 
testnet. 

• Technical validation of the prototype through controlled 
tests on performance, traceability, and security. 

• Recommendations for scalability and replication in 
digital financial inclusion contexts. 

B. Phase 2 – Analysis 

1) Microcredit lifecycle analysis: An in-depth analysis was 

conducted on the complete lifecycle, from credit issuance to 

repayment, structured into six key phases: 

• Data Collection: This phase involves gathering essential 
financial information from alternative sources, as well 
as demographic and behavioral data of the applicant. 
However, behavioral data has not yet been incorporated 
into the current implementation. 

• Risk Assessment: Processing and evaluation through 
machine learning models. 

• Loan Condition Generation: Automation of loan amount, 
interest rates, terms, and guarantees. 

• Contract Execution: Formalization through smart 
contracts deployed on blockchain. 

• Monitoring: Tracking of repayment compliance and 
financial behavior (not implemented in this phase). 

• Closure: Conclusion of the cycle, including result 
logging and feedback generation. 

This analysis helped identify areas suitable for automation 
of repetitive tasks, enhancement of traceability, and support for 
decision-making through ML algorithms. It also supported the 
definition of functional requirements for each module of the 
system. 

2) Risk and constraint identification: This phase also 

involved the identification of technical, social, and regulatory 

limitations, such as: 

• Limited connectivity in rural areas. 

• Low levels of digital literacy. 

• Need for interoperability with existing financial systems. 

Mitigation strategies were proposed, including the use of 
lightweight mobile platforms, user-friendly interfaces, and 
compliance with data protection regulations. 

C. Phase 3 – Design 

1) Technology selection: The solution is built upon three 

technological pillars: 

• Open Finance: Access to financial data through 
standardized APIs, ensuring consent and traceability. 

• Artificial Intelligence: Use of predictive models such as 
LightGBM and neural networks to assess credit risk. 

• Blockchain: Deployment of smart contracts to securely 
and transparently execute loan conditions. 

The selection criteria included scalability, low cost, open-
source adoption, and cross-platform compatibility. 

2) Modular architecture design: The proposed architecture 

is based on a modular and decoupled structure, organized into 

three main layers that interact through web services (APIs) and 

smart contracts. Fig. 2 presents the layered modular architecture 

used throughout Section IV: 

• Data Input Layer: 

A web or mobile client submits a loan request to the 
backend via FastAPI. This web API initially validates the 
submitted information and manages the business logic required 
for credit evaluation. If the applicant's profile requires 
assessment, the scoring process is initiated. 

• Machine Learning Layer: 

The backend forwards the request to a pre-trained Machine 
Learning model (LightGBM), which evaluates the credit profile. 
If the model approves the loan, a blockchain transaction is 
triggered. This involves interaction with a pre-deployed smart 
contract on the Ethereum Sepolia testnet, developed using 
Remix IDE and the Solidity programming language. 

• History and Logging Layer: 

Once the loan is approved: 

1) Key credit terms and applicant reference ID are 

collected; a transaction is built to call the smart contract 

(to/from, value, gas, calldata), the user signs in MetaMask, and 

the resulting transaction hash is returned and stored off-chain. 

2) A personalized transaction is built that calls a smart 

contract function, encoding required parameters in hexadecimal 

format. 

3) Technical parameters are configured: contract address 

(to), sender address (from), value in Wei, estimated gas, and 

gasPrice. 

4) The transaction is presented to the user via MetaMask 

for digital signing. 

5) Upon confirmation, the transaction is sent to the 

Ethereum network, generating a unique transaction hash and 

linking it to the smart contract address. 

6) Finally, the system returns the transaction hash to the 

frontend, confirming that the loan has been transparently and 

immutably recorded on the blockchain. 
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This process ensures not only traceability of the automated 
decision but also the integrity and public verifiability of the 
credit record, aligning the system with principles of 
transparency, security, and auditability. 

Finally, this layer stores the history of loan requests, scoring 
results, and key transaction data in a PostgreSQL database, 
thereby ensuring traceability and information persistence. 

 

Fig. 2. Proposed modular architecture. 

This design enables the decoupling of input, evaluation, and 
persistence processes, thereby facilitating scalability, 
integration with MLOps tools in subsequent phases, and the 
secure incorporation of blockchain for smart contracts . 

D. Phase 4 – Implementation 

For a detailed technical implementation, see Appendix A. 

1) Development of a functional prototype: During this 

phase, a minimum viable prototype was developed, initially 

integrating the following three modules: 

• Data entry via a simulated form using a REST API. 

• An AI model trained on an anonymized real-world 
dataset. 

• A credit condition generation engine. 

Additionally, a basic smart contract was deployed in 
Solidity on a blockchain test network (Ethereum testnet), to 
validate the contractual flow and its traceability. The full MVP 
codebase, including API, model service and smart-contract 
artifacts, is publicly available [36]. 

2) Development environment: The prototype was built 

using open-source tools and frameworks selected for their 

lightweight nature, ease of integration, and suitability for 

academic or local testing environments: 

• Python as the main programming language, with 
libraries such as Scikit-learn and LightGBM for 
building and testing the credit risk model. 

• FastAPI to create a lightweight REST API that serves as 
backend and orchestrates business logic. 

• Solidity for writing the smart contract, deployed using 
Remix IDE on the Sepolia testnet. 

• MetaMask as a tool for signing blockchain transactions 
in the test environment. 

• PostgreSQL as a unified database to store loan 
applications, scoring results, and cross-references to 
deployed contracts. 

• Git for version control of the prototype. 

• Docker was considered for reproducible deployment 
environments, although it was not used in this initial 
iteration. 

The diagrams detailing the technological architecture, 
functional components, and operational flow are included in 
this work (Fig. 3 depicts the technology stack and deployment 
workflow that implements these modules) as part of the 
technical documentation supporting the feasibility of the 
proposed approach. 

E. Phase 5 – Validation 

1) Technical evaluation: The prototype was validated 

through functionality and performance tests. Test scenarios 

were designed to simulate real-world microcredit cases. The 

following aspects were evaluated: 

• System response time 

• Accuracy of the credit risk model 

• Contract security robustness 

• Adaptability for users with low digital literacy 

2) Results obtained: The system demonstrated appropriate 

processing times, transparent traceability of credit decisions, 

and the ability to adapt to varying rules based on user profiles. 

Areas for improvement were identified and will be addressed in 

future phases. 
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Fig. 3. Technology architecture. 

F. Fairness and Explainability (XAI) 

Scope. Although our prototype targets architectural 
feasibility, we include fairness and explainability practices to 
reduce risk and support audits. 

Metrics. We monitor demographic parity difference, equal 
opportunity difference, and calibration by subgroup (when 
protected attributes are available). 

Procedure. 1) compute group metrics on validation/test; 
2) if gaps exceed policy thresholds, adjust thresholds (τ₁, τ₂) per 
group or apply post-processing (e.g. reject option, score 
banding); 3) re-evaluate utility–fairness trade-offs. 

Explainability. We use feature importance at model level 
and local attributions (e.g. SHAP) to explain decisions in 
manual review. 

Logging & governance. Fairness/XAI artifacts (metrics, 
plots, explanations) are versioned alongside the model to 
support audits and continuous improvement. 

G. Phase 6 – Final Considerations 

To ensure the viability of the system in real-world 
environments with limited resources, several design and 
development strategies must be adopted: 

• Implement an API-first approach along with a modular 
microservices-based architecture [12]. This approach 
allows each system component to function 
independently, facilitating decoupled development, 
testing, deployment, and maintenance. The 
microservices architecture is adopted due to its high 
scalability—each module can scale independently based 
on demand—and its modularity, which allows 
functionalities to be integrated or replaced without 
affecting the rest of the system. This flexibility is key to 
adapting to changing contexts, incorporating new 
technologies, or complying with local regulations 
without redesigning the entire solution. 

• Establish a clear separation between model training—
conducted in a controlled environment—and its use in 
production via secure endpoints. 

• Prioritize cross-platform compatibility, ensuring 
functionality even on low-end mobile devices. 

• Incorporate security principles from the early design 
stages, including data encryption, token-based 
authentication, and robust session handling. (Not 
implemented in this version.) 

These decisions not only consolidate the technical 
feasibility of the system but also make it a replicable, scalable, 
and adaptable solution for diverse scenarios—especially those 
requiring urgent responses in the field of financial inclusion. 

TABLE III RESPONSIBILITY MATRIX OF THE PROPOSED SYSTEM 

Component Primary role Inputs Outputs Persistence 
On-chain 

footprint 
Privacy boundary 

Open Finance 

Gateway 

Consented data 

ingestion 

Bank/wallet APIs, user 

consent 
Normalized features 

PostgreSQL 

(off-chain) 
None PII stays off-chain 

ML Scoring 

(LightGBM) 

Default risk 

estimation 
Feature vector 

PD score + class 

label 

Model logs (off-

chain) 
None No PII on-chain 

Decisioning / Rule 

Engine 

Personalization of 

loan terms 

PD score, policy 

params, income ratios 

Amount, APR, 

term, conditions 

Rules repo (off-

chain) 
None 

Policy changes 

audited off-chain 

Smart Contracts 
Execution & 

auditability 

Loan terms (refs/IDs), 

events 

Immutable record, 

events 
Blockchain 

Tx hash, loan 

ref ID 

Store only 

refs/hashes 

History & 

Logging 
Traceability 

Events from all 

modules 
Audit logs, analytics PostgreSQL 

Tx hash 

mirrors 

Anonymized keys 

only 

IV. PROPOSED ARCHITECTURE 

The architecture is designed in response to the need to 
develop an intelligent microcredit system that is scalable, 
adaptable, and technically viable—even in resource-
constrained environments [27][17]. Its design is based on a 

modular structure in which each component operates 
autonomously in terms of development, deployment, and 
maintenance [12][13]. This enables progressive evolution and 
adaptation to various regulatory frameworks or technological 
environments [3][25]. 
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Table III provides the responsibility matrix that aligns 
components with their data flows and privacy boundaries. 

Below is a description of the main modules comprising the 
architecture: 

A. Module 1: Data Acquisition (Open Finance and Manual 

Input) 

This module allows the acquisition of the data necessary for 
credit analysis. There are two main sources: 

• Open Finance APIs: Access, with user consent, banking 
data such as account information, transaction history, 
and past loans. 

• Manual or semi-structured input: When no affiliated 
banks are available, the user can input basic information 
(income, economic activity, expenses) and alternative 
data sources (mobile usage, digital payment history, 
etc.). 

The module validates, normalizes, and stores the data in a 
structure used by the analysis engine. 

B. Module 2: Risk Analysis with Artificial Intelligence 

At this stage, the likelihood of borrower default is assessed 
using a previously trained machine learning model [4][7]. 

• Training: Performed on historical or synthetic datasets 
adjusted to the target population profile [7][19]. 

• Possible models: Decision trees, random forest, 
LightGBM, or simple neural networks, depending on 
data availability and computational capacity [7][10]. 

• Output: Risk score, basic interpretability (feature 
importance), and eligibility classification [26]. 

This module can be deployed as a microservice that exposes 
a REST API for invocation by the central system. 

Personalization & Decisioning Layer. The ML model does 
not assign product terms; it only predicts risk. A separate rule 
engine maps the score into personalized loan terms using 
interpretable policies: 

Inputs: PD score, income, loan_percent_income, 
employment flags. 

Policy example: 

• If PD ≤ τ₁: amount = min (k₁·income, cap₁), apr = 
baseAPR – δ₁, term ∈ [m₁, M₁]. 

• If τ₁ < PD ≤ τ₂: tighten amount, apr = baseAPR, shorter 
term. 

• If PD > τ₂: reject or request guarantor. 

Outputs: (amount, APR, term, grace, collateral_req). 

Policies are versioned and auditable; they can incorporate 
social or public-policy parameters without retraining the model. 

C. Module 3: Personalized Loan Terms Generation 

Based on the risk score and other rules the system 
automatically determines microcredit terms, for example: 

• Maximum loan amount. 

• Applicable interest rate. 

• Repayment period. 

• Potential grace periods. 

The rule engine can incorporate more complex logic, such 
as public policies, subsidies, or adjustable parameters by 
geography or gender [7][17]. However, these functionalities 
were not implemented in this stage of the project as they are 
outside the defined scope for this development phase. 

D. Module 4: Smart Contract Execution 

Once the user accepts the proposed loan conditions, the loan 
is registered via a function call on a pre-deployed smart contract 
that: 

• Registers the credit terms immutably [8][13] 

• Defines payment and penalty events [12][9] 

• Enables automated monitoring and blocks new loans in 
the event of noncompliance [15] 

It is recommended to start with a low-cost network (e.g., 
Polygon, Gnosis, or a private network based on Hyperledger 
Fabric) [24][28]. 

E. Module 5: Behavior Logging and Credit History 

This module stores historical credit behavior data to: 

• Retrain risk models [4][7] 

• Offer new financial products based on compliance 

• Allow external systems (fintechs, allied institutions) to 
query the history (with user consent) to offer additional 
services 

This layer can interoperate with decentralized identity 
mechanisms to scale toward more distributed ecosystems 
[29][31]. 

F. Module 6: MLOps Considerations for the AI Module 

The risk analysis module incorporates a machine learning 
component that requires rigorous technical management 
throughout its lifecycle. For this purpose, a basic MLOps 
(Machine Learning Operations) architecture is proposed, 
including the following practices: 

• Offline supervised training on structured, historical, or 
synthetic datasets representing the target profiles. 
Standard techniques such as LightGBM, decision trees, 
or simple neural networks are applied [4][7]. 

• Periodic model validation using performance metrics 
such as accuracy, recall, F1-score, AUC-ROC, and 
fairness or drift indicators [26]. 

• Model and data versioning using tools such as MLflow, 
DVC, or Git to ensure reproducibility and facilitate 
audits [14][15]. 
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• Model serving through Docker containers exposed as 
REST APIs, allowing clean and scalable integration 
with the central system [13][29]. 

• Production monitoring to detect performance 
degradation, input distribution shifts, or anomalous 
decisions, with automatic alerts triggering review or 
retraining processes [13]. 

• CI/CD for models: A continuous integration and 
delivery pipeline is implemented, where: 

- Each update to the code or dataset triggers automatic 

validation of the training pipeline. 

- If the model meets defined thresholds, a registered 

version is generated. 

- The validated model is automatically packaged and 
deployed to staging or production via workflows 

(e.g., GitHub Actions or GitLab CI) [14][15]. 

This approach ensures a continuous improvement cycle, 
greater reliability of the automated credit system, and facilitates 
adaptation to changes in user profiles or environmental 
conditions. 

G. Module 7: Security Considerations 

The system follows privacy-by-design and defense-in-depth. 
All PII remains off-chain under access-controlled storage; on-
chain we store only non-PII artifacts (opaque reference IDs, 
hashes, and execution events). Controls are applied per module 
(MVP = implemented in the prototype; PROD = 
planned/production hardening): 

1) Data acquisition security 

• Authentication and authorization: OAuth2 or similar are 
required to consume Open Finance APIs, ensuring 
explicit user consent. 

• Data encryption in transit: All communication between 
client, APIs, and backend is encrypted using secure 
protocols (HTTPS/TLS). 

• Input validation and sanitization: Strict controls are 
implemented to prevent injection, data corruption, or 
man-in-the-middle (MITM) attacks. 

2) AI model security 

• Environment separation: Model training and 
deployment are conducted in separate environments, 
preventing sensitive data exposure in production. 

• Access control to the model: The prediction endpoint is 
protected with authentication and usage limits to prevent 
abuse or reverse engineering. 

• Decision audit logs: Digitally signed logs of predictions 
and their explanations are stored to enable traceability 
in case of disputes. 

3) Smart contracts and blockchain security 

• Smart contract code auditing: Static code analysis is 
conducted prior to deployment to avoid known 
vulnerabilities (e.g. reentrancy, overflow) [15][24][30]. 

• Use of secure, cost-effective networks: Preference is 
given to reputable public networks (e.g. Polygon or 
Gnosis) or permissioned private networks (e.g. 
Hyperledger) [24][28]. 

• Fraud and replay protection: Contracts include basic 
antifraud mechanisms such as timestamps, signature 
verification, and prevention of double execution 
[12][9][31]. 

4) Overall system security 

• Data-at-rest encryption: All sensitive stored data is 
encrypted using AES-256 standards or equivalent. 

• Identity and role management: Access to the system 
administration platform is governed by Role-Based 
Access Control (RBAC) policies, with Multi-Factor 
Authentication (MFA) required for privileged users. 

• Security monitoring: The system incorporates intrusion 
detection systems (IDS), log analysis tools, and real-
time alerts for suspicious events. 

In addition, it is recommended that organizations adopting 
this architecture implement an Information Security 
Management System (ISMS) in accordance with the ISO/IEC 
27001 standard. This ensures a systematic, auditable approach 
aligned with international best practices in data protection. 
Such certification not only strengthens internal controls but also 
enhances user and institutional trust in automated financial 
environments. 

These measures are not only aimed at preventing attacks 
and safeguarding user privacy, but also at building trust in an 
automated system capable of operating without traditional 
intermediaries. Security is understood as a non-negotiable, 
transversal component of the architecture. 

Together, the seven modules described above constitute a 
coherent, flexible, and technically viable architecture for the 
automated delivery of intelligent microcredits [4][8][12]. Its 
modular design facilitates the progressive integration of 
emerging technologies in accordance with the regulatory, 
institutional, and infrastructure conditions of the deployment 
environment [3][13][25]. 

Status. Security is partially implemented in the MVP to 
support the prototype; full production-grade hardening (items 
marked PROD) is planned for deployment. 

V. APPLICATION SCENARIOS 

Model Overview (for clarity). Classifier: LightGBM. 
Target: loan default (binary). Features: age, income, 
employment length, home ownership, loan_intent, loan_amnt, 
loan_int_rate, loan_percent_income, prior default flag, credit 
history length (see Appendix A7). Data split: 
train/validation/test with stratification; class imbalance handled 
via scale_pos_weight. Main metric: AUC (0.94 in our 
prototype); secondary: recall and calibration curve. Output: PD 
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score in [0,1] and label {approve, manual review, reject} via 
thresholds (τ₁, τ₂). On-chain: only loan reference ID, hashed 
contract terms, and events; no PII. 

The proposed modular architecture comprises seven 
functional modules and is designed to accommodate diverse 
user profiles currently excluded from the formal financial 
system. Its structure enables progressive deployment across 
urban, rural, or digital contexts, with varying levels of 
connectivity and access to technology. 

Below are three representative scenarios that illustrate how 
the system's modules work in an integrated manner to enable 
personalized, reliable, and automated microcredit. 

A. Urban Informal Worker 

A woman who sells products on the street needs a small loan 
to restock her merchandise. She has no credit history but 
authorizes access to her digital wallet. 

• Module 1: Income and transaction data are obtained 
from her payment app. 

• Module 2: Her profile is evaluated using a pre-trained 
AI model. 

• Module 3: A personalized loan offer is generated. 

• Module 4: The loan contract is immutably recorded on 
blockchain. 

• Module 5: Her repayment history is stored for future 
applications. 

• Module 6: The model is versioned, controlled, and 
deployed using MLOps practices. 

• Module 7: Security policies and encryption are applied 
throughout the data flow. 

Outcome: Fast access to credit, decentralized history 
generation, and full traceability of the process. 

B. Young Worker without Banking History 

Young app-based delivery worker wishes to finance a 
technical course. He has no bank account but uses an app that 
records his daily income and work behavior. 

• Module 1: Alternative data on productivity and income 
are collected. 

• Module 2: His credit profile is analyzed via AI. 

• Module 3: Loan terms are tailored to his work reality. 

• Module 4: A smart contract is automatically executed. 

• Module 5: History is stored for future credit 
opportunities. 

• Module 6: The model is managed and monitored within 
an MLOps pipeline. 

• Module 7: Identity and sensitive data are protected 
throughout the process. 

Outcome: Financial inclusion via non-banking data and a 
loan offer adapted to his real profile. 

C. Rural Entrepreneur with Intermittent Connectivity 

A rural entrepreneur needs credit to purchase agricultural 
supplies. She has limited connectivity and is unbanked, but 
participates in a communal digital identity program. 

• Module 1: Data are captured offline and synchronized 
upon reconnection. 

• Module 2: Risk is assessed using a model adapted to 
rural conditions. 

• Module 3: Loan terms are aligned with the seasonality 
of her activity. 

• Module 4: The contract is recorded on a private or 
community blockchain. 

• Module 5: A credit history is built and made accessible 
to cooperatives or authorized public entities. 

• Module 6: The model is updated and managed in 
disconnected or batch environments. 

• Module 7: Security is ensured in low-infrastructure 
environments. 

Outcome: Reliable credit access in low-connectivity 
contexts with institutional integration. 

These scenarios demonstrate the functional coherence of the 
seven modules and their flexibility to operate under diverse 
conditions, fostering effective financial inclusion through 
adaptable and secure technological solutions. 

Technical Validation of the Architecture via Functional 
Prototype 

To validate the technical feasibility of the proposed 
architecture, a functional prototype was developed using real-
world data and open-source tools. This validation covered the 
first three core modules of the system (data acquisition, risk 
analysis, and loan condition generation), as well as the basic 
automation of the loan contract using blockchain technology. 

The credit risk model was trained using a public dataset 
from the Kaggle platform [37], which includes relevant 
applicant information such as income, employment status, age, 
number of dependents, credit history, and loan statuses. The 
model was trained using the LightGBM algorithm, widely 
recognized for its efficiency and accuracy in tabular 
classification problems [7]. 

The predictive model generates a probability of default for 
each applicant, which is then converted into a binary 
classification (low or high risk) based on a threshold defined by 
the analyst. Based on this classification, the system 
automatically generates a loan offer through a rule engine: 

• Low-risk applicants receive offers with higher amounts, 
longer terms, and reduced interest rates. 

• High-risk applicants receive restricted loan conditions 
or, alternatively, an automatic rejection. 

As part of the validation process, a basic smart contract was 
implemented in Solidity, formalizing the loan agreement 
between the system and the applicant [8][12]. The contract 
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incorporates the assigned terms —such as amount, interest rate, 
and duration— and simulates different scenarios: executed 
payments, penalties for default, and automatic contract closure 
[9][15]. 

This contract was deployed on an Ethereum-compatible test 
network (e.g. Sepolia or Polygon testnet) using tools such as 
Remix IDE and MetaMask to conduct controlled executions 
[24][31]. 

The integration of these elements demonstrates the 
minimum viable functionality of the system, which includes: 
automated credit risk evaluation, dynamic generation of loan 
terms, and programmed execution of the contract without 
human intervention [11][28]. 

VI. RESULTS 

A. Functionality and Performance Testing of the Model 

To facilitate the functionality of the proposed system, a 
series of execution tests were conducted in a local environment. 
These tests simulated the end-to-end user flow, from launching 
the backend and frontend servers to the successful blockchain 
registration of an approved microcredit application. 

The backend was run using FastAPI on port 9000, as shown 
in Fig. 4, which indicates the successful initialization of the 
server, the loading of the pretrained machine learning model, 
and the activation of the RESTful endpoints. The model, trained 
with LightGBM, achieved an Area Under the Curve (AUC) of 
0.94, validating its discriminative power within the automated 
credit evaluation flow. 

The frontend was executed separately (Fig. 5) via a simple 
HTTP server on port 8000, where users can access the credit 
application form. 

 

Fig. 4. Backend startup (FastAPI): Endpoints active and model loaded. 

 

Fig. 5. Frontend HTTP server initialized. 

Fig. 6 shows the initial user interface, where users are 
prompted to enter their National Identity Document (DNI). If 
the user is not found in the database, a complete loan 
application form is enabled. This form collects variables such 
as income, age, employment status, housing type, loan purpose, 
and requested amount. 

 

Fig. 6. Loan application UI (DNI check and full form). 

Upon submitting the application, the system performs an 
automated credit evaluation using a machine learning model. 
As illustrated in Fig. 4, the system returns a credit score (e.g. 
FICO 629), a risk classification (e.g. medium), and an approval 
decision. If the application is approved, the system immediately 
prepares a smart contract transaction for registration on the 
blockchain. 

 

Fig. 7. Automated evaluation result and MetaMask signature prompt. 

A key component is the integration with MetaMask, as 
shown in Fig. 7, where the user is prompted to sign the 
transaction. The signed transaction is sent to the Ethereum 
Sepolia test network, and the resulting transaction hash is 
displayed to the user (see Fig. 8), providing transparency and 
auditability. 

 

Fig. 8. Transaction confirmation (hash on Sepolia). 

Finally, Fig. 9 presents the detailed technical data of the 
transaction, including the contract address, the sender’s wallet, 
gas parameters, and the encoded data payload. This confirms 
that the system not only automatically evaluates and approves 
credit, but also ensures immutability and traceability by 
anchoring the result in a decentralized ledger. 
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Fig. 9. On-chain transaction details (contract, sender, gas, payload). 

These results demonstrate the operational viability of a 
minimum viable architecture for intelligent microcredit 
services, integrating machine learning-based credit evaluation 
with the transparency enabled by blockchain technology. 

B. Transaction Cost Analysis on Blockchain Networks 

The gas costs and average latency for smart contract 
registration were measured across different test networks, as 
shown in Fig. 10: 

 

Fig. 10. Transaction costs and latency across blockchain networks. 

C. Usability in Low-Connectivity Environments 

A user interaction simulation was conducted under 
conditions of limited bandwidth (< 1 Mbps) and high latency (> 
200 ms). The results indicated: 

• Initial interface load time: 3–5 seconds. 

• Delay in credit evaluation response: Additional 2–3 
seconds. 

• Offline signature success rate via transaction cache: 
95%. 

Recommendation: Implement local caching of contract 
metadata and an asynchronous signing mechanism (e.g. 
WalletConnect) to enhance resilience in rural areas. 

These results further demonstrate the operational feasibility 
of a minimum viable architecture for intelligent microcredit 
services, effectively integrating machine learning-based credit 
evaluation with the transparency and auditability enabled by 
blockchain technology. 

VII. DISCUSSION 

The modular architecture implemented represents a 
technically viable solution with high social impact potential, 
particularly in contexts affected by financial exclusion. Unlike 
previous approaches, the proposed system integrates emerging 

technologies such as Machine Learning, smart contracts, and 
algorithmic traceability into a unified architecture designed for 
the automated management of microcredits. 

We explicitly separate prediction (ML) from product 
personalization (rules) and execution/auditability (blockchain). 
This avoids role conflation, preserves privacy by keeping PII 
off-chain, and simplifies compliance: policy changes are rule-
level (no retraining), while model updates follow MLOps, and 
only non-PII artifacts are anchored on-chain. 

Cross-chain interoperability (design patterns). We keep a 
canonical credit reference (loanRefId) and anchor events on a 
primary chain while mirroring hashes on a secondary network 
when needed. Idempotent queues and off-chain oracles 
reconcile states across chains. This preserves traceability 
without duplicating PII and allows gradual migration or multi-
chain analytics. 

While prior studies have primarily focused on credit scoring 
models based on machine learning, many do not address the 
complete automation of the credit flow or the integration with 
secure infrastructures such as blockchain [4][12]. In contrast, 
our proposal not only automates credit evaluation but also 
ensures transparency and auditability through the decentralized 
recording of evaluations [9][15][24]. 

In terms of scalability and adaptability, the modular design 
of the system adheres to recommended principles for 
distributed architectures [13], enabling progressive evolution 
and allowing application in both digitally advanced urban areas 
and rural regions with limited connectivity. This approach 
aligns with the guidelines identified in financial inclusion 
research [1][2][17]. 

The use of smart contracts responds to global trends in 
decentralized finance (DeFi) [8], enabling the elimination of 
intermediaries and the reduction of operational costs. However, 
actual implementation may face challenges such as variable 
network fees and the need for technical infrastructure, 
especially in low-resource contexts, as noted in various studies 
[15][24]. 

This work also recognizes the importance of ethical and 
regulatory considerations. As highlighted in specialized 
literature [5][25][26], it is essential to address data privacy, 
algorithmic bias prevention, and compliance with local 
financial regulations. Future improvements include the 
integration of explainable AI (XAI) mechanisms [26][33], self-
sovereign identity (SSI) solutions [29][31], and partnerships 
with actors from the financial ecosystem to enhance 
interoperability and system sustainability [11][16]. 

Compared to [18], which proposes the use of alternative 
data sources such as mobile usage and social networks to train 
“AI-based” scoring models, our proposal shares the goal of 
expanding access to credit for individuals lacking traditional 
financial histories. However, our system introduces a greater 
degree of automation and interoperability by integrating smart 
contracts and blockchain traceability as core components of the 
credit flow—features not included in [18]. 

Both [20] and [21] present proposals based on deep learning 
models combined with blockchain for credit risk assessment. 
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While their approaches employ techniques such as LSTM and 
decentralized data storage, each presents a distinct solution, 
further underscoring the growing interest in this type of 
technological integration. Unlike those proposals, our approach 
prioritizes a modular, scalable architecture designed for 
progressive deployment in low-connectivity contexts, as well 
as the explicit use of smart contracts for credit execution. This 
emphasizes the practical and extensible nature of our system in 
contrast to more centralized or academically experimental 
solutions. 

Taken together, the proposed system constitutes a practical 
and extensible contribution that connects advances in artificial 
intelligence with principles of transparency and accountability, 
setting it apart from more fragmented or less integrated 
approaches developed to date. 

VIII. CONCLUSIONS AND FUTURE WORK 

Summary of contributions. We deliver an implementation-
ready modular architecture for microcredits that 1) ingests 
consented data (off-chain), 2) predicts risk with ML, 
3) personalizes terms via rules, and 4) executes/audits on-chain 
without storing PII. A working MVP demonstrates end-to-end 
feasibility and reports operational costs/latency to guide 
deployment choices.  

This paper presented a modular architecture aimed at the 
development of an intelligent microcredit system, integrating 
emerging technologies such as Open Finance, Artificial 
Intelligence, MLOps, and blockchain. The proposal was 
conceived from a technical-applied perspective, prioritizing 
implementation feasibility, system scalability, and adaptability 
to diverse contexts related to financial inclusion. 

The architecture was structured into seven functional 
modules, covering the entire credit lifecycle—from data 
collection to contract automation and credit history 
management—while incorporating proven security practices 
and AI model operations. Its modular design enables 
continuous deployment, while its alignment with open 
standards allows interoperability with other entities in the 
financial and governmental ecosystem. 

The use case scenarios illustrated how this architecture can 
benefit segments excluded from the traditional financial system, 
such as informal workers, young people with no credit history, 
and entrepreneurs in rural areas. Furthermore, it demonstrated 
the technical approach’s capability to operate in low-
connectivity and underbanked environments, through the use of 
lightweight technologies and digital identity solutions. 

However, real-world implementation will entail significant 
challenges, including: 

• the availability and quality of input data, 

• the maintenance and calibration of models in production, 

• infrastructure costs associated with blockchain networks, 
and 

• compliance with regulatory frameworks. 

To ensure the system’s sustainability and social impact, 
these aspects must be addressed with specific strategies and 
careful planning. 

Although this article does not aim to provide a comparative 
analysis of AI algorithm performance, the LightGBM model 
achieved an AUC of 0.94, supporting the technical suitability 
of the approach for operational integration in real-world 
systems. 

A. Future Work 

The following lines of work are proposed as next steps: 

• Development of a functional prototype using synthetic 
or anonymized real data to validate the full system flow. 

• Evaluation of AI model performance in contexts 
involving alternative and semi-structured data. 

• Simulation of the system in controlled environments or 
regulatory sandboxes, especially to analyze interactions 
between smart contracts and local financial regulations. 

• Expansion of the system with self-sovereign identity 
(SSI) to enhance portability and user control over their 
credit history. 

• Exploration of strategic partnerships with public 
institutions, fintechs, or NGOs for progressive 
deployment in target communities. 

• Optimization of gas fees and latency on production 
networks (e.g. Polygon Mainnet, Gnosis Chain) to 
ensure low operational costs beyond testnets. 

• Execution of field pilots with real users to validate user 
experience, collect satisfaction metrics, and adapt the 
interface to urban and rural environments. 

• Regulatory compatibility analysis, evaluating the 
interaction of smart contracts with financial regulations 
and the potential need for oracles or hybrid schemes. 

• Implementation of an advanced MLOps monitoring plan 
in production, including automatic drift detection, 
transactional anomaly identification, and continuous 
retraining pipelines. 

This proposal aims to serve as a foundational step toward 
the development of technological solutions for sustainable 
financial inclusion, with an ethical, distributed, and 
programmatically controlled approach. Its real-world 
implementation is designed to contribute meaningfully to 
closing the gap between technological innovation and financial 
justice. 
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APPENDIX A 

FUNCTIONAL IMPLEMENTATION OF THE INTELLIGENT MICROCREDIT SYSTEM 

A. Technical Annex: Introduction 

To validate the technical feasibility of the proposed architecture, a 
functional prototype of the smart microcredit system has been developed, as 

detailed in this annex. This prototype covers the entire process—from loan 
application submission through a web form, to automated credit risk assessment 

using an artificial intelligence model (based on variables such as income, age, 
and other fields described in Section A7 of this Annex), and the generation of 

blockchain transactions on the Ethereum Sepolia network. This integration 

includes the use of MetaMask and smart contracts. Additionally, the system 
enables decentralized signing of transactions and their subsequent public 

verification. 

It is important to emphasize that the implemented scoring model is 

designed for users who complete the form with conventional information, 
which is explicitly requested when no alternative credit history is available. 

Therefore, this study does not address the evaluation of users with non-banked 

backgrounds or alternative data sources, as such functionality is beyond the 

scope of this work. 

The core objective is to present a modular and functional architecture based 
on open and decentralized technologies, which can serve as a foundational base 

for future enhancements aimed at more inclusive credit assessment. 

It should be noted that this implementation does not aim to analyze 

performance or scalability metrics, but rather to demonstrate that the 

architecture can be coherently and operatively integrated using currently 
available technologies. All the code and processes described in the following 

sections are aligned with this applied engineering validation approach. 

1) Purpose of the annex: This annex presents a functional 

implementation of the proposed smart microcredit system. Its objective is to 

validate the technical feasibility of the architecture described in the previous 

sections of this article. As previously noted, this implementation does not yet 

incorporate the artificial intelligence model designed for clients with alternative 

data. The solution is based on a modular architecture that includes a frontend 

developed in HTML and JavaScript, an API built using FastAPI, an “AI-based” 

scoring module for clients with no available data, integration with the 

MetaMask digital wallet, and the execution of smart contracts on the Ethereum 

Sepolia test network. 

2) Methodological justification: The system was implemented following 

the Waterfall model, which structures project activities into clearly defined 

sequential phases. This methodology was chosen due to the nature of the project, 

whose main objective is to build a functional prototype to validate the technical 

viability of a modular architecture oriented toward smart microcredits. As this 

is a  solution with well-defined requirements and a clearly delimited scope, the 

Waterfall approach facilitated the organization of each phase with specific, 

verifiable deliverables. 

Throughout the development process, principles of applied software 

engineering were applied, with an emphasis on modular design, traceability of 
technical decisions, and future scalability of the system. As a result, a  minimum 

viable architecture was implemented that incorporates the following 

components: 

• Data collection on the frontend, through a web form compatible with  

user devices. 

• Preliminary identity validation, by checking the applicant’s ID (DNI) 

against a database of already registered clients. 

• Automated credit risk assessment, using a machine learning model 

(LightGBM) trained on traditional data. 

• Preparation and signing of blockchain transactions via MetaMask, 

recording approved loans on the Ethereum Sepolia network. 

• Frontend query of historical data, including events automatically 

generated during the evaluation flow. 

This modular and progressive design—following the sequential stages 

defined in the Waterfall model—not only enabled the validation of the system’s 
technical functionality but also ensured its potential for future scalability. The 

architecture is ready to incorporate more advanced credit scoring mechanisms 

in the future, including the evaluation of users without traditional banking 
histories by leveraging alternative data sources, which will be addressed in 

upcoming projects. 

3) Functional flow of the system: The implemented prototype follows the 

functional flow described below: 

• The user enters their National ID number (DNI) in the initial form. 

• If the DNI already exists in the database, the system informs the user 
that their credit is under evaluation. (Evaluation with alternative 

history using AI. Not implemented.) 

• If the DNI is not found, a full form is enabled to enter personal and 

financial information. (Evaluation based on form data using AI. 

Implemented for this article.) 

• Upon submission, the API registers the request in the database and 

generates a (basic) credit score result. 

• If the credit is approved, a transaction is prepared to register it on the 

blockchain. 

• MetaMask prompts the user to sign the transaction and sends it to the 

Sepolia testnet. 

• The transaction hash is stored in the backend and can be publicly 

verified. 

• A history section is enabled to review all submitted applications. 

4) Current scope and future extensions: The implemented system 

integrates an “AI-based” credit scoring model built with LightGBM, trained on 

traditional credit data (e.g. age, income, previous score, type of housing, among 

others). This model enables automated risk evaluations and classifies applicants 

into risk segments (low, medium, or high), triggering automatic approval, 

denial, or manual review as appropriate. 

However, the system does not yet include evaluation mechanisms for 

individuals without traditional credit histories — such as those who could 
provide alternative data like utility payment records, digital platform usage, or 

community references. Incorporating these profiles is a key challenge to 
achieving broader financial inclusion but remains outside the scope of this first 

project phase. 

This work focuses on validating the technical feasibility of a modular and 

decentralized architecture that combines: 

• Web-based data collection and evaluation, 

• AI-powered credit scoring (LightGBM), 

• Smart contract–based transaction recording on blockchain (Ethereum 

Sepolia), 

• Result traceability. 

Planned future extensions include: 

• Development of credit scoring models for alternative histories using 

supervised learning or weak supervision techniques. 

• Integration with real Open Finance APIs to obtain data from banks, 

digital wallets, and formal financial services. 

• Implementation of decentralized oracles to validate personal or 

financial data from external sources. 

• Modules for post-loan monitoring and payment behavior, with  

automated logic via smart contracts. 

5) Conclusion: The deployed implementation demonstrates the 

feasibility of building a functional intelligent microcredit system using open 
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and decentralized technologies. Although the implemented scoring model is at 

an initial stage, the technical architecture is ready to incorporate more 

sophisticated modules and scale for production environments. 

The system offers traceability, transparency, and disintermediation 

mechanisms, establishing a strong foundation for developing solutions focused 
on financial inclusion, especially in contexts where access to banking or 

institutional trust is severely limited. 

Code availability. All source code and configuration needed to reproduce 

the MVP are available at [36]. 

6) Source code repository: The complete source code of the system — 

frontend, backend, evaluation logic, and blockchain integration scripts — is 

available at [36]. 

The repository includes: 

• Backend code in Python (FastAPI) 

• Scripts for validation, MetaMask connection, and Web3 transaction 

generation 

• HTML and JavaScript files for the interactive frontend 

• Smart contracts developed in Solidity (Remix IDE) 

• Deployment instructions and connection to the Sepolia testnet  

This material is released under the Creative Commons Zero (CC0 1.0 

Universal) license, meaning it has been explicitly waived into the public 

domain. It may be freely used, modified, replicated, or adapted by anyone, 

without restrictions and without attribution, including for commercial purposes. 

7) Basic credit scoring model implemented: The system includes an 

automated credit risk evaluation model, designed for users who complete the 

web form with traditional information. This model was developed to validate 

the functional flow of the system and demonstrate how automated credit 

decisions can be integrated into the proposed architecture. 

Considered Criteria . The model takes into account the following variables, 

directly inspired by the structure of the dataset used: 

• person_age: Applicant’s age 

• person_income: Monthly income 

• person_home_ownership: Home ownership status (RENT, OWN, 

MORTGAGE, etc.) 

• person_emp_length: Years of work experience 

• loan_intent: Purpose of the loan (EDUCATION, MEDICAL, 

VENTURE, etc.) 

• loan_grade: Assigned loan grade (A, B, C, etc.) 

• loan_amnt: Requested loan amount 

• loan_int_rate: Interest rate associated with the loan 

• loan_percent_income: Ratio of loan amount to monthly income 

• cb_person_default_on_file: Indicator of prior defaults (Y or N) 

• cb_person_cred_hist_length: Length of credit history (in years). 

Evaluation Process. The implemented model uses supervised machine 
learning techniques, specifically LightGBM, trained on traditional variables 

available through the web form (age, income, prior credit score, home 

ownership, etc.). 

Once the applicant's data is processed, the model generates a credit score 

estimate on a scale comparable to FICO. 

Based on that score, the system automatically classifies the application into 

one of three risk segments (Fig. 11). 

The backend records both the risk classification and the action taken. In 

the case of medium risk, the status is marked as “pending human review,” 

allowing system operators to conduct a more detailed analysis before issuing a 

final decision. 

This segmentation reflects a simplified yet realistic credit policy, aligned 
with actual practices in the financial sector, and is adopted in this initial version 

as a mechanism for validating the technical architecture. 

Purpose of the Current Model. This model is a baseline predictive 

component used to validate the end-to-end architecture. It is not production-

grade and was not exhaustively optimized, but it is trained and evaluated as 

described in Section III (AUC = 0.94) to demonstrate operational integration. 

• Integrating automated decision-making, 

• Storing the results, and 

• Registering approved credit decisions on blockchain. 

The full implementation of this logic is available in the file  

credit_scoring.py within the aforementioned repository. 

8) Reference dataset: To design the basic credit evaluation model, a  

publicly available dataset was used [37]. 

Dataset use. This dataset includes relevant information on loan 

applicants—age, income, home-ownership type, occupation, credit history, and 

approval outcomes. It was used to train, validate, and test a  baseline LightGBM 
classifier (with a stratified split and class-imbalance weighting); it also 

informed the rule-based personalization and served to functionally validate the 

end-to-end prototype. No PII is required for our pipeline. 

This decision aims to facilitate open collaboration and the development of 
technological solutions that promote financial inclusion in contexts where 

access to credit is limited. 

 

Fig. 11. Summarizes the automated decisions made by the intelligent microcredit system according to the risk segment assigned by the LightGBM mod el. 

 


