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Abstract—During digital transformation, manufacturing 

enterprises encounter challenges such as the high cost of smart 

devices, operational interruptions, and increased technology 

expenses, raising their financial risks. Addressing the digital 

transformation challenges confronting manufacturing 

enterprises necessitates developing an intelligent financial risk 

prediction system leveraging AI technologies like big data and 

deep learning, enabling enterprises to mitigate financial 

exposure. In addition, some data of some manufacturing 

enterprises cannot be disclosed and shared due to the 

involvement of trade secrets and shareholder interests. To 

address these challenges, this study proposes a federated learning 

(FL)-based framework for predicting financial risk in 

manufacturing enterprises. Without sharing data, each client 

(manufacturing enterprise) in the FL framework uses deep 

learning models to train financial risk prediction models through 

a central server federation. In this study, the proposed FL 

framework employs a deep learning model based on a neural 

Turing machine (NTM) with a long short-term memory (LSTM) 

controller. In addition, in order to improve the prediction 

accuracy of the hybrid NTM-FL model, an improved starfish 

optimization algorithm (ISFOA) was used to optimize the 

structure of the NTM model. Finally, the experimental results 

showed that the ISFOA-based NTM-FL (ISFOA-NTM-FL) 

model improved the prediction accuracy by 26.32% compared to 

the other three financial risk prediction models. 
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I. INTRODUCTION 

The intelligent financial risk management system is of great 
significance to manufacturing enterprises by enabling accurate 
risk prediction and optimized fund allocation. However, their 
digital transformation introduces critical financial risk 
challenges. These include high costs of smart devices, 
investment risks brought by technological iterations, and 
substantial capital expenditures that can constrain cash flow 
[1]. In addition, the massive capital expenditures during the 
digital transformation of manufacturing enterprises may also 
lead to cash flow constraints. Furthermore, the pace of 
technological change can quickly render previous investments 
ineffective, failing to meet profit expectations. Traditional 
financial risk prediction models struggle to accurately quantify 
these specific manufacturing risks [2]. To address this 

challenge, manufacturers are actively pursuing the 
development of AI-based intelligent financial risk management 
systems to more effectively manage financial risks throughout 
their transformation and ongoing operations. 

Recurrent neural network (RNN), as a fundamental 
architecture in the field of deep learning, focuses on feature 
extraction and complex pattern recognition through multi-layer 
nonlinear transformations [3]. However, traditional RNN 
models have significant limitations in handling sequence 
dependent tasks, with one of the biggest challenges being long-
term memory decay. Indicative examples include long short-
term memory (LSTM) networks and gate recurrent units 
(GRU) [4]. The neural Turing machine (NTM), as a typical 
model under the deep learning architecture, introduces external 
memory on the basis of the deep learning infrastructure and 
constructs a hybrid computing system with active memory read 
and write capabilities. Compared with LSTM and GRU 
models, the introduction of external memory enables the NTM 
model to have memory function and achieve information reuse 
across time steps. Therefore, another typical application of 
NTM is time series prediction that considers causal 
relationships. For example, when processing quarterly financial 
reports of manufacturing enterprises, NTM can autonomously 
associate the causal relationship between equipment 
investment and current profitability of manufacturing 
enterprises, while traditional RNNs can only indirectly capture 
such relationships through fixed window time series feature 
engineering. Therefore, in the field of financial risk prediction, 
NTM has disruptive potential. 

In addition, the development of financial risk prediction 
models for manufacturing enterprises faces severe data privacy 
challenges. The operational data of manufacturing enterprises 
involves a large amount of core business data such as inventory 
costs and supply chain costs, so the financial risk prediction of 
manufacturing enterprises has the characteristics of strong data 
sensitivity and large data volume [5]. At the same time, when 
manufacturing enterprises complete digital transformation, the 
above data will be scattered in independent systems such as 
manufacturing management systems and supply chain 
management systems, making integration difficult. The 
traditional RNN framework requires manufacturing enterprises 
to upload a large amount of raw data to third-party platforms 
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during model training, which poses a risk of privacy data 
leakage for the enterprise. These risks may lead to market share 
losses and cost structure leaks for manufacturing companies. In 
summary, intelligent manufacturing enterprises often hold 
multiple private data that cannot be shared, which has led to a 
decrease in the accuracy of financial risk prediction in 
traditional models. 

Federated learning (FL) technology has the potential to 
protect data privacy in financial risk prediction for 
manufacturing enterprises through distributed computing 
frameworks. Specifically, FL adopts a multi-layer federated 
encryption protocol, which can isolate the financial data of 
various manufacturing enterprises in a local encryption 
domain. Sensitive fields such as research investment cost, 
equipment investment cost, and supply chain cost of 
manufacturing enterprises are encrypted and trained locally 
with relevant model parameters, which are then uploaded to the 
global model of the alliance. Therefore, this study focuses on 
the financial risk prediction problem of manufacturing 
enterprises, considering the complexity and privacy constraints 
of manufacturing enterprise data. Based on the NTM model 
and FL framework, a hybrid NTM-FL framework is designed, 
which uses the NTM model with an LSTM controller to predict 
the financial risk of manufacturing enterprises. At the same 
time, the improved starfish optimization algorithm (ISFOA) 
was used for the parameter of NTM optimization. Overall, this 
study designed an intelligent decision-making system with 
privacy protection, temporal modeling, and adaptive 
optimization features. The main contributions of this study are 
summarized as follows: 

• This study develops an FL-based distributed framework 
where a central server coordinates local deep learning 
model training across manufacturing enterprise clients, 
achieving accurate financial risk prediction without raw 
data disclosure. 

• An improved starfish optimization algorithm (SFOA) 
has been designed, which incorporates the 
reconnaissance and foraging strategies of artificial bee 
colony (ABC) algorithm into the search strategy of the 
improved SFOA (ISFOA), aiming to improve the 
convergence accuracy of SFOA and optimize the 
hyperparameters of deep learning models. 

• A hybrid ISFOA-NTM model was constructed as a 
local deep learning model for the FL framework. 
Optimizing the hyperparameter combination of NTM 
model with LSTM controller using ISFOA algorithm, 
including learning rate, regularization coefficient, and 
number of neurons, aims to improve the prediction 
accuracy of local deep learning model. 

• The ISFOA-based NTM-FL (ISFOA-NTM-FL) 
framework has improved the accuracy and 
generalization ability of financial risk prediction 
models. On the test set corresponding to 10 epochs, the 
performance of ISFOA-NTM-FL was validated. 
Compared with the baseline NTM-FL model and 
LSTM model, the prediction accuracy of ISFOA-NTM-
FL model increased by 13% and 23%, respectively. 

The remaining parts of this study are arranged as follows: 
Section II focuses on reviewing work related to deep learning 
and federated learning. Section III introduces the methodology 
and ISFOA-NTM-FL framework of this study. In Section IV, 
the proposed framework's test results on two test sets are 
presented. Finally, Section V provides a conclusion of this 
study. 

II. LITERATURE REVIEW 

A. Deep Learning and Neural Turing Machine 

Deep learning frameworks can model the complex 
relationships of a system, accurately capturing causal 
relationships between inputs and outputs. Due to the above 
advantages of deep learning frameworks, there have been 
numerous studies using deep learning frameworks in prediction 
problems at present. The author in [6] proposed a Bayesian-
based deep learning model for complex signal processing 
problems, which significantly improved the performance of 
deep learning models. Jawed et al. developed a real-time 
learner learning style recognition model based on deep learning 
in the context of animation education [7]. This study utilized 
learners' raw EEG data for evaluation and successfully 
achieved accurate recognition of learners' learning styles in the 
context of animation education by constructing an efficient 
deep learning architecture, providing new tools and methods 
for the development of personalized education technology. 
Kim et al. studied the application of deep learning models in 
predicting the risk behavior of retail investors [8]. The results 
indicate that this study demonstrates the potential of deep 
learning models in identifying high-risk investors, providing an 
effective risk management tool for financial institutions. 

The author in [9] proposed a deep learning-based image 
processing method for quantifying financial audit risks in the 
healthcare field. This study aims to develop a system that can 
automatically identify and quantify risks by combining deep 
learning techniques with financial audit requirements, while 
providing intelligent solutions for financial management in the 
healthcare industry. In response to the real-time pedestrian 
detection, pose estimation, and tracking problems based on 
visual sensors, a unified deep learning framework integrating 
multiple deep learning techniques was designed in [10], aiming 
to improve the accuracy and efficiency of object detection 
tasks based on deep learning, and provide technical support for 
intelligent transportation systems and security monitoring 
fields. Park et al. proposed an investment portfolio 
management method based on uncertainty perception, which 
optimized the decision-making process of the investment 
portfolio by introducing uncertainty factors and combining 
them with a risk-sensitive multiagent network [11]. Sattar et al. 
developed a deep reinforcement learning model that combines 
reinforcement learning with investment strategies to optimize 
portfolio management in stock trading [12]. The results showed 
that the proposed deep learning model can significantly 
improve the returns and stability of investment portfolios. 
Biswas et al. developed a dual-output time convolutional 
network with an attention mechanism for stock price prediction 
and risk assessment, aiming to enhance the model's ability to 
capture key information [13]. This study improved the 
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accuracy of financial market forecasting and risk prediction by 
introducing attention mechanisms. 

NTM is an advanced architecture in deep learning models 
that integrates DNN with classical computational theory. By 
introducing external memory mechanisms, it extends the 
capabilities of traditional neural networks to handle more 
complex sequential tasks, thereby improving the 
interpretability of DNN. The author in [14] developed an NTM 
architecture that can process time series data and generate 
interpretable predictive results by combining data from 
physician-pharmacist collaborative clinics. Stogin et al. 
proposed an NTM model that can be proven stable under finite 
accuracy and time conditions, demonstrating its robustness and 
reliability under limited computing resources, providing a 
foundation for the deployment of neural Turing machines in 
practical applications [15]. The author in [16] designed an 
NTM model based on differentiable decision trees and 
introduced the finite time difference method into NTM, aiming 
to solve electromagnetic problems. Wu et al. revealed the 
emergence mechanism of machine thinking in complex 
systems through theoretical modeling and experimental 
analysis [17]. Postlethwaite et al. extended the computational 
power of traditional Turing machines by introducing 
continuous time dynamics theory, providing a new framework 
for modeling and optimizing complex systems [18]. 

B. Federated Learning 

Federated learning has the advantage of protecting data 
privacy. How to train the dataset on local devices and upload 
the model parameters generated during the training process to 
the central server is a key issue. Therefore, federal learning is 
widely used in a large number of financial, pharmaceutical and 
Internet enterprises. Mistry et al. designed a federated learning 
framework for privacy-preserving screen activity tracking and 
classification problems [19]. This study uses a federated 
learning framework based on an electronic learning 
background to track and classify screen activity in real-time. 
The results show that the federated learning framework 
effectively avoids centralized storage of sensitive data through 
local data processing and model aggregation. Orlandi et al. 
explored the problem of federated learning in processing 
independent data in edge intelligence environments [20]. This 
study proposes an entropy-based approach that improves the 
performance of federated learning on edge devices by 
optimizing data distribution. Xie et al. designed a federated 
learning framework based on the problem of multi-target 

recognition that combines differential privacy technology, 
which can achieve accurate recognition of multiple task targets 
while protecting data privacy [21]. 

Kalapaaking et al. combined blockchain technology with 
federated learning and proposed a secure aggregation 
framework based on a trusted execution environment, suitable 
for internet of things (IoT) scenarios [22]. This study ensures 
data security and traceability through blockchain while 
utilizing federated learning for distributed model training. The 
author in [23] provided a comprehensive review of privacy 
inference attacks and defenses in centralized and federated 
learning, while also introducing the potential applications of 
federated learning in privacy-sensitive fields. In [24], the 
author proposed a federated learning framework that combines 
server learning and effectively alleviates the challenges posed 
by non-independent and identically distributed data through 
global model optimization on the server side. Sun et al. 
introduced federated learning based on the background of 
machine fault diagnosis tasks, gradually training the model to 
learn data features from simple to complex, effectively 
reducing the impact of noisy labels on model performance 
[25]. 

III. MATERIALS AND METHODS 

In order to improve the accuracy of predicting financial 
risks in manufacturing enterprises and enhance the intelligence 
level of financial risk management, this study designed a 
hybrid NTM-FL framework based on FL architecture and 
NTM model for financial risk prediction. This hybrid 
framework uses a distributed architecture to protect the privacy 
data of enterprises, while the NTM model with LSTM 
controller is trained on each local device. In the financial risk 
prediction model for manufacturing enterprises based on the 
NTM-FL framework, the client (participant) is a local device 
that collects core data of the manufacturing enterprise. The 
local device uses a deep learning model to train the parameters 
of the risk prediction system. The central server is responsible 
for coordinating the training of financial risk prediction models 
and aggregating updates of local models. During the FL 
framework training process, data from distributed local devices 
is always stored on the local devices, and only model 
parameters are shared. In the FL model prediction process, 
each local device is trained using NTM models based on data 
from different manufacturing companies. Fig. 1 shows the 
designed hybrid NTM-FL framework. 

 
Fig. 1. The hybrid NTM-FL framework for financial risk management in manufacturing enterprises. 
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A. The Hybrid NTM-FL Approach 

In this study, a federated learning framework was used to 
predict the financial risks of manufacturing companies, aiming 
to train a global financial risk prediction model for 
manufacturing companies using time-series data from multiple 
local devices. Fig. 2 shows the flowchart of the FL framework. 
Each local device is trained using NTM. Algorithm 1 

demonstrates the pseudocode of NTM. In Algorithm 1, maxT is 

the maximum number of training iterations and k is the current 

number of training iterations. 

Algorithm 1: Neural Turing Machine (NTM) 

Initialize: Input layer size, hidden layer size, memory size, number 

of heads. 

NTM.Controller  LSTM 

NTM.Memory  zeros (memory size) 

Training frequency  Tmax 

Compute:  Output layer status. 

While (k  Training frequency) do 

 Forward propagation 

  NTM.Controller processes input. 

  NTM.Memory reads memory. 

  NTM.Memory writes into memory. 

  Generate predictions. 

  k  k+1 

 End  

Return (Output layer status). 
 

 
Fig. 2. The flowchart of the FL model. 

B. Improved Starfish Optimization Algorithm 

This study uses a federated learning architecture to design 
financial risk management systems for manufacturing 
companies, aiming to protect their data privacy. At the local 
device layer, the differential controller of NTM automatically 
encodes various heterogeneous data, such as financial reports 
and supply chain logistics costs of manufacturing companies, 
into temporal feature vectors, and performs causal inference 
based on the training set in memory. Therefore, in order to 
further improve the prediction accuracy of the NTM algorithm 
at the local device layer, this study uses metaheuristic 
algorithms to optimize hyperparameters such as scaling factors, 
interpolation weights for new and old content addressing, 
learning rates, and gradient clipping thresholds. Specifically, in 
this study, an improved SFOA (ISFOA) algorithm was 
designed based on the Artificial Bee Colony (ABC) algorithm 
[26] and the Starfish Optimization Algorithm (SFOA) 
algorithm [27]. The optimization process of the ISFOA 
algorithm is shown below. 

Step 1. Initialize the population and parameters of the 
ISFOA algorithm. Generate L solutions based on the maximum 
and minimum range of hyperparameters in NTM, where each 

solution 1 2_ [ , , ]X

l l lSF l S S S= is an X-dimensional vector. 

Therefore, the population matrix of the ISFOA algorithm is as 
follows: 
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Step 2. The exploration stage is based on the starfish 

optimization mechanism. Generate a random number saP on the 

interval [0,1], and for the x th− individual in each solution, if

0.5saP  , execute an exploration strategy based on the starfish 

optimization mechanism. When implementing the exploration 
strategy in the starfish optimization mechanism, generate a 
random number 1Rand in the interval [-1,1]. If 1 0.5Rand  , 

update based on the starfish exploration environment strategy, 
which is defined in (2); Otherwise, update based on the starfish 
predation strategy, which is defined in (3). 
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vector. x
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where 3Rand and 4Rand are random numbers on the [0,1] 

interval, respectively. 
1

x

randsS and 
2

x

randsS are two randomly 

selected solution vectors from all current solution vectors. 

 is the angle variable for search, which is defined in (4). 

( )max
2


  =                                  () 

where  is the current iteration count of the ISFOA 

algorithm, and max is the maximum iteration count of the 

ISFOA algorithm. 

In addition, Fig. 3 illustrates the process of the starfish 
predation strategy. 

 
Fig. 3. The predation strategy of ISFOA 

Step 3. The development stage is based on the foraging 

mechanism of bees. If 0.5saP  , the development phase based 

on the bee foraging mechanism will be executed. The 
definition of development strategy based on bee foraging 
mechanism is as follows: 

1
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where, 5Rand is a random number on the interval [0,1]. 

min

xS is the x th− vector of the worst solution so far. 

Step 4. Update the global optimal solution. Calculate the 
fitness function of the current solution of the ISFOA algorithm 

based on the objective function ( )ˆ,f y y , while updating the 

fitness function of the optimal solution. The definition of

( )ˆ,f y y is as follows: 

( )
ˆ

ˆ,
y y

f y y
N

−
=

                         () 

where ŷ is the predicted value of financial risk. y is the true 

value of financial risk. N is the size of the test set. 

Step 5. Output the optimal solution. Determine whether the 
maximum number of iterations has been reached, and if so, 
output the global optimal solution vector. 

IV. RESULTS 

This study designed a hybrid NTM-FL framework aimed at 
predicting financial risks in manufacturing enterprises using 
both NTM and FL architectures. In addition, to further improve 
the accuracy of the hybrid NTM-FL prediction framework in 
financial risk prediction problems, we optimized the 

hyperparameters of NTM using the ISFOA algorithm. To 
evaluate the application effectiveness of the ISFOA-NTM-FL 
model in financial risk prediction problems. Validate based on 
a dataset consisting of interim and annual reports disclosed by 
263 manufacturing companies listed on the Hong Kong Stock 
Exchange (HKEX) and the New York Stock Exchange 
(NYSE) from 2015 to 2024. Therefore, when conducting time 
series forecasting of financial risks, a prediction is made every 
6 months, with 20 samples corresponding to each enterprise in 
the dataset. The sample size of the financial risk prediction 
dataset is 5260. The dataset includes financial expenditures and 
profit margins of manufacturing enterprises. Based on the 
above data, we trained the ISFOA-NTM-FL model for 10 
epochs. Therefore, in each epoch experiment, data from 100 
samples in the dataset were used to test the ISFOA-NTM-FL 
model. Before conducting the experiment, the scores, levels, 
and classifications of financial risks are defined in Table I. The 
indicators for evaluating the application effectiveness of 
ISFOA-NTM-FL in 10 epochs are defined in Table II [28]-
[30]. 

TABLE I.  THE CLASSIFICATIONS OF FINANCIAL RISKS 

Risk Score Risk Level Risk Classification 

0.  Score <2 Low Risk Class 1 

2  Score <4 Low to Medium Risk Class 2 

4  Score <6 Medium Risk Class 3 

6  Score <8 Medium to High Risk Class 4 

8  Score <10 High Risk Class 5 

TABLE II.  EVALUATION INDICATORS FOR RISK PREDICTION MODELS 

Index Definition 

Macro-Precision 
1

1 M
m
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1 Macro F Score
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− =

−  −

− −



+

 

mTP represents the number of samples in the financial risk 

prediction test set whose true value is class m and were 

predicted as class m. mFP represents the number of samples in 

the financial risk prediction test set whose true value is not 

class m but were predicted as class m. mFN represents the 

number of samples in the financial risk prediction test set 
whose true value is class m but were predicted incorrectly. 

In addition, the ABC-NTM-FL model, classic NTM-FL 
model, and classic LSTM model were used to compare with 
the proposed ISFOA-NTM-FL model, aiming to demonstrate 
the potential of the proposed ISFOA-NTM-FL model in 
predicting financial risks in manufacturing enterprises. Fig. 4 
shows the financial risk prediction results of the ISFOA-NTM-
FL model for two manufacturing companies. As previously 
mentioned, this study developed hyperparameters for ISFOA 
optimized NTM model with LSTM controller. In Fig. 5, the 
loss function curves of ISFOA and ABC algorithm optimized 
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NTM model with LSTM controller during 15 training processes in epoch 1 are shown. 

TABLE III.  THE RESULTS OF FOUR LOCAL DEEP LEARNING MODELS 

Algorithm 

The Parameters of the 

Optimization Algorithm 
Hyperparameters of NTM Loss Function 

Population Size 
Number of 

Iterations 
Learning Rate 

Number of 

Neurons 
Average Value 

The Upper Bound of 

95% C.I. 

The Lower Bound of 

95% C.I. 

ISFOA-NTM 80 100 0.0093 118 0.0843 0.1301 0.0384 

ABC-NTM 80 100 0.0087 124 0.2651 0.3344 0.1958 

NTM - - 0.0010 124 0.4978 0.5745 0.4212 

LSTM - - 0.0010 124 0.5139 0.5975 0.4658 
 

 
Fig. 4. The ISFOA-NTM-FL model predicts the financial risks of two 

manufacturing enterprises. 

 
Fig. 5. The loss function curves of ISFOA and ABC algorithm optimized 

NTM model with LSTM controller. 

Table III shows the results of 15 training sessions for four 
local deep learning models in epoch 1, including ISFOA-NTM, 
ABC-NTM, NTM, and LSTM. From Table III and Fig. 5, it 
can be concluded that when optimizing the NTM model with 
LSTM controller for financial risk prediction, the average loss 
function value of the ISFOA-NTM model in 15 training 
sessions is 0.0843, which is lower than other algorithms. 
Specifically, the average loss functions corresponding to the 
ABC-NTM, NTM, and LSTM models are 0.2651, 0.4978, and 
0.5139, respectively. Compared with the ABC-NTM, NTM, 
and LSTM models, ISFOA-NTM has reduced losses by 
approximately 68.19%, 83.07%, and 83.60%, respectively. 
This result demonstrates the effectiveness of the ISFOA 

algorithm in NTM hyperparameters, which can effectively 
improve the accuracy of financial risk prediction models used 
for manufacturing enterprises. 

In addition, the 95% C.I. of ISFOA-NTM is [0.0384, 
0.1301], with a width of 0.0917. Compared with the other three 
models, ISFOA-NTM has the narrowest confidence interval 
width, indicating that the ISFOA-NTM-FL model has high 
stability. In addition, the confidence interval of the ISFOA-
NTM model has no overlap with other algorithms, and the 
upper bound of the confidence interval of the ISFOA-NTM 
model is 0.1301, which is lower than the lower bound of ABC-
NTM and significantly lower than the lower bounds of NTM 
and LSTM. Although the confidence interval of ABC-NTM is 
better than the benchmark NTM model and benchmark STM 
model, the confidence interval width is 0.1386, which further 
reflects that the ISFOA optimization strategy has more 
advantages in stability. Therefore, ISFOA-NTM achieves a 
significant reduction in loss function and synchronous 
improvement in stability through hyperparameter optimization. 

When testing the ISFOA-NTM-FL model, ABC-NTM-FL 
model, NTM-FL model, and LSTM model in Epoch 1, the four 
indicators of macro-F1 score, macro-precision, macro-recall, 
and accuracy were used to evaluate the financial risk prediction 
results. Fig. 6 shows the confusion matrix of the financial risk 
prediction results of the ISFOA-NTM-FL model in Epoch 1 on 
a test set consisting of 100 samples. Table IV shows the 
indicators of the ISFOA-NTM-FL model's financial risk 
prediction results for five categories in Epoch 1, including the 
F1 score, precision, recall, and accuracy indicators 
corresponding to each risk category. 

 

Fig. 6. The confusion matrix of the financial risk prediction results of the 

ISFOA-NTM-FL model in Epoch 1. 
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TABLE IV.  THE INDICATORS OF ISFOA-NTM-FL MODEL'S FINANCIAL 

RISK PREDICTION RESULTS FOR FIVE CATEGORIES IN EPOCH 1 

Index Class 1 Class 2 Class 3 Class 4 Class 5 

F1 Score 0.8205 0.9231 0.8500 0.8500 0.8571 

Precision 0.8421 0.9474 0.8500 0.8500 0.8182 

Recall 0.8000 0.9000 0.8500 0.8500 0.9000 

Accuracy 0.8000 0.9000 0.8500 0.8500 0.9000 

From the data in Table IV, it can be seen that the ISFOA-
NTM-FL model has a high overall accuracy in predicting five 
types of financial risks, with an accuracy of over 80% for each 
type of financial risk prediction. Among them, the F1 score 
corresponding to Class 2 is 0.9231, the precision is 0.9474, and 
the recall rate is 0.9, indicating that the accuracy of risk 
prediction for this class (Class 2) is the highest. The F1 score 
for Class 1 is 0.8205, with a recall rate of 0.8000, indicating a 
20% real risk of missed detections in Class 1. Overall, the 
ISFOA-NTM-FL model performs robustly in multiple 
categories. 

Table V shows the training results of four models (ISFOA-
NTM-FL model, ABC-NTM-FL model, NTM-FL model, and 
LSTM model) based on Epoch 1 dataset. Fig. 7 shows the 
results of the four models corresponding to the four indicators 
of macro-F1 score, macro-precision, macro-recall, and 
accuracy. The ISFOA-NTM-FL model achieved optimal 
performance in three aspects: accuracy, recall, and 
generalization ability in financial risk prediction tasks. The 
macro-precision of ISFOA-NTM-FL is 0.8615, and the macro-
precision of ABC-NTM-FL is 0.7959. Compared with ABC-
NTM-FL, the ISFOA-NTM-FL model has improved macro-
precision by 8.24%. The macro-precision of classic NTM-FL 
and LSTM are 0.7300 and 0.6327, respectively. The ISFOA-
NTM-FL model has the highest macro-precision. Compared 
with the ABC-NTM-FL model, the ISFOA-NTM-FL model 
can reduce seven prediction errors for every 100 financial risk 
warnings. The macro-recall of the ISFOA-NTM-FL model is 
0.8600, which is an 8.86% increase compared to the ABC-
NTM-FL model. The macro-F1 score of the ISFOA-NTM-FL 
model is 0.8601. 

Fig. 8 shows the loss function values of the ISFOA-NTM-
FL model over 10 epochs. Fig. 9 shows the corresponding 
macro-F1 score, macro-prediction, and macro-recall for the 
financial risk prediction results of the ISFOA-NTM-FL model 
over 10 epochs. Table VI shows the financial risk prediction 
results of the ISFOA-NTM-FL model over 10 epochs. 

The ISFOA-NTM-FL model exhibits strong generalization 
ability in 10 epochs. In Epoch 1, the macro accuracy of the 
ISFOA-NTM-FL model is 0.8615, and the validation loss is 
0.0843. In Epoch 10, all metrics of the ISFOA-NTM-FL model 
achieved the best results, with a macro-precision of 0.9200 and 
a validation loss of 0.0529. Compared with the results in Epoch 
1, the macro-precision in Epoch 10 increased by 6.79%, the 

macro-recall increased by 5.81%, the validation loss decreased 
by 37.3%, and the training loss decreased by 47.3%. 

The prediction accuracy of the ISFOA-NTM-FL model in 
handling financial risk prediction problems has improved from 
86% in Epoch 1 to 91% in Epoch 10. The average accuracy of 
the ISFOA-NTM-FL model throughout the entire cycle is 
88.5%, which is 2.91% higher than the initial value in Epoch 1. 
The ISFOA-NTM-FL model maintains high stability with an 
accuracy of nearly 89% throughout the entire training process. 

TABLE V.  THE TRAINING RESULTS OF FOUR MODELS BASED ON 

DATASET OF EPOCH 1 

Index 
ISFOA-

NTM-FL 

ABC-

NTM-FL 
NTM-FL LSTM 

Macro-Precision 0.8615 0.7959 0.7302 0.6327 

Macro-Recall 0.8600 0.7900 0.7300 0.6300 

Macro-F1 Score 0.8601 0.7901 0.7295 0.6296 

Accuracy 0.8600 0.7900 0.7300 0.6300 

 
Fig. 7. The results of the four models correspond to the four indicators of 

macro-F1 score, macro-precision, macro-recall, and accuracy. 

 
Fig. 8. The loss function of training the ISFOA-NTM-FL model in 10 

epochs. 
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Fig. 9. The results of the ISFOA-NTM-FL correspond to the four indicators of macro-F1 score, macro-precision, macro-recall, and accuracy. 

TABLE VI.  THE RESULTS OF TRAINING THE ISFOA-NTM-FL MODEL IN 10 EPOCHS 

Index Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6 Epoch 7 Epoch 8 Epoch 9 Epoch 10 

Training Loss 0.2274 0.2053 0.1891 0.1651 0.1639 0.1587 0.1539 0.1470 0.1384 0.1198 

Validation Loss 0.0843 0.0815 0.0801 0.0761 0.0718 0.0667 0.0615 0.0605 0.0564 0.0529 

Macro-Precision 0.8615 0.8709 0.8708 0.8812 0.8817 0.8916 0.8915 0.8909 0.9202 0.9200 

Macro-Recall 0.8600 0.8700 0.8700 0.8800 0.8800 0.8900 0.8900 0.8900 0.9100 0.9100 

Macro-F1 Score 0.8608 0.8705 0.8704 0.8806 0.8808 0.8908 0.8907 0.8904 0.9151 0.9150 

Accuracy 0.8600 0.8700 0.8700 0.8800 0.8800 0.8900 0.8900 0.8900 0.9100 0.9100 
 

V. CONCLUSION 

In response to the challenges in the accuracy of financial 
risk prediction for manufacturing enterprises, this study 
designed a hybrid NTM-FL based intelligent prediction system 
based on the FL framework and NTM model. On this basis, an 
ISFOA algorithm is proposed to optimize the hyperparameters 
of the NTM model with LSTM controller, aiming to improve 
the prediction accuracy of the NTM model. Overall, the 
proposed financial risk intelligent prediction system achieves 
cross enterprise collaborative modeling without sharing raw 
data through FL architecture. Meanwhile, the system combines 
the memory enhancement capability of NTM with the temporal 
modeling advantage of LSTM. The results showed that 
compared to the ABC-NTM-FL, NTM-FL, and LSTM models, 
the proposed model improved the accuracy of financial risk 
prediction by 26.315%. At the end of training in ISFOA-NTM-
FL, a prediction accuracy of 91% was achieved. In future 
research, the application of multimodal data in financial risk 
prediction models, such as fusion modeling techniques that 
consider market public opinion, will be further explored. 
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