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Abstract—Multispectral image classification plays a crucial 

role in remote sensing applications such as land cover mapping, 

agricultural monitoring, and environmental surveillance. 

Traditional classification techniques, including the Maximum 

Likelihood Classifier (MLC), Support Vector Machine (SVM), 

Decision Tree (DT), and Multi-Layer Perceptron (MLP), often 

struggle with the complexity and high dimensionality of 

multispectral data. Recent advances in deep learning have 

revolutionized the field of remote sensing by enabling the 

extraction of high-level, abstract features from raw input data. In 

this paper, we explore the application of Deep Neural Networks 

(DNNs) for pixel-wise classification in multispectral imagery. 

DNNs are capable of learning informative and hierarchical 

representations, which have demonstrated significant success in a 

wide range of computer vision tasks. We propose and implement 

a simple DNN architecture consisting of six layers: an input layer 

(representing reflectance values across spectral bands), a fully 

connected layer, a batch normalization layer, a ReLU activation 

layer, another fully connected layer, and a final SoftMax output 

layer for classification. Each pixel is represented by a vector of 

spectral reflectance values. We evaluated our model using two 

Landsat scenes, one from the New Orleans area and the other from 

the Mississippi River bottomland area. The proposed DNN 

achieved classification accuracy of 97.44% and 95.74%, 

respectively, on these datasets, demonstrating the effectiveness of 

deep learning for multispectral image classification. 

Keywords—Remote sensing; classification; deep neural 

networks; Landsat scene 

I. INTRODUCTION 

Multispectral imaging has become an essential tool in the 
field of remote sensing, enabling the acquisition of detailed 
information about the Earth's surface by capturing data across 
multiple distinct spectral bands. Unlike conventional RGB 
imagery, which captures only three visible bands (red, green, 
and blue), multispectral images span a broader range of the 
electromagnetic spectrum, including the visible, near-infrared 
(NIR), and shortwave infrared (SWIR) regions, providing richer 
spectral detail. This additional spectral information enhances the 
ability to distinguish between materials and land cover types, 
making multispectral imagery invaluable for a variety of 
applications, such as agricultural monitoring, land use 
classification, forestry, environmental change detection, and 
disaster assessment. 

In remote sensing, pixel-based classification is one of the 
preferred methods for analyzing multispectral images. However, 
classifying multispectral images presents several challenges. 
The increased dimensionality of the data, combined with high 
inter-class similarity and intra-class variability, makes it difficult 

for traditional machine learning (ML) algorithms to achieve 
high classification accuracy. Common ML techniques used for 
pixel-based classification of multispectral images include the 
maximum likelihood classifier (MLC), decision tree (DT), 
support vector machine (SVM), random forest (RF), k-nearest 
neighbors (k-NN), and neural network (NN) models. In pixel-
based classification, each pixel is represented as a vector of 
reflectance values across multiple spectral bands. A few sample 
pixels are selected from homogeneous areas representing 
distinct ground categories to form the training dataset. The 
classifier model is trained using this data, and once trained, the 
model is applied to classify the entire image scene. In the late 
1980s, neural network (NN) models such as the multi-layer 
perceptron model with backpropagation learning were used for 
pixel-based classification of multispectral imagery. One 
advantage of NN models is that they are more efficient 
compared to conventional machine learning models, such as 
maximum likelihood classification (MLC). 

In recent years, deep learning has revolutionized the field of 
image analysis by introducing models capable of learning 
complex, non-linear representations of data directly from raw 
inputs. A major limitation of early NN models using gradient 
descent with sigmoid activation functions was the vanishing 
gradient problem, where saturation of activation functions led to 
slow convergence during training. To mitigate this issue, deep 
learning (DL) models often employ entropy-based loss 
functions along with rectified linear unit (ReLU) activations in 
the output layer. Overfitting commonly occurs when the dataset 
is small. To address this, various regularization techniques such 
as dropout and bagging are employed. DL models can be trained 
on large datasets and can achieve high classification accuracy. 
DL-based pixel classification for multispectral images involves 
designing architectures that support pixel-wise data 
representation and classification. By adopting DL techniques, it 
becomes possible to extract more abstract and robust feature 
representations, thereby improving classification performance. 
DL models can learn informative representations of raw input 
data through multiple levels of abstraction. These features have 
achieved notable success across many computer vision tasks. 
Among deep learning architectures, convolutional neural 
networks (CNNs) have demonstrated exceptional performance 
in tasks such as image classification, object detection, and 
segmentation. In the context of multispectral image 
classification, deep learning offers several key advantages: it 
eliminates the need for manual feature extraction, captures both 
spectral and spatial dependencies, and scales effectively with 
large and high-dimensional datasets. Furthermore, advanced 
architectures such as 3D CNNs, recurrent neural networks 
(RNNs), and hybrid models have been proposed to better exploit 
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the unique characteristics of multispectral and hyperspectral 
data. Transfer learning and data augmentation techniques have 
also been utilized to address the common challenge of limited 
labeled datasets in remote sensing. These innovations have led 
to significant improvements in classification performance, 
establishing deep learning as a leading approach in this domain. 

This study focuses on the classification of multispectral 
images using deep learning techniques. We propose a simple 
one-dimensional deep neural network (DNN) architecture to 
classify pixels in multispectral imagery. To validate our 
approach, we implemented a six-layer DNN using the 
MATLAB Deep Learning Toolbox. We analyzed two Landsat 
scenes: one from the New Orleans area and another from the 
Mississippi River bottomland area. Training data were extracted 
by displaying the scenes on a monitor and selecting small 
homogeneous regions representing distinct ground categories. 
For the Mississippi scene, four training areas were selected, each 
corresponding to a different category. For the New Orleans 
scene, three training areas were selected, each representing a 
distinct category. The remainder of the paper is organized as 
follows: Section II reviews related work; Section III describes 
the proposed approach; Section IV presents the experiments and 
results; and Section V concludes the study. 

II. RELATED WORK 

Earlier well-known machine learning (ML) algorithms, such 
as the maximum likelihood classifier (MLC), support vector 
machine (SVM), decision tree (DT), random forest (RF) and k-
Nearest Neighbor (k-NN) were used for classifying pixels in 
multispectral images. The MLC algorithm is one of the most 
well-known algorithms. It assumes the normal distribution for 
reflectance values and calculates the mean vector and 
covariance matrix for each class using training data. The 
classifier uses Bayes’ rule to calculate posterior probabilities and 
assigns a pixel to the class with the highest posterior probability. 
The SVM is a binary classifier that assigns a sample to one of 
the two linearly separable classes. In the SVM algorithm, two 
hyper-planes are selected so as not only to maximize the distance 
between the two classes but also not to include any points 
between them. The SVM algorithm is extended to nonlinearly 
separable classes by mapping samples to a higher-dimensional 
feature space. The SVM algorithm is appealing for Landsat data 
analysis because of its ability to successfully handle small 
datasets, often producing higher classification accuracy than 
traditional methods. Moumtrakis et al. [1] have provided a 
review of usage of SVM in remote sensing. Kulkarni and 
Shrestha [2] have used DT to classify Landsat imagery. Neural 
networks are preferred for classification because of their parallel 
processing capabilities as well as learning and decision-making 
abilities. Several studies aimed at evaluating the performance of 
neural networks in comparison with traditional statistical 
methods for remote sensing applications are available. The rapid 
uptake of neural approaches in remote sensing is due mainly to 
their widely demonstrated ability to: 1) perform more accurately 
than other techniques, such as statistical classifiers, particularly 
when the feature space is complex and the source data has 
diverse statistical distributions; 2) perform more rapidly than 
other techniques, such as different sensors; 3) incorporate a 
priori knowledge and realistic physical constraints into the 
analysis, incorporate different types of data (including those 

from different sensors) into the analysis, thus facilitating 
synergistic studies. Neural networks with learning algorithms 
such as backpropagation (BP) can learn from training samples 
and are used in Landsat data analysis. Fuzzy-neural systems that 
combine neural networks and fuzzy logic have been used to 
classify pixels in remote sensing imagery. 

Deep learning has achieved impressive performance with 
applications such as image classification and object detection. 
Deep learning is the fastest growing trend in big data analysis. 
Deep learning is characterized by neural networks that usually 
have more than two hidden layers. Zhang, et al. [3] provide a 
tutorial on the use of deep learning in remote sensing. Remote 
sensing data are often multispectral and face big data challenges. 
Deep learning provides more methodologies to train deep NN 
architectures, such as autoencoder models Convolution Neural 
Networks (CNNs). Earlier well-known CNN models include 
Alex Net, VGG Net, and Reset. Feature representations learned 
by CNNs are highly effective in object recognition. Zhu et al. 
[4] provide an overview of deep learning techniques for remote 
sensing. They discuss various architectures, data sets, and 
performance metrics commonly used in multispectral image 
classification. Many comprehensive survey articles on deep 
learning applied to remote sensing are available in the literature 
[5-9]. CNNs have become instrumental in extracting spatial and 
spectral features from satellite and aerial imagery for a variety 
of applications. CNNs have demonstrated significant 
performance improvements in image classification, object 
detection, and semantic segmentation, making them highly 
suitable for remote sensing applications. In remote sensing, 
CNNs have been used for applications such as land cover and 
land use classification, object detection, semantic segmentation, 
change detection, and agriculture monitoring. Zhu et al. [4], in 
their review article, summarize the basic principles of deep 
learning and its research progress and typical applications in 
remote sensing. Their article focuses on the research status of 
deep learning in remote sensing image classification and object 
detection. Deep learning techniques, especially CNNs, have 
revolutionized the field of remote sensing, particularly pixel-
based classification tasks. The DL approaches for pixel-based 
multispectral image classification involve 1) preparing an input 
vector representing a pixel in the scene, 2) developing and 
training a hierarchical DL model, and 3) classifying the entire 
scene. In the first step, the input vector could represent spectral 
features, spatial features, or spectral and spatial features. Hidden 
layers in the deep network structure are designed to learn feature 
representations of the input data. The last classification stage 
involves decision making. Utilizing learned features from 
previous stages. In hard classification, the classifier directly 
outputs an integer number as the label of each sample. Hu et al. 
[10] train a simple one-dimensional CNN that contains five 
layers: an input layer, a convolution layer, a max-pooling layer, 
a fully connected layer, and an output layer that was used to 
classify pixels in hyper-spectral imagery. Feature vectors 
representing the spectral signatures were used as an input. Their 
results demonstrate that their proposed method can achieve 
better classification performance compared with SVM-based 
and conventional deep NN-based classifiers. Maggiori et al. [11] 
proposed an end-to-end framework for the dense, pixelwise 
classification of satellite imagery with convolutional neural 
networks (CNNs). In their framework, CNNs are directly trained 
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to produce classification maps out of the input images. Kussul 
et al.  [12] proposed a multi-level deep learning architecture that 
targets land cover and crop type classification from 
multitemporal and multisource satellite imagery. Their results 
show that architecture with an ensemble of CNNs outperforms 
the one with a multi-layer perception. Kulkarni [13] proposed an 
architecture to classify pixels based on their spectral signatures 
using CNN models. In the proposed framework, each feature 
vector was mapped to a two-dimensional image. The mapped 
images were then classified to respective classes. Li et al. [14] 
provide a survey of deep learning techniques for remote sensing 
image mapping. They elucidate four predominant strategies for 
matching: arar-based, feature-based, regression-based, and 
unsupervised learning. Lian et al. [15] provide an overview of 
advances in deep learning-based spatiotemporal fusion methods 
for remote sensing images. 

U-Net is one of the types of deep network models that is 
specifically built for image segmentation, which was introduced 
in 2015 [16]. Long et al. [17] have shown that CNN trained end-
to-end, pixel-to-pixel, exceed the state-of-the-art in semantic 
segmentation. They define and detail the space of fully 
convolutional networks and explain their application in spatially 
dense prediction tasks. Solórzano et al [18] use U-net for land 
cover classification. Sahin et al. [19] trained the U-Net with 
images from the cotyledon emergence through to the subsequent 
growth stages and evaluated images of crops in the last stage of 
growth. The results of their experiment demonstrate that the 
proposed method, with suitable input, can be used for crop and 
weed detection or segmentation. Wiratama et al. [20] proposed 
a change detection algorithm on multi-spectral images based on 
a feature-level U-net. Their algorithm gave a better performance 
compared to the existing change detection algorithms. Bai et al. 
[21] provide a review of deep learning methods for change 
detection in remote sensing images. 

III. PROPOSED APPROACH 

A. Data Collection and Pre-processing 

In this study, we used two Landsat scenes obtained 
Operational Land Imager (OLI) representing the New Orleans 
area located at Latitude N 30.55580 and Longitude W 89.92440. 
The second scene represents the Mississippi River bottomland 
area located at Latitude N 34.65710 and Longitude W 90.40900.  
We used spectral bands 2, 3, 4, 5, and 7 as these bands showed 
the maximum variance. The training set data were obtained by 
displaying the scenes and selecting homogeneous areas 
representing the classes. The training set data were used to train 
the DNN models. For the New Orleans scene, the training set 
contained a total of 1200 pixels, 400 pixels, and for the 
Mississippi River bottomland scene, the total number of training 
data was 3600 pixels, 900 from each class. Each pixel was 
represented by a vector of size 5. Seventy percent random 
samples were used to train the DNN model, and 30 percent 
random samples were used for testing. The reflectance values 
were normalized between 0 and 10. 

B. DNN Architecture 

The classification model used in this study was a simple 
Deep Neural Network (DNN) built in MATLAB, comprising six 
layers. The network was designed to process the multispectral 

feature vectors and classify the pixels into distinct categories 
based on their spectral characteristics. The architecture of the 
model is shown in Fig. 1. The layers in the model are as below. 

1) Feature input layer: The first layer of the network was 

the input layer, where each pixel's feature vector, consisting of 

five spectral reflectance values (one for each band), was fed into 

the network. This layer was designed to accept data with a 

dimensionality corresponding to the number of spectral bands 

used. 

2) Fully connected layer: The second layer of the network 

was a fully connected (dense) layer, which applied a set of 

learnable weights to the input features. This layer allowed the 

network to begin learning the complex relationships between 

the spectral bands. 

3) Batch normalization layer: To enhance the training 

stability and speed up convergence, a batch normalization layer 

was applied. This layer normalizes the output of the fully 

connected layer, ensuring that the data fed into the next layer is 

centered and scaled appropriately. This normalization helped 

reduce internal covariate shift and improved model 

generalization. 

4) ReLU (Rectified Linear Unit) activation layer: The next 

layer was a ReLU activation layer. ReLU introduces non-

linearity into the model, allowing it to learn more complex 

features from the input data. The ReLU function was applied 

elementwise to the outputs of the batch normalization layer, 

ensuring that only positive values passed through to subsequent 

layers. ReLU later helps mitigate the vanishing gradient 

problem 

5) Fully connected layer: The fifth layer was another fully 

connected layer, which aimed to further abstract and combine 

features learned from the previous layers. This layer had a 

greater number of neurons than the first fully connected layer, 

enabling the model to capture more intricate relationships in the 

data. 

6) SoftMax layer: The fully connected layer was followed 

by a SoftMax layer. SoftMax layer takes a vector of raw scores 

(often called logits) from the final hidden layer and converts 

them into a probability distribution over multiple classes. The 

scores are exponentiated and then normalized so that they sum 

to 1. 

The model was trained using the training data collected from 
the homogeneous regions. During training, the model optimized 
its weights using backpropagation and stochastic gradient 
descent (SGD). The loss function used for training was 
categorical cross-entropy, as the goal was to classify each pixel 
into one of several predefined classes. A portion of the training 
data was set aside for validation to monitor the model's 
performance during training and to prevent overfitting. Training 
was performed for a predetermined number of epochs, with the 
learning rate adjusted dynamically to ensure efficient 
convergence. Early stopping was used to prevent overfitting, 
where training was halted once the validation accuracy 
plateaued over several epochs. To evaluate the performance of 
the trained model, several metrics were computed, including 
overall accuracy, precision, recall, F1-score, and ROC curves. 
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The predicted categories were compared to the true categories in 
test sets. 

 
Fig. 1. Deep Neural Network (DNN) architecture. 

IV. IMPLEMENTATION AND RESULTS 

In this research work, we implemented the DNN model 
using MATLAB scripts from deep learning and analyzed two 
Landsat scenes. 

A. Example 1: New Orleans Scene 

The scene was obtained by Landsat-8 OLI, representing the 
New Orleans area. The path and row numbers for the scenes are 
22 and 39, respectively. To generate the training data, we 
considered a scene of the size 512 by 512 pixels. Three small 
homogeneous areas were selected as training sets that represent 
three classes: water, land, and vegetation. The training data 
contains 1200 samples, 400 from each class. We selected bands 
2, 3, 4, 5, and 7. The spectral signatures obtained from mean 
vectors of the classes are shown in Fig. 2. The scatter plot for the 
dataset is shown in Fig. 3. We used 70 percent randomly selected 
samples for training and 30 percent for validation. With the 
DNN, we obtained the overall accuracy of 97.5 percent. The 
learning progress curve for the DNN is shown in Fig. 4. The 
confusion matrix is shown in Fig. 5. The ROC curves and 
classified output are shown in Fig. 6 and 7. Table I shows the 
evaluation metric with Recall, Precision, F-Score, accuracy, and 
specificity for the classes in the data set. 

 
Fig. 2. Spectral signatures (New Orleans scene). 

 
Fig. 3. Scatter plot (New Orleans scene). 

 
Fig. 4. Training progress (New Orleans scene). 
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Fig. 5. Confusion matrix (New Orlean scene). 

 
Fig. 6. ROC Curve (New Orleans scene). 

 
Fig. 7. Classified output (New Orleans scene). 

TABLE I.  EVALUATION METRICS (NEW ORLEANS SCENE) 

Class Recall Precision F-Score Accuracy Spec 

1 0.9918 1.0 0.9959 0.9972 1.0 

2 0.9580 0.9744 0.9661 0.9778 0.9876 

3 0.9748 0.9508 0.9627 0.9750 0.9751 

B. Example 2: Mississippi Scene 
The second scene is of the Mississippi bottomland. The path 

and row numbers are 23 and 36, respectively. We considered the 
scene of size 512 by 512 pixels. Training and test data were 
acquired in the same manner as the first scene. Classes of water, 
soil, forest, and agriculture were chosen. The training data 
contains 3600 samples, 900 from each class. We selected bands 
2, 3, 4, 5, and 7. The spectral signatures obtained from mean 
vectors of the classes are shown in Fig. 8. Fig. 9 shows the 
scatter plot for the dataset. We used 70 percent randomly 
selected samples for training and 30 percent for validation. With 
the DNN, we obtained the overall accuracy of 95.74 percent. 
The learning progress curve for the DNN is shown in Fig. 10. 
The confusion matrix is shown in Fig. 11. The ROC curves and 
classified output are shown in Fig. 12 and 13, respectively. 
Table II shows the classifier evaluation metrics. 

 
Fig. 8. Spectral signatures (Mississippi scene). 

 
Fig. 9. Scatter plot (Mississippi scene). 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 9, 2025 

12 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 10. Learning progress (Mississippi scene). 

 
Fig. 11. Confusion matrix (Mississippi scene). 

 
Fig. 12. ROC Curve (Mississippi scene). 

 

Fig. 13. Classified output (Mississippi scene). 

TABLE II.  EVALUATION METRICS (MISSISSIPPI SCENE) 

Class Recall Precision F-Score Acc Spec 

1 0.9959 1 0.9980 0.9991 1 

2 0.9209 0.9412 0.9309 0.9648 0.9800 

3 0.9401 0.9536 0.9468 0.9722 0.9837 

4 0.9780 0.9401 0.9587 0.9787 0.9789 

V. CONCLUSION 

In this paper, we propose and implement a simple deep 
neural network (DNN) model to classify pixels in multispectral 
images. The model was developed using MATLAB scripts. We 
analyzed two Landsat-8 scenes: one from the New Orleans area 
and another from the Mississippi River bottomland. We chose 
the Landsat scenes that are available in the public domain [22].  
Training data were generated by selecting small, homogeneous 
areas within the displayed scenes. Feature vectors representing 
reflectance values were used to train the DNN model. The New 
Orleans scene included three categories, while the Mississippi 
River bottomland scene included four. The DNN model 
achieved classification accuracies of 97.44% and 95.74% for the 
New Orleans and Mississippi River bottomland scenes, 
respectively. Our experiments demonstrate that DNN models 
provide a powerful alternative to conventional machine learning 
techniques for analyzing remote sensing data. Although this 
work focuses solely on spectral signatures and does not 
incorporate spatial correlation, we believe that combining 
spatial and spectral techniques could further enhance DNN-
based classification. Future work will involve extending the 
algorithm to hyperspectral images with a greater number of 
spectral bands and evaluating the model using standard 
benchmark datasets.  The DNN model can be easily extended 
for hyperspectral data by increasing the size of the feature input 
and fully connected layers. CNN-based hybrid networks have 
been used for pixel-based classification. These networks are 
complex and time consuming.  We would like to compare the 
present DNN model with CNN-based hybrid models for 
performance. 
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