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Abstract—Regional sustainable and coordinated development 

has become a central issue in the backdrop of a reshaped global 

economic landscape. Therefore, it is particularly important to 

evaluate the level of regional coordinated development 

effectively. This study aimed to validate and assess the 

effectiveness of machine learning algorithms and the Enhanced 

Panel Factor Model for evaluating regional coordinated 

development. To this end, based on panel data from 11 cities in 

the Guangdong–Hong Kong–Macao Greater Bay Area for 2005–

2023, we constructed a four-dimensional composite indicator 

system covering economic growth, structural optimization, 

innovation-driven development, and social development. First, 

we employ a factor model to achieve dimensionality reduction 

and extract latent factors. SPSS and the JiekeLi platform are 

used for visualization, and finally, we combine LASSO regression 

with linear regression to build predictive models to verify the 

explanatory power of key factors for regional coordination. The 

findings indicate that the traditional factor model performs 

robustly in structural identification, whereas machine learning 

methods have advantages in variable selection and fitting 

accuracy. The empirical results show that the overall level of 

coordination in the Greater Bay Area has steadily improved; 

however, substantial disparities among cities remain. This study 

demonstrates a new pathway that integrates econometrics and 

machine learning for the comprehensive evaluation of regional 

development levels. It also conducts a comparative analysis of the 

applicability and effectiveness of these two methods, thereby 

offering significant theoretical and practical value. 
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I. INTRODUCTION 

Under the new landscape of the world economy, economic 
systems exhibit the characteristics of complex systems, 
evolving from discrete blocks to system linkages and dynamic 
equilibrium. Building a vibrant and internationally competitive 
first-class bay area and world-class city cluster, serving as a 
demonstration zone for deep cooperation between Mainland 
China and Hong Kong and Macao, and establishing a model 
for high-quality development is the key mission of the 
Guangdong–Hong Kong–Macao Greater Bay Area (the Greater 

Bay Area). The Outline Development Plan for the Guangdong–
Hong Kong–Macao Greater Bay Area explicitly calls for 
building an open, regionally coordinated development 
community characterized by connectivity and institutional 
alignment. Establishing a high-quality coordinated 
development community in the Greater Bay Area carries dual 
strategic significance against the backdrop of China’s transition 
to high-quality economic development. Regional coordinated 
development is a dynamic process characterized by the gradual 
narrowing of internal disparities and achievement of orderly 
growth. It involves coordinated and adaptive development of 
economic, social, ecological, and institutional systems that 
evolve harmoniously. The result of synergistic development is 
not just a narrowing of the economic output gap, but also a 
dynamic and balanced development process in which the 
overall regional economy converges in terms of intrinsic 
structure and development capacity [1]. A clear assessment of 
the grid relationships and structures of regional development, 
along with identifying the grid coordination capacity and 
stability, is a fundamental basis for exploring pathways to 
sustainable, coordinated regional development. 

Based on the theory of coordinated development, numerous 
scholars have conducted extensive empirical research on 
regional coordinated development. These studies mainly focus 
on measuring the level of regional coordination [1–9] and 
analyzing the constituent elements of regional coordination 
[10–22]. 

Methods for evaluating regional coordinated development 
levels primarily include the composite system synergy model, 
the coupling coordination degree model, system dynamics 
models, and the entropy-weight method.Shi et al. (2025) 
employed the Dagum Gini coefficient and a composite system 
synergy model to measure China’s nationwide level of new-
quality productive forces, and compared levels across the 
eastern, central, western, and northeastern regions [2]. Li et al. 
(2023) constructed a system dynamics model to analyze the 
driving factors of regional growth and the coupling–synergy 
effects in Yunnan’s border areas [3]. Xiong et al. (2022) 
drawing on the Haken model and provincial panel data, 
measured the synergy level of the composite system linking 
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fintech and the green transformation of manufacturing in China 
[4]. Huang et al. (2020) adopted a composite synergy model to 
examine the orderliness and composite system synergy degree 
between the regional innovation input system and the 
innovation output system in Henan Province [5]. Ma (2019) 
used output synergy indicators and applied a composite system 
synergy model to measure the level of economic coordinated 
development in the Beijing–Tianjin–Hebei region [6]. Chen et 
al. (2022) utilized the entropy-weight method and exploratory 
spatial data analysis (ESDA) to assess the high-quality 
development levels of seven urban agglomerations along the 
Yangtze River Economic Belt from 2009 to 2018, and 
employed geographically weighted regression to analyze 
influencing factors [7]. Yi et al. (2022) investigated the 
sustainable development performance of cities in Liaoning 
Province following a multi-criteria decision-making process, 
proposing a novel synergetics-based weighting method that 
accounts for interrelationships among sustainability criteria [8]. 
Zhang et al. (2021) used a coordination degree index to 
measure the degree of coordinated development across China’s 
four major metropolitan areas from 2008 to 2019 [9]. 

In reviewing methods for assessing regional coordinated 
development levels, the composite system synergy model is the 
most widely used approach. Meanwhile, a variety of methods 
are continually being explored depending on the research 
objectives. The application of machine learning has yet to be 
substantively reflected in these literatures. 

Analyses of regional coordination elements encompassed 
industrial synergy, innovation-factor synergy, efficiency 
synergy, comprehensive evaluation of regional high-quality 
development levels, and assessments of regional coordinated 
development levels. Ding and Zhao (2025) measured the level 
of industrial synergy across 16 metropolitan areas in China for 
the period 2013–2023 [10]. Zhou et al. (2025) examined the 
economic effects of different industrial coordination models 
within regions, including co-constructed industrial parks, 
headquarters economy, and industrial-chain integration [11]. 
Sun et al. (2025) measured the level of related industrial 
diversity among the Beijing–Tianjin, Beijing–Hebei, and 
Tianjin–Hebei subregions [12]. Qin et al. (2025) analyzed the 
level of regional coordinated development between the 
innovation chain and the industrial chain during the integration 
process of the Beijing–Tianjin–Hebei region, as well as the 
underlying drivers [13]. Lu et al. (2024) measured the level of 
new-quality productive forces and regional disparities across 
30 provincial-level regions in China [14]. Yan et al. (2022) 
constructed an indicator system spanning three domains—
economy and society, environment, and resource carrying 
capacity—to analyze the level of high-quality development and 
regional disparities in the Yellow River Basin [15]. Xue and 
Cai (2022) employed a multilevel factor analysis approach to 
evaluate China’s overall and regional levels of high-quality 
development [16]. Li and Ci (2025), using panel data for 30 
Chinese provinces, investigated the coupling and coordination 
relationships among the digital economy, carbon emission 
efficiency, and high-quality economic development [17]. 
Chang (2023) applied the entropy-weight method to measure 
the level of coordinated development in the Beijing–Tianjin–
Hebei region across five dimensions: economy, society, 

ecology, government governance, and coordinated 
development [18]. 

From the above literature, analyses of regional coordination 
elements and structures either concentrate on the synergistic 
relationships among key elements—such as industry, 
innovation, and the digital economy—or focus on evaluating 
the composite level of regional aggregate indicators. 
Systematic assessments of regional system structures are 
relatively scarce. 

Since the issuance of the Outline Development Plan for the 
Guangdong–Hong Kong–Macao Greater Bay Area, scholars 
have explored the coordinated development of the GBA from 
perspectives such as coordination mechanisms and the 
effectiveness of industrial synergy. Ye et al. (2022) analyzed 
the evolution of the GBA’s coordinated development stages 
and the shifts in coordination mechanisms under the contexts 
of globalization, regional governance systems, and 
technological innovation [19]. Gao (2022) assessed the degree 
of industrial synergy in the GBA from the viewpoints of 
industrial planning and spatial layout [20]. Li (2024) examined 
inter-urban functional differences and structures in the GBA 
through the lens of collaborative technological innovation [21]. 
Wang (2025) constructed a dual-factor linkage network using 
enterprise investment and liner shipping data to analyze the 
strength of intercity linkages and synergistic effects within the 
Bay Area [22]. However, a systematic and quantitative 
evaluation of coordinated development in the GBA has not yet 
been clearly demonstrated. 

Drawing upon the synthesized literature, current methods 
for measuring regional coordinated development remain 
primarily grounded in traditional econometric models, with 
machine learning algorithms not yet widely applied. Research 
on synergistic elements within regional systems tends to 
emphasize validation of single (pairwise) relationships among 
elements, without considering the systemic interactions among 
multiple intra-regional factors. Therefore, this study employs 
an improved spatiotemporal global factor analysis model to 
quantify the level of multi-element coordinated development 
within regions, identify the structure of the coordination 
network, and, concurrently, verify the applicability and 
effectiveness of machine learning algorithms in research on 
regional coordinated development. 

II. THEORETICAL ANALYSIS AND RESEARCH HYPOTHESES 

A. Theoretical Analysis 

1) Theory of regional coordinated development: The 

theory of regional coordinated development holds that various 

elements such as the economy, population, industry, 

institutions, and infrastructure should be effectively aligned 

and interconnected among cities or units within a region, 

thereby promoting the optimal allocation of resources and 

improving overall efficiency. Regional coordination is not 

simply the sum of individual city developments; rather, it 

emphasizes functional complementarity, structural 

optimization, and the sharing of development outcomes 

among cities. At its core, it is a dynamic evolutionary process 

characterized by multidimensional and integrated 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 9, 2025 

212 | P a g e  
www.ijacsa.thesai.org 

optimization. In the case of the Great Bay Area, the region 

features a unique combination of "one country, two systems," 

three distinct customs territories, and diverse governance 

frameworks. These characteristics make coordinated 

development both challenging and strategically significant. 

Therefore, it is essential to systematically identify and analyze 

the evolutionary process and structural level of coordination 

using scientifically grounded assessment methods. 

2) Complex systems theory and the logic of multi-factor 

matching: From the perspective of systems science, regional 

development is an open complex system composed of multiple 

subsystems, such as economic, innovation, social, and 

ecological systems, which evolve through a pathway of 

“coupling–coordination–optimization.” Systems coordination 

theory emphasizes that when the interactions among these 

subsystems become harmonized, the overall order and 

efficiency of the system are enhanced. In the context of the 

Great Bay Area, such system coordination is reflected in 

aspects such as industrial chain collaboration among cities, 

sharing of innovation resources, and mechanisms for talent 

mobility. Analyzing a single dimension (such as industry or 

innovation) in isolation overlooks the complex coupling logic 

among subsystems. Therefore, adopting a method capable of 

integrating multiple dimensions and capturing the overall 

coordination dynamics is of significant importance. 

B. Research Hypotheses 

To gain an in-depth understanding of the evolutionary trend 
and structural dynamics of regional coordinated development 
in the Great Bay Area, this study, grounded in the theories of 

regional coordinated development, system coordination, and 
the spatio-temporal global factor analysis model, proposes the 
following research hypotheses: 

• Hypothesis H1: The level of regional coordinated 
development in the Great Bay Area shows an upward 
trend over time. 

• Hypothesis H2: The level of regional coordinated 
development in the Great Bay Area can be explained by 
several latent factors with inherent structural 
characteristics, forming a structural framework for 
coordinated development. 

• Hypothesis H3: Machine learning methods are 
applicable to measuring and evaluating the level of 
regional coordination. 

III. RESEARCH DESIGN 

A. Construction of the Evaluation Index System 

The study of synergistic development usually includes the 
study of synergistic development model (process) and the 
study of the level (result) of synergistic development. The level 
of economic synergistic development refers to the result of it. 
This paper mainly evaluates the level of synergistic 
development (result) of cities in the Greater Bay Area from 
four perspectives: the degree of economic growth, the degree 
of structural optimization, the degree of innovation drive, and 
the degree of social development to construct the evaluation 
indicator system of the level of synergistic development of 
Guangdong, Hong Kong and Macao Greater Bay Area (as 
shown in Table I). 

TABLE I.  EVALUATION INDICATOR SYSTEM OF THE LEVEL OF SYNERGISTIC DEVELOPMENT OF GUANGDONG, HONG KONG AND MACAO GREATER BAY 

AREA 

Primary Indicators Secondary Indicators Unit Symbol Direction 

Degree of Economic Growth 

GDP Sum RMB 100 million X1 + 

Fiscal Revenue RMB 100 million X2 + 

Fiscal Expenditure RMB 100 million X3 + 

Total Investment in Fixed Assets RMB 1 million X4 + 

Total Import & Export 100 million USD X5 + 

Degree of Structural Optimization 
Value Added by Secondary Industry as A Percentage of GDP % X6 + 

Value Added by Tertiary Industry as A Percentage of GDP % X7 + 

Degree of Innovation Drive 

Expenditure on Scientific Research RMB 10,000 X8 + 

RMB 10,000 PCS X9 + 

Actual Use of Foreign Capital 10,000 USD X10 + 

Degree of Social Development 

Per Capita Disposable Income of Urban Residents RMB X11 + 

Total Number of Students in Higher Education Per X12 + 

Education Expenditure RMB 10,000 X13 + 

Number of Sickbeds Per 10,000 People Sheet X14 + 

Number of Practicing Physicians Per 10,000 People Per X15 + 
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B. Data Sources and Processing 

This study employs data from 15 evaluation indicators 
across 11 cities in the Great Bay Area over the period 2005–
2023. Data sources included the Guangdong Statistical 
Yearbook, statistical yearbooks of the respective cities, the 
website of the Census and Statistics Department of the Hong 
Kong SAR Government, the website of the Statistics and 
Census Service of Macao, and the Wind database. Missing data 
were supplemented using the incremental mean and median 
imputation methods. 

C. Model Construction 

1) Enhanced panel factor analysis model: Factor analysis 

is a multivariate dimensionality-reduction technique that 

extracts common factors to explain the principal variation 

patterns of the original variables. The enhanced panel factor 

analysis model extends the traditional factor analysis 

approach. Because the traditional factor analysis model cannot 

reduce the dimensionality and misses more information on the 

explanatory variables, Lin (2006) [23] proposed an improved 

factor analysis model based on the traditional factor analysis 

model, which replaces “the covariance matrix of the error 

random vector as a diagonal matrix” in the traditional model 

with the maximum variance contribution of the factor 

explanatory variables, thus solving the above-mentioned 

problems. In 2009, Lin Haiming further studied the 

application steps of factor analysis model L and provided 

comprehensive evaluation steps for initial factor analysis and 

rotated factor analysis, respectively [24]. Zhao (2019) and Shi 

(2020) provided application cases and improved 

comprehensive evaluation steps when factor analysis model L 

was applied to cross-sectional data and time series data [25]-

[26]. Therefore, this study adopts an Enhanced Pannel Factor 

Model to evaluate the level of coordinated economic 

development in the Great Bay Area. The factor analysis model 

is given by Eq. (1) as follows: 

X𝑖𝑡 = 𝛬F𝑡 + 𝜖𝑖𝑡 (𝑖 = 1, … , 𝑁;  𝑡 = 1, … , 𝑇)       (1) 

where, Xit represents the vector composed of all observed 
variables at spatial location i and time point t, Λ is the factor 

loading matrix, F denotes the global common factor vector, and 
ϵit is the spatiotemporal-specific residual vector. 

The specific evaluation steps are as follows: 

• Data Preprocessing: Global positive direction 
transformation and standardization of evaluation 
indicators. All indicators in this sample are positive 
indicators. For positive indicators, apply min-max 
normalization (see Eq.(2)): 

𝑥𝑖𝑗𝑡
∗ =

𝑥𝑖𝑗𝑡−min(𝑥ijt)

max(𝑥ijt)−min(𝑥ijt)
                     (2) 

where, xijt
∗  represents the data of the i city for the j-th 

indicator in year t. The normalized data are then further 
standardized using standard deviation normalization as follows, 
see Eq. (3): 

zij=
x'ij-μj

σj
                                         (3) 

Where μⱼ is the mean of the j-th indicator, and σⱼ is the 

standard deviation. Both are calculated over all regions and all 
time periods. 

• Determination of applicability of factor analysis model: 
The Pearson correlation coefficient matrix R is 
calculated for all variables to assess whether a factor 
structure exists，as shown in Eq. (4). Let rjk denote the 

correlation coefficient between the j-th and k-th 
indicators, then: 

rjk=
∑ ∑ (xijt-x̄j)

T
t=1

n
i=1

(xikt -x̄k)

√∑ ∑ (xijt-x̄j)
T
t=1

n
i=1

2
⋅√∑ ∑ (xikt -x̄k)T

t=1
n
i=1

2
                (4) 

If there is a simple linear correlation coefficient between 
indicators exceeding 0.8, it indicates that there is a common 
factor between indicators, and a factor analysis model is 
applied. Furthermore, the Kaiser-Meyer-Olkin (KMO) test and 
Bartlett’s test of sphericity are employed to evaluate whether 
the shared variance among variables is statistically significant, 
thereby confirming the appropriateness of factor analysis. 

• The principal factors are extracted using the maximum 
variance method (which maximizes the explanatory 
power of the factors). Suppose m factors are to be 
extracted, such that the cumulative explained variance 
reaches a predefined threshold (e.g. ≥  85%). After 

extraction, an orthogonal rotation method such as 
Varimax is applied to enhance the interpretability of the 
factors, resulting in a rotated factor loading matrix Λ*. 

• Estimation of Factor Scores and Comprehensive Score 
Calculation: The regression method is used to estimate 
the score of each sample on each factor. Let Fikt denote 
the score of city i in year t on factor k. The 
comprehensive score is then calculated as a weighted 
sum of the factor scores, see Eq. (5). 

Sit= ∑ wk
m
k=1 Fikt                            (5) 

  wk =
λ

k

∑ λ
j

m
j=1

                             (6) 

where, the weights being the variance contribution rate of 
each factor λk，see Eq. (6). 

• Calculate the scores of the factors, the scores of the 
combined factors and the ranking: Calculate and rank 
the score Fi for t×n sample factors and the composite 
factor score Fsum ==α1 F1+α2 F2+…+αk Fk ( αi is the 
variance contribution of each factor). 

2) Application of machine learning: A Comparative 

Analysis of Linear Regression and LASSO Regression 

Models. 

To further test the validity and explanatory power of the 
common factors extracted through factor analysis and to 
investigate the explanatory ability of factor scores on the level 
of regional coordinated development, this study introduces two 
machine learning methods: linear regression and Least 
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Absolute Shrinkage and Selection Operator Regression 
(LASSO) regression to validate and compare the modeling 
results of factor analysis. This approach not only helps to 
uncover the linear relationship between factor scores and the 
level of coordinated development but also provides data 
support for variable selection, thereby enhancing the 
interpretability and robustness of the model. The specific 
applications of this method are as follows: 

• Linear regression Modeling: The principal factor scores 
extracted through factor analysis were used as 
explanatory variables, while the level of regional 
coordinated development served as the dependent 
variable. A multiple linear regression model was 
constructed to verify the statistical significance and 
explanatory validity of the common factors identified 
through the factor analysis. 

• LASSO Regression: Variable Selection and Model 
Simplification: Given the potential multicollinearity 
among certain factor scores, ordinary multiple linear 
regression may perform unreliably in high-dimensional 
settings. To enhance explanatory efficiency and achieve 
feature compression, this study introduces the Least 
Absolute Shrinkage and Selection Operator (LASSO) 
regression model for comparison. By incorporating an 
L1-norm penalty into the loss function, LASSO shrinks 
some regression coefficients to zero, thus 
accomplishing variable selection and parameter 
estimation simultaneously. This preserves model 
interpretability while effectively reducing complexity 
and mitigating overfitting. 

D. Software Platforms and Tools 

This paper uses several advanced software platforms and 
tools for analysis and modeling, selected for their robustness, 
user-friendliness, and compatibility with the research 
objectives. 

1) Jiekeli intelligent modeling platform: The Jiekeli 

Intelligent Modeling Platform integrates various data 

preprocessing, statistical modeling, and machine learning 

algorithms. With its high level of automation, interactive 

visualization, and powerful computing capabilities, the 

platform provides strong support for complex data modeling 

and interpretation of the results in this study. Specifically, the 

main functions applied in this research include automated data 

preprocessing, which automatically handles missing value 

imputation, standardization, normalization, and other basic 

preprocessing tasks, thereby improving data quality and 

modeling efficiency. Support for linear modeling and variable 

selection: Equipped with built-in modules for multiple linear 

regression and LASSO regression, the platform facilitates 

efficient modeling between factor scores and regional 

coordinated development levels, helping identify key variables 

and enhance model interpretability. Result visualization and 

model evaluation: It offers a variety of visual tools, such as 

goodness-of-fit plots, residual distribution charts, and 

coefficient path diagrams, making it easier to evaluate model 

performance and interpret results, thus increasing the 

transparency and rigor of the research. 

2) SPSS Analytical tool: As a standard tool for 

professional statistical analysis, SPSS offers powerful 

capabilities for data reduction and latent structure exploration 

through its factor-analysis module. With an intuitive graphical 

interface, SPSS supports exploratory factor analysis (EFA), 

which was mainly used for the following purposes: variable 

reduction: core common factors were extracted using Principal 

Component Analysis (PCA) or Maximum Likelihood 

Estimation (MLE) to effectively reduce variable 

dimensionality; structural validity testing: the suitability of the 

data was assessed through correlation coefficients (r), the 

Kaiser-Meyer-Olkin (KMO) measure, and Bartlett’s test of 

sphericity; factor rotation optimization: the software provides 

various rotation methods, such as Varimax and Direct Oblimin, 

to enhance the interpretability of the extracted factors. 

TABLE II.  VARIANCE CONTRIBUTION EXPLAINED BY EACH ROTATED 

FACTOR 

Factor 
Variance 

Contribution λi 

Variance 

Contribution (%) 

Cumulative Variance 

Contribution (%) 

1 5.047 33.646 33.646 

2 3.298 21.988 55.633 

3 3.053 20.350 75.984 

4 1.494 9.961 85.945 

5 1.436 9.576 95.521 

IV. EMPIRICAL RESULTS AND ANALYSIS 

A. Enhanced Panel Factor Structure Analysis 

This study adopts the comprehensive evaluation steps of 
the enhanced panel factor analysis model to assess the 
synergistic development level of the Great Bay Area. The 
dataset comprises p = 15 indicators, denoted as X₁ to X₁₅, 
covering t = 19 years from 2005 to 2023, with n = 11 cities 
sampled each year. All indicators X₁ to X₁₅ are positive, so no 
direction adjustment is required. These indicators are globally 
standardized, with the standardized variables denoted as x₁ to 
x₁₅. The simple linear correlation coefficients among the 
indicators were calculated; in particular, the correlations 
between X₁ and X₂, X₃, and X₄ are 0.874, 0.914, and 0.916 , 
respectively, all exceeding 0.8, indicating the presence of 
common factors suitable for factor analysis. The rotated factor 
loading matrices L3

Γ,…,L15
Γ were calculated, from which 

L3
0,L3

Γ,…,L15
Γ were obtained, and the arithmetic means of the 

maximum absolute values of each row's elements are denoted 
as l3

0,l3
Γ,…,l15

Γ. 

The explanation of variance for each factor is shown in 
Table II. The first five factors are selected, the first factor 
(denoted as F1) explained 33.646%, the second factor (denoted 
as F2) explained 21.988%, the third factor (denoted as F3) 
explained 20.350%, the fourth factor (denoted as F4) explained 
9.961%, and the fifth factor (denoted as F5) explained 9.576%, 
with a cumulative extractable variance contribution of 
95.521%. F1 is named as "Economic Growth Cofactor" with 
positive direction; F2 is named as "Innovation Cofactor" with 
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positive direction; F3 is named as "Cofactors of population 
income and tertiary industry compared with secondary 
industry", with positive direction; F4 is named as "Cofactor for 
the number of people in higher education", with a positive 
direction; F5 is named as "Medical condition cofactor", with a 
positive direction. 

B. Analysis of Enhanced Panel Factor Scores 

1) Regional comprehensive scores: Table III is obtained 

by taking the mean value of the comprehensive scores of each 

city in the same year as the total evaluation score of the level 

of synergistic development in the Greater Bay Area over the 

years, and drawing the corresponding trend line diagram as 

shown in Fig. 1. 

By combining Fig. 1 and Table III, it can be seen that the 
level of synergistic development (Fsum) of the Greater Bay 
Area shows an overall upward trend. Among them, the growth 
is slow around 2008, grows to the average level in 2013, 
maintains a high level of growth rapidly between 2010 and 
2019, and decreases slightly in 2020 due to the epidemic and 
other factors. It indicates that there is a growing synergy 
among the Greater Bay Area cities, and the synergistic trend 
tends to grow steadily. 

TABLE III.  COMPOSITE SCORE TABLE OF LEVEL OF ECONOMIC SYNERGISTIC DEVELOPMENT OF THE GREATER BAY AREA FROM 2005-2023 

Year F1 F2 F4 F5 Fsum 

2005 -0.193 -0.437 0.077 -0.792 -0.864 

2006 -0.163 -0.426 0.012 -0.555 -0.699 

2007 -0.176 -0.344 -0.001 -0.557 -0.687 

2008 -0.144 -0.305 0.055 -0.646 -0.697 

2009 -0.210 -0.254 0.095 -0.561 -0.566 

2010 -0.112 -0.226 0.089 -0.538 -0.516 

2011 -0.032 -0.197 0.069 -0.380 -0.354 

2012 0.000 -0.163 0.063 -0.155 -0.122 

2013 0.036 -0.113 0.031 0.013 0.032 

2014 0.139 -0.135 0.029 0.152 0.182 

2015 0.216 -0.034 -0.005 0.318 0.353 

2016 0.155 0.189 -0.073 0.523 0.526 

2017 0.134 0.341 -0.078 0.648 0.680 

2018 0.095 0.583 -0.131 0.778 0.803 

2019 0.107 0.699 -0.137 0.896 0.937 

2020 0.147 0.821 -0.092 0.855 0.995 

2021 0.189 0.943 -0.086 0.924 1.089 

2022 0.231 1.065 -0.08 0.993 1.183 

2023 0.273 1.187 -0.074 1.062 1.277 

 
Fig. 1. The trend of level of synergistic development of the Greater Bay Area from 2005-2023. 
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Economic Growth Cofactor (F1) shows an overall slowly 
fluctuating upward trend, with the lowest level in 2009, then 
increasing year by year, reaching the average level in 2012 and 
the highest level in 2015, and then showing a partial fluctuating 
downward trend. Innovation Cofactor (F2) shows an overall 
upward trend, being below average and growing slowly in 
2015, but above average and growing faster in 2016 and 
beyond. Cofactors of population income and tertiary industry 
compared with secondary industry (F3) show an overall slowly 
fluctuating upward trend, below average until 2016 (except for 
2009 and 2013) and reaching average and slowly increasing 
trend in 2016 and beyond. Cofactor for the number of people in 
higher education (F4) shows a small fluctuating overall 
decreasing trend. Medical condition cofactor (F5) shows an 
overall upward trend, fluctuating slightly before 2010, 
increasing faster after 2010, and reaching above average and 
stable growth in 2013. 

The above results, combined with the standard deviation of 
each factor (results in Table IV), show the changes in each 
factor. There is an increase and a large change in the F sum and 
Medical condition cofactor (F5) and Innovation Cofactor (F2); 
Cofactors of population income and tertiary industry compared 
with secondary industry (F3) and Economic Growth Cofactor 
(F1) have increased but not much, indicating that the Greater 
Bay Area has made relatively small progress in the above two 
directions; Cofactor for the number of people in higher 
education (F4) has decreased but not significantly, indicating a 
small regression in this direction for the Greater Bay Area. 

2) City score: The average comprehensive scores of each 

city in the Great Bay Area over the years were considered as 

the overall evaluation scores of their coordinated development 

levels. The corresponding trend lines are shown in Fig. 2. 

Three cities have a positive composite score for the level of 

economic synergistic development, namely Guangzhou, Hong 

Kong and Zhuhai, with Guangzhou having the highest score 

for the level of economic synergistic development; the rest of 

the cities have a negative and below average score. The cities 

ranked from highest to lowest were Guangzhou, Hong Kong, 

Zhuhai, Zhongshan, Foshan, Macau, Shenzhen, Dongguan, 

Jiangmen, Huizhou, and Zhaoqing. In terms of economic 

growth factor (F1), Hong Kong ranks the highest and Macau 

the lowest; in terms of Innovation Cofactor (F2), Shenzhen 

ranked the highest and Hong Kong the lowest; in terms of 

cofactors of population income and tertiary industry compared 

with secondary industry (F3), Macau ranks the highest and 

Foshan the lowest; cofactor for the number of people in higher 

education (F4); Guangzhou ranks the highest and Shenzhen 

the lowest; medical condition cofactor (F5), Zhuhai ranks the 

highest and Zhaoqing the lowest. 

Based on the trend graph of scores of Fsum for each city in 
the Greater Bay Area over the years (see Fig. 3 for details, here 
the Fsum is used as an example, all other factors can be 
analyzed similarly), we can see that in general, the level of 
synergistic development in all cities shows a generally 
increasing trend year by year, but the levels differ. Guangzhou, 
Hong Kong, and Zhuhai stand out with higher scores, while 
other cities show varied growth trends. 

TABLE IV.  STANDARD DEVIATION OF EACH FACTOR OF ECONOMIC 

SYNERGY FOR THE GREATER BAY AREA 

Factor F1 F2 F3 F4 F5 Fsum 

Standard Deviation 0.147 0.404 0.093 0.079 0.600 0.650 

 

 
Fig. 2. Comparison of the level of synergistic development by city. 
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Fig. 3. The composite scores of levels of synergistic development for each city in the greater bay area. 

TABLE V.  GROWTH RATE AND TOTAL CHANGE OF THE COMPOSITE 

SCORE OF THE LEVEL OF ECONOMIC SYNERGISTIC DEVELOPMENT OF EACH 

CITY 

City Growth Rate No. Total Change No. 

Guangzhou 0.2256 1 3.03 1 

Shenzhen 0.0898 9 2.03 6 

Zhuhai 0.1656 3 2.32 5 

Foshan 0.1565 5 1.34 9 

Huizhou 0.1796 2 2.36 3 

Dongguan 0.1491 6 2.36 4 

Zhongshan 0.1587 4 2.39 2 

Jiangmen 0.1442 7 1.77 8 

Zhaoqing 0.1355 8 1.85 7 

Hong Kong 0.0448 10 0.57 10 

Macau 0.0339 11 0.42 11 

Note: Growth rate = slope of the regression model with calendar year scores as the dependent variable 

and time as the independent variable; total change = F sum 2023 - Fsum 2005. 

By calculating the standard deviation and total change of 
the level of synergistic development of each city over the years 
(see Table V), it can be seen that the top three cities with the 
largest growth rate of the level of synergistic development are 
Guangzhou, Huizhou and Zhuhai, the smallest are Macau, 
Hong Kong and Shenzhen, while Zhongshan, Foshan, 
Dongguan, Jiangmen and Zhaoqing are in the middle level. To 
conclude, in the process of synergistic development of 
Guangdong, Hong Kong and Macau, the nine mainland cities 

have changed more than Hong Kong and Macau, and Hong 
Kong and Macau have a greater synergistic effect on the nine 
mainland cities. 

C. Evaluation Results of Machine Learning Regression 

Models 

To further verify the scientific validity and accuracy of the 
comprehensive score Fsum obtained from the factor analysis 
method and its factor structure, and to enhance the reliability of 
the research results, this paper introduces two machine learning 
models - multiple linear regression and LASSO regression - to 
empirically analyze the relationship between the main feature 
variables and Fsum. The model evaluation results are as 
follows: 

As shown in Tables VI and VII, both regression models 
achieve high goodness-of-fit, indicating strong explanatory 
power of the feature variables for the comprehensive factor 
score (Fsum). The linear regression model reveals that the 
number of enrolled university students, hospital beds per 
10,000 people, and the proportion of tertiary industry value 
added are core positive influencing factors of Fsum, with some 
macroeconomic variables showing statistical significance. 
Other variables have limited impact. The LASSO regression 
model automatically selects a small number of highly 
explanatory variables, further highlighting the key roles of 
education and healthcare resources and industrial structure on 
Fsum. The conclusions from both models are highly consistent 
and mutually validating, enhancing the scientific rigor and 
robustness of the study results. 
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TABLE VI.  COMPARISON OF OVERALL GOODNESS-OF-FIT FOR 

REGRESSION MODELS 

Model Type R² Adjusted R² Mean Squared Error (MSE) 

Linear 

Regression 
0.81 0.79 0.41 

LASSO 

Regression 
0.85 0.81 0.38 

TABLE VII.  COMPARISON OF REGRESSION COEFFICIENTS AND THEIR 

SIGNIFICANCE FOR KEY FEATURES 

Variable 

Name 

Linear 

Regression 

Coefficient 

Linear 

Regression 

p-value 

LASSO 

Regression 

Coefficient 

Variable 

Effect 

Description 

(Intercept) -5.30 <0.001*** 0 Intercept 

Number of 

University 

Students 

0.0000034 <0.001*** 0.77 

Major positive 

influencing 

factor 

Hospital 

Beds per 

10,000 

People 

0.044 <0.001*** 0.54 

Major positive 

influencing 

factor 

Share of 

Tertiary 

Industry 

(%) 

0.044 <0.001*** 0.09 

Major positive 

influencing 

factor 

Total GDP 

(RMB 100 

million) 

-0.00013 0.006** 0 

Significant in 

linear 

regression, 

shrunk to zero 

in LASSO 

Share of 

Secondary 

Industry 

(%) 

0.033 0.002** 0 

Significant in 

linear 

regression, 

shrunk to zero 

in LASSO 

Note: *p<0.05, **p<0.01, ***p<0.001. A LASSO coefficient of 0 indicates that the variable was 

excluded by the model. 

V. CONCLUSIONS 

This study integrates a panel factor model with machine 
learning algorithms to assess the level and structural 
determinants of regional collaborative development in the 
Guangdong-Hong Kong-Macao Greater Bay Area. The results 
demonstrate that the factor model effectively synthesizes 
redundant information, isolates key latent factors, and achieves 
high explanatory power, with the top three factors accounting 
for 76% and the top five accounting for 96% of the total 
variance. Linear regression confirms significant relationships 
between factors and collaborative development, whereas 
LASSO regression exhibits superior robustness and sparsity in 
high-dimensional contexts. Consistency across methods 
strengthens the scientific validity of the findings, which 
indicate steady overall progress but persistent regional 
disparities, suggesting scope for further optimization. 

Theoretically, this work demonstrates the value of 
combining traditional econometric models, characterized by 
strong theoretical foundations, interpretability, and stability, 
with machine learning methods, which excel in feature 
selection, pattern recognition, and predictive accuracy. This 
integration unites explanatory depth with predictive precision, 
and offers a more rigorous and robust framework for regional 
development assessment. Practically, it highlights the 
importance of addressing both structural drivers and dynamic 

prediction in strategy design, enabling the identification of 
industrial, talent, and technological levers, as well as the early 
detection of disparities and bottlenecks. 

The methodological framework presented here is 
transferable to other economically significant city clusters, 
such as the Beijing-Tianjin-Hebei region, the Yangtze River 
Delta, the Tokyo Bay Area, and the London metropolitan area. 
Beyond regional studies, it can be applied to domains such as 
real estate market health assessment, industrial chain resilience, 
energy structure optimization, transportation network 
efficiency, technological innovation capacity, and cross-
regional economic integration. 

The machine learning models employed in this study are 
relatively limited in scope, and the findings may therefore be 
subject to certain constraints. Future research will broaden 
methodological diversity and delve more deeply into the 
integrated application of econometric and machine learning 
approaches to complex socio-economic development 
challenges. 
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