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Abstract—The increasing demand for privacy-preserving 

machine learning in healthcare has driven the need for federated 

approaches that ensure data confidentiality across institutions. In 

this work, we present CrypTen-FL, a secure federated learning 

framework for disease prediction using the MIMIC-IV electronic 

health record (EHR) dataset. CrypTen-FL enables collaborative 

model training across multiple hospitals without sharing raw 

patient data, thereby addressing critical privacy concerns through 

the integration of Secure Multi-Party Computation (SMPC) using 

CrypTen and differential privacy mechanisms. We adopt a 

Transformer-based neural architecture to effectively capture the 

temporal and high-dimensional nature of EHR data, enabling 

accurate prediction of multiple clinically significant conditions. 

The framework incorporates decentralized key generation, secure 

aggregation, and cross-institutional evaluation to assess 

generalization performance and robustness. Experimental results 

demonstrate that CrypTen-FL achieves competitive predictive 

performance while offering strong privacy guarantees, paving the 

way for secure and scalable AI applications in real-world 

healthcare settings. 

Keywords—Federated learning; secure multi-party 

computation; electronic health records; disease prediction; MIMIC-

IV 

I. INTRODUCTION 

The use of machine learning in healthcare has created 
important opportunities for improvements in diagnosis, 
prognosis, and personalized treatment planning for diseases [1]. 
Data-driven models are now a reliable way of predicting clinical 
outcomes for diverse illnesses, as electronic health records 
(EHRs) are widely available [2], [3]. The traditional approach of 
bringing together patient data for model development raises 
significant data security [5], privacy [4], and legal challenges 
involving the Health Insurance Portability and Accountability 
Act (HIPAA) and the General Data Protection Regulation 
(GDPR). These aspects [6] become even more salient in multi-
institutional settings [7], since patient data is split among 
hospitals with various access and privacy rules and restrictions 
that complicate collaborative, efficient development of machine 
learning models that are widely relevant. 

Numerous machine learning (ML) [8], [9], [10], and deep 
learning (DL) [11], [12], and [13] methods are helping with early 
diagnosis and treatment options thanks to recent applications in 
the medical area. They can recognize trends across patient data 
to predict risk for various diseases, enabled by use of large 

electronic health records (EMRs) [14], [15]. Because of the 
limitations of single-condition approaches [16], the field has 
moved toward multiple diseases prediction [17],[18]. This 
captures solutions to understanding many diseases at once, while 
real-world patients often suffer from multiple diseases. The 
models [19] can look at multiple burdens of disease at once by 
assessing complex clinical data to create a stratified intervention 
for personalized treatment. 

Patient health information presents privacy issues because it 
is sensitive [20], [21], especially in machine learning systems 
with healthcare focuses, like with federated learning [22].  
Electronic health records (EHRs) are a rich yet very private 
source of data that can include laboratory results, medical 
histories, documenting diagnoses and treatments, and personally 
identifiable information (PII) [23]. Unauthorized access and/or 
exposure to accessing such information can create serious 
issues–including identity theft, insurance discrimination, legal 
liability, and decreased patient trust in healthcare organizations.  
Healthcare data is also typically protected under legal rules, 
which enforce strict requirements for data access, data sharing, 
and safeguards in place for privacy and confidentiality; as 
examples, this includes HIPAA in the U.S. and the GDPR in the 
EU [24]. While raw data is not shared in federated learning 
systems, vulnerabilities such as model inversion or gradient 
leaking could expose private information during model 
upgradesThus, robust privacy-preserving techniques [25] are 
required to ensure that private information is not accidentally 
disclosed during collaborative model training [26] and to enable 
the safe and lawful application of AI [27], [28] in healthcare 
environments. 

Federated Learning (FL) [29], [30] is a viable paradigm to 
address these problems because it permits the collaborative 
training of machine learning models across decentralized data 
silos without requiring direct access to sensitive patient data. In 
the Federated Learning (FL) scenario described in [31], the 
institutions keep their local datasets, while only sharing model 
updates or encrypted parameters with a central (coordinator) and 
possibly with other participating peers. This decentralized 
approach maintains data localization, while reducing the risks of 
data centralization. Even with their intrinsic privacy properties, 
standard FL frameworks are vulnerable to many types of privacy 
leaks, including membership inference and gradient inversion 
attacks. These vulnerabilities pose a significant hurdle to 
deploying FL systems in sensitive domains, like healthcare, 
where even a small amount of information leakage can result in 
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serious ethical and legal consequences [32], [33]. Hence, FL 
methods that are even more privacy preserving [34] are needed 
for FL to be viable and trusted in a clinical context. 

In conclusion, designing secure and private machine 
learning systems for illness prediction on EHR-based data 
involves a comprehensive approach incorporating federated 
model architectures, privacy-aware learning algorithms, and 
cryptographic protocols. These issues must be addressed, as 
trust, regulatory compliance, and the safe application of AI in 
clinical settings depend on it. While sensitive data—banking, 
medical, or personal records—are pivotal in developing 
machine learning applications, they also pose significant privacy 
issues. Due to the risks of data leakage and misuse inherent in 
centralized approaches, there is a significant need for solutions 
that are both secure and privacy-preserving. CrypTen presents a 
viable framework to address these concerns, utilizing secure 
multiparty computation to allow collaborative model training 
using raw data. This motivates a need to balance data secrecy 
with the utilization of machine learning's capabilities. Sections I 
and II provide background on secure computation, federated 
learning and privacy-preserving machine learning. Section III 
describes the materials, methods, datasets, and study protocols 
used in the research. This section, and beyond, focuses on the 
methods and model architecture detailing how CrypTen 
facilitated secure learning. Results, analysis, and case studies are 
covered in Section IV in order to assess performance and 
usefulness. Lastly, we wrap up the work by identifying its 
shortcomings, summarizing its contributions, and suggesting 
areas for further investigation. 

II. BACKGROUND 

Khaled et al. [35], Early detection systems, individualized 
treatments, and AI-driven clinical tools have all been made 
possible by the MIMIC datasets, which offer de-identified ICU 
patient data. Strong performance in analyzing irregular vital 
signs has been demonstrated using convolutional deep learning 
models. Demographic bias, poor data quality, limited model 
generalizability, and reproducibility problems, such as more 
than 25% sample size variations in replication studies remain 
obstacles, nevertheless. Using MIMIC data, this study highlights 
important approaches and enduring difficulties in critical care 
research. 

Qian et al. [36], in this study, they discovered that as ED-to-
ICU transfer periods increased, in-hospital mortality decreased 
from 17.6% to 12.2%, with a median delay of 3.98 hours 
associated with noticeably lower mortality. Even without 
corrections, the risks of mortality were 25% lower for patients 
in the longest delay quartile (Q4) than for those in the lowest 
quartile (Q1). Additionally, shorter ICU stays were linked to 
longer ED stays. These findings underline the need of improving 
ED care and transfer procedures by indicating that prolonged ED 
stay may enable crucial stabilization. 

Damme et al. [37], they reported a significant improvement 
After converting the MIMIC-ED dataset to the FHIR format, its 
interoperability and reusability were improved, and its 
FAIRness score increased from 60 to 82 out of 95. Although 
FHIR increases the accessibility and reusability of data, clear 
and thorough implementation standards are necessary for a 
successful FAIR implementation. Adopting FHIR enhances 

dataset interoperability and promotes wider community 
harmonization through standardized processes, as the MIMIC-
ED case study illustrates. 

Wang et al. [38], in the context of SAPS III fared better than 
other widely used scoring systems, such as GAS, SAPS II, 
SOFA, SIRS, and OASIS, in predicting 28-day and 1-year 
mortality among intensive care unit (ICU) patients with non-
ruptured abdominal aortic aneurysms (AA). The study reported 
an AUROC of 0.805 for SAPS III, identifying it as the most 
accurate predictor and an independent risk factor for mortality. 
While GAS has traditionally been used for ruptured AA, its 
performance in this subgroup was comparatively lower. These 
findings underscore the superior prognostic utility of SAPS III 
in critically ill AA patients undergoing both endovascular and 
surgical interventions. 

Sadeghi et al. [39], did a comparison on SICdb and MIMIC-
IV showed that SICdb offers higher temporal resolution and 
more frequent vital sign data, making it better suited for 
longitudinal studies. While SICdb provides detailed 
physiological signals and European healthcare data for AI 
benchmarking, it lacks clinical notes, imaging, and secondary 
diagnoses. MIMIC-IV, though less granular, offers broader 
clinical coverage. 

Wang and Jin et al. [40], used machine learning to predict 
prostate cancer risk, with LightGBM outperforming other 
models (AUC 0.93, sensitivity 86%, specificity 85%). Key risk 
factors identified were age, renal disease, and platelet count. 
Using MIMIC-IV data (11,745 BPH and 1,975 cancer cases), 
the study favored LightGBM over deep learning due to 
challenges with tabular data and limited sample size. 

Horvath et al. [41], shows that FedProx outperforms FedAvg 
on MIMIC-III under data heterogeneity. Despite some privacy 
leakage, DP-SGD and DP-SVT maintain performance close to 
non-private models. Larger gradient norms help balance privacy 
and accuracy, highlighting trade-offs in federated learning with 
differential privacy. 

Sun et al. [43], developed a nomogram using LASSO to 
predict in-hospital mortality (53.95%) in ICU cardiac arrest 
patients, achieving the highest performance (AUC 0.79) among 
tested models. Key predictors included SAPS III, bicarbonate, 
PT, and NEWS 2, making it a valuable tool for clinical decision-
making. 

Kaminaga et al. [44], proposed MPCFL architecture 
combines Federated Learning with Multi-Party Computation to 
enable secure, collaborative fraud detection without exposing 
data or model updates. Tested on different datasets, it effectively 
prevents common FL threats while maintaining model accuracy, 
proving its potential for privacy-preserving machine learning. 

Knott et al. [45] presents CRYPTEN, an MPC framework 
enabling privacy-preserving training and inference via 
encrypted tensors. Tested on models like ResNet-18 and ViT-
B/16, it achieves significant GPU speedups but faces high 
communication costs and debugging challenge. 

Budrionis et al. [46], finds that federated learning achieves 
similar accuracy to centralized training but with significant 
overhead up to 9× longer training and 40× longer inference 
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times. Using PySyft with Docker, it shows federated setups are 
resource-intensive yet enable privacy-preserving, regulation-
compliant learning on real-world healthcare data. 

Kanagavelu et al. [47], proposes a two-phase MPC-enabled 
FL framework for Industrial IoT, improving scalability and 
reducing communication overhead. Additive MPC proves more 
efficient than Shamir sharing, achieving 2–25× faster execution 
while preserving accuracy and privacy. Future work aims to 
scale across regions and enhance security against malicious 
threats. 

Zhu et al. [48], formalizes Federated Learning (FL) as a 
subset of Secure Multi-Party Computation (SMPC), modeling 
each training round as a secure m-ary function. Using a 
simulation-based security framework, it expresses the overall 
FL process as a composition of round-wise computations. 

Byrd et al. [49], in this paper presents a privacy-preserving 
federated logistic regression protocol for fraud detection, 
combining MPC to protect client model weights and DP to 
prevent inference attacks. Tested on real-world credit card data, 
the method shows strong scalability and maintains accuracy 

with increased privacy (lower ε) and more participants. 

Truex et al. [50] presents a federated learning system 
combining Secure Multi-Party Computation and Differential 
Privacy to ensure strong privacy with high accuracy. Tailored to 
a specific threat model, it achieves F1-scores above 0.87 up to 
0.9 in some cases, outperforming existing private FL methods in 
both scalability and performance. It supports multiple ML 
algorithms, proving its practicality for privacy-sensitive tasks. 

III. MATERIAL AND METHODS 

A. Database 

We utilize the MIMIC-IV dataset [42] to develop and 
evaluate our federated disease prediction framework. MIMIC-
IV contains de-identified, structured clinical data from ICU 
patients, including demographics, vitals, laboratory results, 
medications, and diagnostic codes. For our model, we focus on 
extracting time-series features (e.g. heart rate, blood pressure, 
creatinine, WBC count) along with static attributes (e.g. age, 
sex, ethnicity) to serve as input to a deep LSTM-based neural 
network. These features are temporally aligned and normalized 
per patient to construct multivariate sequences suitable for 
temporal modeling. The dataset is partitioned across multiple 
simulated hospital nodes, each representing a federated learning 
client with a unique subset of patient records. This partitioning 
is designed to emulate real-world inter-hospital data silos and 
enables training under both IID and non-IID conditions. Local 
preprocessing, including missing value imputation, sequence 
padding, and categorical encoding, is performed independently 
at each client. No raw data is shared across institutions; instead, 
model updates are trained locally and encrypted using 
CrypTen’s SMPC before being sent for secure aggregation. This 
data partitioning and local preprocessing pipeline is critical for 
maintaining the decentralized and privacy-preserving nature of 
our federated model. 

B. Experimental Setup 

To evaluate the proposed CrypTen-FL framework, we 
conducted experiments on twelve clinically significant diseases 

using the MIMIC-IV dataset. Each disease ranging from heart 
failure and sepsis to AKI and neurological disorders was framed 
as a binary classification task. Patient data (demographics, 
vitals, labs, and medications) was preprocessed and partitioned 
across four virtual hospitals to simulate real-world cross-
institutional data silos. We implemented five federated learning 
strategies: Horizontal FL (FedAvg), Vertical FL, Personalized 
FL (FedPer), Multi-task FL (FedMTL), and Split-FL. All 
training was conducted using the CrypTen Secure Multi-Party 
Computation (SMPC) environment to preserve privacy through 
encrypted model updates and secure aggregation. Training ran 
for 20 communication rounds using the Adam optimizer 
(learning rate = 0.001), batch size 128, and binary cross-entropy 
loss. Additionally, differential privacy was optionally enforced 
via DP-SGD with a privacy budget of ε = 3.0. Model 
performance was assessed using encrypted ROC-AUC, 
accuracy, precision, recall, and F1-score, securely computed 
using binning techniques to prevent information leakage. 

C. Evaluation 

To rigorously assess disease prediction performance across 
hospitals using the MIMIC-IV dataset, we employed a suite of 
standard classification metrics: Accuracy, Precision, Recall, F1-
score, Specificity, ROC-AUC, and Mean Squared Error (MSE). 
These metrics provide a comprehensive understanding of the 
model’s predictive ability, calibration, and fairness in a multi-
institutional, heterogeneous healthcare environment. 

In the context of MIMIC-IV, which contains rich, high-
dimensional clinical data from multiple hospitals and diverse 
patient populations, it is crucial to evaluate models on both their 
discriminatory power and their fairness across subgroups. 
Federated models trained with CrypTen's Secure Multi-Party 
Computation (SMPC) allowed these evaluations to be 
conducted without sharing sensitive patient-level data, ensuring 
compliance with privacy standards (e.g. HIPAA, GDPR). Let 
the confusion matrix elements be: True Positives (TP), True 
Negatives (TN), False Positives (FP), False Negatives (FN) and 
N is the total number of patients evaluated. To determine the 
proportion of total correct predictions across all patient cases is 
calculated by Eq. (1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)       (1) 

Precision is used to determine the ability of the model to 
correctly identify positive disease cases among those predicted 
positive by Eq. (2). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)                     (2) 

Recall defined the ability to detect actual positive disease 
cases in the dataset defined in Eq. (3). 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)                      (3) 

To determine the balance between precision and recall, 
particularly important given class imbalances (e.g., rare disease 
cases), F-1 score by Eq. (4). 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +
𝑅𝑒𝑐𝑎𝑙𝑙        (4) 

Specificity is the effectiveness in correctly identifying 
patients without the disease by Eq. (5). 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)                     (5) 

ROC-AUC which captures the model’s ability to distinguish 
between disease and non-disease cases across thresholds. 
Calculated by integrating the ROC curve (true positive rate vs. 
false positive rate).  Eq. (6), the Mean Squared Error (MSE) 
calculates the squared difference between projected probability 
and actual illness labels. 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑁

𝑖=1                      (6) 

This comprehensive metric suite ensures reliable evaluation 
of federated illness prediction models trained on MIMIC-IV by 
safeguarding privacy and promoting equity across hospital sites 
and patient subgroups. 

D. Methodology 

This section describes preprocessing, model architecture, 
Secure Multi-Party Computation (SMPC), FL. 

1) Preprocessing: We drew upon MIMIC-IV, a large, de-

identified electronic health record (EHR) repository that is freely 

available to the research community and contains data from over 

380,000 hospital admissions. The primary aim of the study was 

to predict clinically meaningful conditions/disorders, including 

diabetes mellitus, sepsis, heart failure, pneumonia, chronic 

kidney disease (CKD), and urinary tract infections (UTIs). 

Within the codebook, we identified continuous variables, 

categorical features, and temporal records, which included 

structured data items (e.g. vital signs, demographics, laboratory 

results, diagnoses [ICD-10 codes], prescriptions, and clinical 

procedures). To simulate a federated healthcare system, the data 

were split into non-overlapping arbitrary groupings which 

illustrated hospital silos within continuous variable cohorts, 

categorical features, matched temporal records by admission ID, 

and used imputation of categorical and continuous missing data, 

employing a mix of statistical and clinical heuristics. The final 

cohort of patients excluded any patients with missing disease 

designations and inadequate temporal records. 

2) Federated learning configurations: In Horizontal 

Federated Learning (HFL), The datasets from collaborating 

institutions have distinct patient populations but the same 

feature space (e.g. clinical factors). In order to provide 

collaborative learning without direct data exchange, each 

institution trains its model locally using its own patient 

information. Only encrypted model updates are sent for secure 

aggregation. 

Vertical Federated Learning (VFL), is appropriate, on the 
other hand, when organizations maintain different feature sets 
but share overlapping patient populations (e.g. labs in one 
hospital and imaging data in another). In order to facilitate 
collaborative model optimization while preserving data 
confidentiality, the training procedure in this case uses secure 
entity alignment and encrypted feature exchange between sites. 

Federated Transfer Learning (FTL) is used when different 
institutions have different patient groups and feature spaces. By 
aligning representations in a common latent space, FTL uses 
domain adaptation techniques to transmit knowledge across 
clients, enabling learning in extremely diverse environments. 

Split Learning (SplitFL) divides the neural network's client 
and server components. Clients do forward propagation on the 
initial network tiers using local data. A coordinating server then 
receives the intermediate feature maps and completes the 
remaining computations. Because the entire model architecture 
and source data are maintained decentralized, this setup allows 
for collaborative training with minimal risk of data leaks. 

3) Secure federated learning with SMPC and differential 

privacy: Secure Multi-Party Computation (SMPC) using 

CrypTen is used by the CrypTen-FL framework to ensure safe 

federated learning. Shamir's Secret Sharing enables 

decentralized key generation, where no single party has 

complete control. To ensure that no raw data or intermediate 

findings are ever made public, all computations—including 

training processes and evaluation measures like ROC-AUC—

are conducted entirely in encrypted space. The gradients and 

model parameters are separated into additive secret shares. 

The trade-off between system cost and privacy is guided by 
a Quant Mapping Reference, which enables dynamic setup 
according to institutional limitations. While related overheads 
range from Low (0–30%) to Very High (81–100%), privacy 
levels range from Low (0.4) to Very High (1.0). The deployment 
of CrypTen-FL in a variety of clinical settings with differing 
resource capacities is made possible by this adaptable privacy 
tailoring. 

4) Model architecture: As seen in Fig. 1, we successfully 

modeled the high dimensionality and temporal dynamics of 

electronic health record (EHR) data using a Transformer-based 

neural architecture. This approach handles a variety of clinical 

variables across time while capturing sequential patterns in 

patient histories. 

A structured time-series format is created from each patient's 
electronic health record (EHR), with each time step recording a 
fixed-interval snapshot (e.g. every 6 or 24 hours) of clinical data 
such vital signs, lab results, prescription drugs, diagnoses, and 
demographics. 

The sequence can be aggregated into a fixed-length 
embedding vector using either global average pooling or a 
[CLS] token. This patient-level embedding captures the 
temporal and multivariate nature of MIMIC-IV data. It is then 
passed through fully connected dense layers with ReLU 
activations and dropout for regularization, followed by a 
sigmoid activation layer. The sigmoid function enables multi-
label disease prediction—crucial for MIMIC-IV cases, where 
patients often exhibit multiple co-occurring conditions such as 
sepsis, AKI, or heart failure—making the model suitable for 

real-world ICU applications.
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Fig. 1. Model architecture. 

IV. RESULTS ANALYSIS 

A. Multi-Disease Prediction Performance 

The CrypTen-FL framework was evaluated for 12 critical 
diseases across ICU patients in the MIMIC-IV dataset using 
non-IID, hospital-partitioned data. The model utilized 
CrypTen's SMPC backend to ensure secure aggregation of 
encrypted model updates. 

The performance evaluation of the CrypTen-FL framework, 
as shown in Table I across 12 clinically significant diseases on 
the MIMIC-IV dataset, demonstrates consistent and robust 
results across multiple classification metrics. As shown in the 
table, key performance indicators—ROC-AUC, Accuracy, 
Precision, Recall, and F1-Score—remain above 0.75 for all 

disease categories, indicating reliable predictive capability. 
High ROC-AUC values (ranging from 0.80 to 0.88) across 
diseases such as sepsis, chronic kidney disease, and heart failure 
indicate strong model discriminability in distinguishing positive 
and negative cases, even under secure federated settings with 
privacy-preserving constraints. 

Diseases, including sepsis, heart failure, and chronic renal 
disease, have scores between 0.82 and 0.84, indicating both 
good sensitivity and specificity. F1-Scores, which strike a 
balance between precision and recall, also demonstrate 
consistent performance overall. Conditions include liver illness 
and urinary tract infections may have relatively low scores, 
which could indicate issues with class imbalance or more subtle 
clinical patterns.

TABLE I.  EVALUATION OF FEDERATED DISEASE PREDICTION MODELS ACROSS 12 CONDITIONS USING STANDARD PERFORMANCE METRICS, WITH NOTABLY 

STRONG RESULTS FOR SEPSIS, CKD, AND HEART FAILURE 

Disease ROC-AUC Accuracy Precision Recall F1-Score Specificity 

Heart Failure 0.87 0.83 0.80 0.84 0.82 0.82 

Respiratory Failure 0.85 0.81 0.77 0.82 0.79 0.80 

Sepsis 0.92 0.94 0.83 0.85 0.84 0.83 

AKI 0.86 0.82 0.79 0.83 0.81 0.81 

Malnutrition 0.82 0.78 0.74 0.77 0.75 0.76 

Pneumonia 0.84 0.80 0.76 0.79 0.77 0.78 

UTI 0.81 0.78 0.73 0.76 0.74 0.75 

Diabetes Mellitus 0.86 0.82 0.79 0.82 0.80 0.81 

Hypertension 0.85 0.81 0.77 0.80 0.78 0.79 

CKD 0.87 0.83 0.81 0.84 0.82 0.82 

Liver Disease 0.80 0.76 0.71 0.75 0.73 0.74 

Neurological Disease 0.83 0.79 0.75 0.78 0.76 0.77 
 

B. Performance of FL Models Across Diseases 

We examined the performance of a variety of Federated 
Learning (FL) strategies for disease prediction modeled using 
the MIMIC-IV dataset. Five different Federated Learning 
strategies were tried: Horizontal FL, Vertical FL, Personalized 
FL, Multi-task FL, and Split-FL. We employed these 
approaches on twelve clinical diseases of significance including 
heart failure, respiratory failure, sepsis, AKI malnutrition, 

pneumonia, UTI, diabetes, hypertension, CKD, liver disease, 
and neurological disorders. 

Overall, the comparative ROC-AUC scores shown in Fig. 2 
indicate that Multi-task FL obtained the best predictive 
performance across most disease types taking advantage of 
shared representations for co-morbid conditions. Personalized 
FL was not too far behind and was able to effectively adapt 
across hospitals to non-IID distributions, while maintaining 
consistently high ROC-AUC values. 
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Fig. 2. ROC-AUC comparison across federated learning types for multi-disease prediction from MIMIC-IV. 

Horizontal and Vertical FL served as strong baselines, with 
Horizontal FL performing slightly better where data schemas 
were consistent across institutions. Although Split-FL showed 
slightly lower ROC-AUC scores, it preserved patient privacy 
more effectively by limiting data exposure through model-
splitting. The overall results emphasize the trade-off between 
predictive performance and privacy: Multi-task and 
Personalized FL offer higher accuracy, while Split-FL ensures 
stronger data confidentiality with minimal performance 
compromise. These insights support the need for context-aware 
FL strategies in healthcare, where both accuracy and data 
protection are critical. 

C. Cross-Hospital Generalization Across Evaluation Metrics 

To assess the generalization capabilities of the CrypTen-FL 
framework, we performed a cross-hospital analysis across five 
conventional performance metrics—Area Under Receiver 
Operating Characteristic Curve (ROC-AUC), Accuracy, 
Precision, Recall, and F1-Score. For disease-specific prediction 
tasks, the model trained on a subset of hospitals, and then used 
observed data from an unseen institution, creating a scenario 
similar to realistic deployment situations where the clinical data 
are not identically distributed (non-IID). As summarized in 
Table II, CrypTen-FL achieved consistent cross-location 
performance, maintaining over 97.5% across all metrics when 
evaluated on hospitals not used in its training. A small decrease 
of .02977 (1.97%) was observed on ROC-AUC suggesting some 
decay in ranking ability; at the same time, Accuracy dropped by 
2.09% and was sustained across locations. Values for Precision 
and Recall were similarly aligned, demonstrating balanced 
levels of specificity and sensitivity, and the F1-Score (which 
considers Precision and Recall) similarly showed a decrease of 
2.11% confirming the model's robustness against changes in 
distributions. 

Secure Multi-Party Computation (SMPC) protocols 
included in CrypTen were used for all assessments, guaranteeing 
that no patient-level information was disclosed during inter-
institutional evaluation. In federated healthcare applications, 
where strict data protection laws must be followed, this privacy-
preserving configuration is crucial. Because CrypTen-FL offers 
both dependable predictive performance and end-to-end privacy 
assurances, it has a significant potential for real-world adoption 
in decentralized clinical environments, as seen by the negligible 
performance deterioration noticed across unseen hospitals. 

TABLE II.  CRYPTEN-FL CROSS-HOSPITAL EVALUATION 

DEMONSTRATING STRONG GENERALIZATION CAPABILITY, WITH HIGH 

METRIC RETENTION AND MINIMAL PERFORMANCE DEGRADATION ON 

UNSEEN HOSPITAL DATA 

Metric Performance Retained (%) Performance Drop (%) 

ROC-AUC 98.03 1.97 

Accuracy 97.91 2.09 

Precision 97.50 2.50 

Recall 97.51 2.51 

F1-score 97.89 2.11 

D. Comparison with Existing Models 

With a training time of roughly 1.2 × the baseline and a 
computational overhead of only 8%, CrypTen achieves the best 
accuracy, roughly 94.2%, according to the comparative 
evaluation displayed in Table III. These findings show that even 
with the additional secure multiparty compute operations, 
CrypTen maintains model performance with no loss of 
efficiency. PySyft, despite achieving an accuracy of 92.8%, had 
a 15% overhead and almost 1.5 × the training time of the 
baseline, exhibiting the balance of computational complexity 
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against a more generalized privacy-preserving framework. 
TensorFlow Federated noted good performance for federated 
learning settings but had limited support for cryptographic 
security, evaluating a 93.5% accuracy at a 10% overhead and 
1.3 × the baseline training time. In sum, the results imply that 

CrypTen attains the best trade-off precision, speed of 
computing, and privacy protection, which ultimately makes it a 
suitable framework for sensitive industries such as healthcare 
and finance. 

TABLE III.  COMPARATIVE ANALYSIS OF CRYPTEN, PYSYFT, AND TENSORFLOW FEDERATED IN TERMS OF MODEL ACCURACY, COMPUTATION OVERHEAD, 
AND TRAINING EFFICIENCY 

Framework Accuracy (%) 
Computation 

Overhead (%) 

Training Time 

(relative) 
Remarks 

CrypTen 94.2 +8 1.2× baseline High accuracy with minimal loss; efficient SMPC integration 

PySyft 92.8 +15 1.5× baseline Broader privacy features but higher complexity and slowdown 

TensorFlow Federated 93.5 +10 1.3× baseline Strong FL accuracy, limited SMPC support, TensorFlow-only 
 

E. Discussion 

Using the MIMIC-IV dataset, this study proposes a privacy-
preserving federated learning (FL) architecture for disease 
prediction across hospitals. We show that in multi-institutional 
healthcare settings, it is feasible to attain both strong data 
privacy and good predictive performance by combining 
decentralized key generation, CrypTen-based Secure Multi-
Party Computation (SMPC), and differential privacy. 

Split Learning continuously produced the best results out of 
all the FL paradigms that were studied, thanks to its capacity to 
jointly learn representations without disclosing raw data. Given 
the enhanced privacy guarantees and legal compliance (e.g. 
HIPAA, GDPR), the minor overhead (10–30%) introduced by 
SMPC and DP-SGD is justified. 

The framework's robustness and fairness in real-world 
varied clinical settings were confirmed by its good 
generalization across a variety of hospital datasets under 
MIMIC-IV and the lack of notable performance differences 
across age, gender, and ethnicity subgroups. Crucially, Shamir's 
Secret Sharing eliminated the need for centralized trust models 
by enabling decentralized key creation, reducing the possibility 
of single-point failure or compromise. 

Case Study: Privacy Preservation in CrypTen-FL Using 
Communication Overhead. 

We carried out a quantitative trade-off study across five 
federated learning (FL) strategies: Horizontal FL, Vertical FL, 
Personalized FL, Multi-task FL, and Split-FL in order to 
thoroughly evaluate the trade-off between privacy preservation 
and operational viability in the CrypTen-FL framework. Three 
factors were used to evaluate each strategy: computation 

overhead, communication overhead, and privacy level (enforced 
by Secure Multi-Party Computation and optional Differential 
Privacy). The Quant Mapping Reference provides standardized 
numeric values to interpret qualitative privacy levels (ranging 
from 0.4 for Low to 1.0 for Very High) and overhead categories 
(0–100% range). These qualitative attributes were then mapped 
to quantitative values using normalized scales (e.g. privacy: 0.6–
1.0; overheads: 0%–100%) to facilitate consistent comparison. 
The results in Table IV show strategies like Vertical FL and 
Split-FL achieved the highest levels of privacy (1.0). They also 
incurred significant system costs, with communication and 
computation overheads exceeding 75% due to secure feature 
alignment and encrypted activation exchange, respectively. 

In contrast, Horizontal FL and Personalized FL offered a 
more practical balance. Horizontal FL attained high privacy 
(0.8) with moderate communication overhead (50%) and 
minimal computational burden (20%), making it suitable for 
environments with consistent feature schemas. By permitting 
local model customisation, personalized FL maintained strong 
privacy (0.8) and moderate computation (50%), while reducing 
communication overhead to 25%. Due to task-specific learning, 
multi-task FL had significant computing costs and modest 
privacy (0.6), despite being effective in some collaborative 
environments. All things considered, this analysis draws 
attention to the inherent trade-offs in federated learning 
architecture for medical AI systems, allowing researchers to 
choose approaches that are in line with resource availability, 
deployment requirements, and data sensitivity—particularly 
important in datasets that are sensitive to privacy, such as 
MIMIC-IV. 

TABLE IV.  QUANTIFIED COMPARISON OF PRIVACY AND OVERHEAD TRADE-OFFS IN CRYPTEN-FL STRATEGIES 

FL Strategy Privacy Level (0–1) 
Communication Overhead 

(0–100%) 

Computation Overhead 

(0-100%) 
Analysis 

Horizontal FL 0.8 (High) 50 (Moderate) 20 (Low) 
Model updates encrypted via SMPC; 
efficient for similar feature spaces. 

Vertical FL 1.0 (Very High) 75 (High) 80 (High) 
Encrypted feature alignment across clients 

increases communication cost. 

Personalized FL 0.8 (High) 25 (Low) 50 (Moderate) 
Local personalization reduces shared data, 
enhancing privacy. 

Multi-task FL 0.6 (Moderate) 50 (Moderate) 75 (High) 
Shared representation learning; higher 

task-specific computation load. 

Split-FL 1.0 (Very High) 90 (Very High) 90 (Very High) 
Securely exchanges activations; offers 
strongest privacy with high cost. 
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V. CONCLUSION AND FUTURE WORK 

Using the MIMIC-IV dataset, this paper proposes a safe and 
private federated learning system for disease prediction across 
hospitals. As a potent instrument for secure multiparty 
computation (SMPC), CrypTen provides a centralized platform 
for machine learning that protects privacy. It enables 
cooperative model training across dispersed and heterogeneous 
environments while maintaining the confidentiality of sensitive 
data through the integration of cryptographic protocols with 
tensor-based operations. CrypTen shows that privacy-
preserving learning can be both feasible and scalable by 
minimizing security and accuracy trade-offs, in contrast to 
conventional methods. 

Additionally, because of its natural compatibility with 
PyTorch, academics and practitioners can more easily embrace 
it in real-world applications like healthcare, finance, and cross-
institutional cooperation, where stringent data sharing 
regulations are essential. According to comparative research, 
CrypTen improves data security, compliance, and trust while 
offering competitive performance. 

Future studies will concentrate on supporting multimodal 
clinical data, refining SMPC protocols to lower computational 
cost, and enhancing system scalability across bigger hospital 
networks. The usefulness and efficacy of the suggested 
framework will be further reinforced by improvements in 
dynamic involvement, training that is fair, and real-world 
clinical deployment. These guidelines seek to promote the use 
of decentralized, moral, and privacy-preserving AI in 
cooperative healthcare settings. 
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