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Abstract—Social networks are certainly a crucial platform for 

bringing people together globally. Detecting the significant nodes 

inside the social network remains an open problem because of the 

broad variety of network sizes. To solve this problem, different 

centrality measures have been introduced. Detecting the 

significant nodes is essential for speeding up or slowing down the 

spread of information, managing diseases and rumors, and more. 

This paper presents a comparative evaluation of 12 centrality 

measures to determine the most effective measure on the basis of 

accuracy, differentiation capability, and runtime. To validate 

performance, a series of experiments is conducted on four social 

networks using the validation metrics such as monotonicity, the 

SIR model, and Kendall tau. The experimental outcomes indicate 

that the gravity-based measures have superior accuracy and 

differentiation capability as compared to other measures. Finally, 

this paper outlines future research directions for enhancements 

based on centrality measures. 
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I. INTRODUCTION 

Social networks depict the structure of actual social 
systems in which vertices denote individuals and edges denote 
their connections. Globally, billions of people own 
smartphones, and they are adept at using social media 
applications, including Facebook, Threads, Bluesky, and 
others, to communicate and disseminate information. 
Consequently, social networks offer an environment for 
promoting items, disseminating information, and other 
purposes. Table I lists a few instances of social networks. 
Many tools for exploring social networks have been provided 
by technology in recent years, like NetworkX, Pajek, 
VOSviewer, etc. 

Detecting the significant nodes is crucial for carrying out 
the aforementioned tasks, like promoting products, spreading 
information, etc., as a node with a better spreading capacity is 
regarded as significant in social networks [1]. Significant nodes 
have a larger effect on the topology of the network in contrast 
to the remaining nodes [2]. Hence, detecting the significant 
nodes aids in a thorough analysis of the whole network. For 
instance, in the management of disease spread, we can control 
the spread of disease by quickly finding the most critical node 
of disease transmission [3]. The significant node inside a 
network is designated by its centrality [4]. As a result, 
determining the measure of centrality is crucial. Different 
centralities have been stated due to the enormous growth of 
social networks, like closeness [5], degree [6], betweenness [7], 
k-shell decomposition [8], gravity [9], etc. These measures can 

be classified as local, semi-local, and global, based on node 
connectivity [10], as displayed in Fig. 1. 

Local knowledge regarding the node is utilized to develop 
local centralities. For instance, degree [6], ProfitLeader [11], 
etc. Recent years have seen the development of a novel class of 
centralities known as semi-local, which can retain a higher 
accuracy than local centralities. For instance, h-index [12], 
semi-local centrality [13], local gravity model [14], etc. 
Centralities that necessitate the whole framework of a network 
are known as global. For instance, eigenvector [6], PageRank 
[15], global and local structure [16], electric potential [17], etc. 
This paper evaluates 12 centralities and highlights the most 
effective measure. The findings suggest that the gravity-based 
measures, that is, gravity centrality and extended gravity 
centrality, have superior accuracy and differentiation capability 
as compared to other measures that include eigenvector, 
degree, closeness, betweenness, PageRank, h-index, k-shell, 
ProfitLeader, global and local structure, and electric potential. 

This paper’s remaining sections are laid out this way: 
Section II discusses the related studies, Section III describes 
several centrality measures, and Section IV presents the 
experimental methodology. Lastly, Sections V and VI conclude 
the paper and highlight future directions. 

TABLE I.  FEW INSTANCES OF SOCIAL NETWORKS 

Social Networks 

Examples Applications 

Friendship WhatsApp, Facebook, Twitter, etc. 

Interaction Emails, Snapchat, Phone Calls, etc. 

Co-authorship DBLP, ScienceDirect, Wikibooks, etc. 

Follower LinkedIn, Twitter, etc. 

 

Fig. 1. Classification of centrality measures. 
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II. RELATED STUDIES 

In recent years, discovering the highly significant nodes in 
social networks has emerged as an important research 
challenge. Many centrality measures have been designed for 
detecting significant nodes, and each measure has advantages 
and disadvantages. Bavelas originated the concept of a 
centrality measure for connected networks [18]. Freeman built 
three well-known measures of centrality: closeness, 
betweenness, and degree [7]. Closeness is the global measure 
that considers both the direct and indirect connections. 
Betweenness is also the global measure that is used to identify 
the bridge nodes. Both these global measures have a high 
computational cost. The local measure, referred to as degree, 
considers only direct connections. A node becomes significant 
according to Bonacich’s eigenvector measure if it has 
significant neighbors [6]. Search engines widely and efficiently 
use the global measure known as PageRank [15], which Brin & 
Page invented, to rank web pages. A web page attains high 
quality when many high-quality web pages link to it. 

A semi-local measure called the h-index was created [12]; 
according to this measure, a node is considered more 
significant when it is linked to many large-degree neighboring 
nodes. In order to investigate human brain networks, a unique 
measure known as leverage centrality was invented [19]. 
Kitsak et al. designed the global measure called the k-shell that 
has low computational cost [8]. Bae & Kim invented the 

coreness measure, which calculates a node’s influence by 
considering its neighbors’ k-shell values [20]. Ma et al. built 
gravity-based measures that depend on Newton’s gravitational 
formula [9]. A k-shell hybrid technique was created to detect 
the significant nodes from both the outer shells and the core 
[21]. Yu et al. introduced ProfitLeader, a measure that 
evaluates the importance of a node through its profit capacity 
[11]. A node’s importance increases when it offers greater 
profit for others. 

A method based on local neighbor contribution was 
suggested, which can be utilized with networks of different 
sizes and has a relatively low computational cost [22]. Sheng et 
al. suggested a measure called global and local structure that 
takes into account both local influence and global influence 
[16]. Through the use of the effective distance, a gravity model 
was developed that integrates static as well as dynamic 
information [23]. To detect the significant nodes, extended 
hybrid characteristic centrality was designed by using an 
extended version of the degree and E-shell technique [24]. A 
gravity-based model was designed that incorporates degree, k-
shell, and eigenvector centrality measures [25]. An electric 
potential-based measure was developed that includes both local 
and global features of networks [17]. A method named OVED-
Rank was suggested that uses orbital velocity formula and 
effective distance to detect significant nodes in social networks 
[26]. The previous studies on different centrality measures are 
presented in Table II. 

TABLE II.  PREVIOUS STUDIES ON DIFFERENT CENTRALITY MEASURES 

Centrality Measure Category Strengths Weaknesses/ Future Work 

Degree [6] Local Simple with low computational cost Low accuracy 

Eigenvector [6] Global 
Concentrates on both the quantity and quality of 

neighboring nodes 
Applicable solely to connected networks 

H-index [12] Semi-local Better node ranking than degree Poor differentiation capability 

Gravity and its enhanced variant [9] Global Superior accuracy High computational cost 

ProfitLeader [11] Local Low computational cost Not very effective for small networks 

Local gravity model [14] Semi-local 
Introduces the truncation radius 𝑅  to minimize 

time complexity 

To compute the truncation radius 𝑅 as an auxiliary 

parameter 

Global and local structure [16] Global Superior accuracy High computational cost 

Local and global influence [27] Global Superior accuracy and differentiation capability Less efficiency 

Effective distance gravity model [23] Global More comprehensive High computational cost 

Extended hybrid characteristic [24] Global Superior accuracy and differentiation capability Restricted to undirected unweighted networks 

OVED-Rank [26] Global Superior accuracy Restricted to undirected unweighted networks 
 

III. PRELIMINARY CONCEPTS 

This section provides 12 currently and previously created 
centralities. A social network is represented as a graph 𝐺 =
(𝑉, 𝐸), where 𝑉  and 𝐸  designate the node set and edge set, 
respectively. Various measures are given as follows: 

A. Degree 

It represents a simple approach for calculating a node’s 
importance by merely taking into account its closest neighbors 
[6]. The degree centrality 𝐶𝐷 [7] of a node 𝑤 can be computed 
as: 

𝐶𝐷(𝑤) =
∑ 𝑎𝑤𝑥

𝑁
𝑥=1

𝑁−1
                                (1) 

where, 𝐴 = { 𝑎𝑤𝑥} designates the adjacency matrix, 𝑎𝑤𝑥 = 
1 if 𝑤 and 𝑥 are connected, and 0 if not; 𝑁 designates the node 
count. 

B. Betweenness 

The count of shortest paths that travel through a node 𝑤 
determines its betweenness centrality 𝐶𝐵  [7], which is 
computed as: 

𝐶𝐵(𝑤) =
2

(𝑁−1) (𝑁−2)
 ∑

𝑔𝑖𝑗(𝑤)

𝑔𝑖𝑗
𝑖≠𝑤,𝑖≠𝑗,𝑤≠𝑗                 (2) 
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where, 𝑔𝑖𝑗(𝑤)  designates the number of shortest paths 

joining nodes 𝑖 and 𝑗 that travel through a node 𝑤. 

C. Closeness 

It calculates a node’s closeness to every other node in the 
network [5]. The closeness centrality 𝐶𝑐 [7] can be computed 
as: 

𝐶𝑐(𝑤) =  
𝑁−1

∑ 𝑑(𝑤,𝑥)𝑥≠𝑤
                        () 

where, 𝑑(𝑤, 𝑥) designates the length of the shortest path 
between nodes 𝑤 and 𝑥. 

D. Eigenvector 

It measures a node’s importance by taking into account 
both the number of its adjacent nodes and their importance [6]. 
The eigenvector centrality 𝐶𝐸 can be computed as: 

𝐴𝑧 = 𝜆𝑧, 𝐶𝐸(𝑤) = 𝑧𝑤 =
1

𝜆
∑ 𝑎𝑤𝑥

𝑁
𝑥=1 𝑧𝑥          () 

where, 𝑧 designates the eigenvector and 𝜆  designates the 
constant. 

E. PageRank 

It is a variant of the eigenvector measure [15]. It 
demonstrates that a web page’s importance can be measured 
based on both the count of linking pages and the quality of 

those pages. The PageRank 𝐶𝑃𝑅
(𝑘)

 of a node 𝑤  at the k-th 
iteration is computed as: 

𝐶𝑃𝑅
(𝑘)(𝑤) = ∑ 𝑎𝑥𝑤

𝑁
𝑥=1  

𝐶𝑃𝑅
(𝑘−1)(𝑥)

𝑘𝑥
𝑜𝑢𝑡                      () 

where, 𝑘𝑥
𝑜𝑢𝑡 designates the count of edges from node 𝑥 to 𝑤. 

F. K-Shell Decomposition 

It calculates the importance of a node according to its 
topological position [8]. It allocates each node a k-shell index 
through an iterative process. The most significant node holds 
the maximum k-shell value and is located close to the 
network’s core. Core nodes are more significant than non-core 
nodes. Within the same core level, it cannot distinguish 
between influential nodes. 

G. H-Index 

The H-index (Hirsch index) was first employed to evaluate 
the scholarly contributions of scholars or journals according to 
their scholarly works and citation counts [28]. The H-index 
𝐶𝐻𝐼 of a node 𝑤 is expressed as the highest value h such that 𝑤 
has at least h neighbors for each with a degree no less than h 
[12]. A node’s higher H-index value specifies its greater 
influence. 

H. Gravity 

It is a hybrid measure, which makes use of the path 
information as well as neighborhood information [9]. The 
gravity centrality 𝐶𝐺 can be computed as: 

𝐶𝐺(𝑤) = ∑
𝐾𝑆(𝑤)𝐾𝑆(𝑥)

𝑑2(𝑤,𝑥)𝑥𝜖𝜓𝑤
                    () 

where, 𝐾𝑆(𝑤) and 𝐾𝑆(𝑥) designate the k-shell value of 
nodes 𝑤  and 𝑥 , respectively, and 𝜓𝑤  designates the set of 
third-order neighbors. 

I. Extended Gravity 

This enhanced variant of gravity measure computes a 
node’s importance by summing the influence 𝐶𝐺(𝑥)  of all 
nearest neighbors [9]. The extended gravity centrality 𝐶𝐸𝐺 can 
be computed as: 

𝐶𝐸𝐺(𝑤) = ∑ 𝐶𝐺(𝑥)𝑥𝜖𝛬𝑤
                       () 

where, 𝛬𝑤 designates the set of adjacent nodes of a node 𝑤. 

J. ProfitLeader 

ProfitLeader uses each node’s profit capacity to evaluate its 
influence [11]. The profit capacity 𝐶𝑃𝐿 can be computed as: 

𝐶𝑃𝐿(𝑤) =  ∑ 𝐴𝑅(𝑤→𝑥)𝑥𝜖𝛤𝑤
· 𝑆𝑃(𝑤→𝑥)             () 

where, 𝛤𝑤  designates the neighbors of node 𝑤 , 𝐴𝑅(𝑤→𝑥) 
designates the available resource of a node 𝑤 for another node 
𝑥 , and 𝑆𝑃(𝑤→𝑥)  designates the sharing probability (or 

similarity) between two nodes 𝑤 and 𝑥. 

K. Global and Local Structure 

It computes the node’s influence with two key factors: local 
influence and global influence [16]. The global and local 
structure 𝐶𝐺𝐿𝑆 is computed as: 

𝐶𝐺𝐿𝑆(𝑤) = 𝐼𝐺(𝑤) × 𝐼𝐿(𝑤)                           () 

The global influence 𝐼𝐺 (𝑤) can be computed as: 

𝐼𝐺(𝑤) = 𝐷(𝑤) ∑ 𝑝𝑜𝑤(𝐴, #𝐶𝑜𝑚(𝑤,𝑥))𝑥𝜖𝑁𝑒𝑖𝑤
      (10) 

where, 𝐴 is a constant, #𝐶𝑜𝑚(𝑤, 𝑥) designates the count of 
mutual neighbors of nodes 𝑤 and 𝑥, and 𝐷(𝑤) designates the 
degree and is computed as: 

𝐷(𝑤) = ∑ 𝑎𝑤𝑥
𝑁
𝑥=1                        () 

The other factor is local influence. The 𝐼𝐿(𝑤) is computed 
as: 

𝐼𝐿(𝑤) =  ∑ 𝐶𝐷(𝑥)𝑝(𝑥)𝑥𝜖𝑁𝑒𝑖𝑤
                  () 

where, 𝑁𝑒𝑖𝑤 designates all nearest neighbors of a node 𝑤, 
and every neighbor 𝑥 has a probability 𝑝  of contributing to 
node 𝑤. 

L. Electric Potential Centrality 

It relies on the principle of electric potential, which 
represents the network’s structural features on both a local and 
global level [17]. The electric potential 𝐶𝐸𝑃  of a node 𝑤  is 
computed as: 

𝐶𝐸𝑃(𝑤) = 𝐿𝑂𝐶(𝑤) × 𝐺𝑂𝐶(𝑤)                  () 

where, 𝐿𝑂𝐶(𝑤)  and 𝐺𝑂𝐶(𝑤)  designate the locality and 
globality of a node 𝑤, respectively. 

The 𝐿𝑂𝐶(𝑤) is computed as: 

 𝐿𝑂𝐶(𝑤) =  𝐷(𝑤) × 𝑒
𝐷(𝑤)+ 𝜑 (𝑤)

𝑁                 () 
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where, 𝑒 designates the base of the natural logarithm, and 
𝜑 (𝑤) is computed as: 

𝜑 (𝑤) = 
2×𝛼

(|𝐷(𝑤)−1|+1)
                       () 

where, 𝛼 designates a tunable coefficient. 

The 𝐺𝑂𝐶(𝑤) is computed as: 

𝐺𝑂𝐶(𝑤) = 
𝐷(𝑥)×𝛽

𝑑 (𝑤,𝑥)
                          () 

where, 𝛽 designates a tunable coefficient. 

So, the 𝐶𝐸𝑃(𝑤) is computed as: 

𝐶𝐸𝑃(𝑤) =  ∑ (𝑥𝜖𝛾𝑤
𝐷(𝑤) × 𝑒

𝐷(𝑤)+ 𝜑 (𝑤)

𝑁 ) ×
𝐷(𝑥)×𝛽

𝑑 (𝑤,𝑥)
     () 

IV. EXPERIMENTAL METHODOLOGY 

This section assesses the 12 centrality measures utilizing 
the three parameters mentioned below: 

a) Accuracy: It reflects how effectively the measure’s 

ranking order correlates with the true ranking order [27]. 

b) Differentiation Capability: It depicts the 
effectiveness of the measure to discriminate the nodes’ 

importance [27]. 

c) Efficiency: It indicates the runtime required by the 

centrality for evaluating the importance of the nodes [27]. 

A. Validation Metrics 

1) SIR Model: It is applied to determine the propagating 

influence of ranked nodes [29], [30] and has three states:  

• Susceptible (S): People with good health who are prone 
to contamination from other people are included in this 
state. 

• Infected (I): People with the illness may be likely to 
infect other people. 

• Recovered (R): After recovering, people with the illness 
are unable to infect other people. 

All nodes are initially within the S state, with just node y 
within the I state. Every time step, the I nodes aim to infect 
those around them within the S state with an infection 
probability 𝛽. Nodes within the S state move to the I state upon 
infection. The I nodes then move to the R state with a recovery 
probability µ. This cycle repeats until the network contains no I 
nodes. Once all I nodes have shifted to the R state, we count 
the total R nodes to quantify the influence of node y, as 
displayed in Fig. 2. The threshold value of 𝛽 can be computed 
as: 

𝛽𝑡ℎ =  
<𝐾> 

<𝐾2>− <𝐾>
                          () 

where, < 𝐾 >  designates the average degree and < 𝐾2 > 
designates the second-order average degree [31]. 

 
Fig. 2. The SIR model. 

2) Kendall Tau 𝜏 : Kendall 𝜏  [32], [33] is applied to 

quantify the correlation of the ranking list of the measure with 

that of the SIR model. Suppose two ranking lists, 𝑄 and 𝑅, are 

considered for correlation and have similar nodes 𝑁 : 𝑄 =
 (𝑞1, 𝑞2 ,… , 𝑞𝑁) and 𝑅 =  (𝑟1 , 𝑟2 , … , 𝑟𝑁 ). 

Kendall 𝜏 between 𝑄 and 𝑅 is computed as: 

𝜏(𝑄, 𝑅) =
𝑁𝑐−𝑁𝑑

0.5𝑁(𝑁−1)
                               () 

where, 𝑁𝑐 and 𝑁𝑑  designate the count of concordant and 
discordant pairs, respectively. A ranked list produced by 
centrality is more accurate when the 𝜏 value is higher [3]. 

B. Data Description 

The topological properties of social networks are 
mentioned in Table III. The graphical visualization of four 
networks using the NetworkX Python Package is displayed in 
Fig. 3. These networks are openly accessible and available for 
download from the site https://networkrepository.com/ 

1) LastFM: In March 2020, the public API was used to 

gather this LastFM user social network, with the nodes 

signifying LastFM members from Asian nations and the edges 

signifying reciprocal follower ties. 

2) Power: This is a representation of the structure of the 

US power grid in the Western States, where nodes signify 

power stations and edges signify lines between them. 

3) Webspam: The Purdue University graph database 

created this dataset. Nodes are signified by web pages, and 

edges by hyperlinks. 

4) Dolphins: It describes the network of bottlenose 

dolphins. Every edge signifies a dolphin-to-dolphin link, and 

every node signifies a bottlenose dolphin. 
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TABLE III.  TOPOLOGICAL PROPERTIES OF FOUR SOCIAL NETWORKS 

Network 
N 

(Node count) 

M 

(Edge count) 

Kmax 

(Maximum degree) 

<K> 

(Average degree) 

<CC> 

(Average clustering coefficient) 

βth 

(Infection threshold) 

LastFM 7624 27806 216 7.2943 0.2194 0.0409 

Power 4941 6594 19 2.6691 0.0801 0.3483 

Webspam 4767 37375 477 15.6807 0.2860 0.0140 

Dolphins 62 159 12 5.1290 0.2590 0.1723 
 

 
Fig. 3. Graphical visualization of four networks using the NetworkX Python 

Package. 

C. Results 

We have employed the validation metrics to compare the 
effectiveness of 12 measures in detecting the significant nodes. 
Firstly, we employ a sample network, consisting of 15 nodes 
and 18 edges, as displayed in Fig. 4. By utilizing this sample 
network, we first obtain the ranking lists based on 12 measures 

and the SIR model, as depicted in Table IV. We then compare 
the ranking list of each measure with that of the SIR model to 
identify the common nodes between the two lists. With this 
comparison, we observe that the number of common nodes for 
CG, CEP, CEG, CPL, CC, CGLS, CHI, CB, CE, CPR, CKS, and CD with 
the SIR model is 10, 7, 6, 6, 5, 5, 4, 3, 3, 2, 2, and 1, 
respectively. According to the above analysis, it can be seen 
that the CG measure has the most common nodes, which means 
the ranking list attained from the CG measure and the SIR 
model match well. Therefore, the CG measure detects the 
significant nodes better than the other measures. In addition, 
we compare these measures on the basis of Kendall 𝜏 , as 
depicted in Fig. 5, and find that the CG measure performs 
superior to the other measures. 

 
Fig. 4. A sample network with 15 nodes and 18 edges. 

TABLE IV.  SAMPLE NETWORK RANKING LISTS 

Rank CD CB CC CE CPR CHI CKS CG CEG CPL CGLS CEP SIR 

1 6 12 12 13 6 13 1 12 13 12 13 12 12 

2 12 1 10 12 12 14 6 13 12 13 12 13 13 

3 13 10 14 14 13 10 14 10 10 6 10 6 10 

4 10 6 13 10 2 12 12 14 14 14 14 10 14 

5 9 2 1 9 1 1 11 6 9 1 6 14 6 

6 2 13 6 6 9 6 10 1 1 10 1 1 1 

7 1 14 15 1 10 9 9 9 6 9 9 9 9 

8 14 9 9 11 14 15 15 11 11 2 11 2 15 

9 11 11 11 15 11 11 13 15 15 11 2 11 11 

10 15 4 2 2 15 7 7 2 2 15 15 15 2 

11 3 3 7 4 3 3 3 7 7 3 7 7 8 

12 7 7 8 7 5 2 2 8 8 4 8 8 4 

13 5 5 4 8 7 5 5 4 4 5 4 4 7 

14 4 8 5 5 8 4 4 5 5 7 3 5 5 

15 8 15 3 3 4 8 8 3 3 8 5 3 3 
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The research work involves four experiments based on the 
three parameters outlined below: 

1) Accuracy: 

a) Experiment: Comparison of centrality measures 

using Kendall’s 𝜏 values. 

Kendall’s 𝜏 serves as a validation metric to quantify the 
accuracy of centralities. The accuracy of the 12 measures, 

evaluated by Kendall’s 𝜏 , is shown in Table V. Table V 
highlights that CEG and CG, the gravity-based measures, are 
highly effective and deliver the best outcomes among all 12 
measures. The extended gravity measure performs the best, 
while the gravity measure ranks second. Among all measures, 
the CB and CPR measures perform the worst, with minimal 
correlation in most networks. Table V emphasizes the three 
best-performing measures in bold. 

TABLE V.  VALUES OF KENDALL TAU FOR 12 MEASURES 

Network CD CB CC CE CPR CHI CKS CG CEG CPL CGLS CEP 

LastFM 0.5829 0.4112 0.6821 0.6761 0.4222 0.6016 0.6101 0.8081 0.8468 0.5779 0.7456 0.6617 

Power 0.4401 0.3275 0.3850 0.6306 0.2441 0.4188 0.3451 0.6843 0.7906 0.4327 0.6065 0.5498 

Webspam 0.7124 0.5132 0.8093 0.8456 0.5274 0.7267 0.7315 0.8252 0.8592 0.7011 0.8329 0.7742 

Dolphins 0.7472 0.5410 0.6584 0.6986 0.6647 0.7451 0.5219 0.8488 0.8974 0.7409 0.8202 0.8308 

 

Fig. 5. Kendall 𝜏 outcomes of the sample network. 

b) Experiment: Comparison of the centrality measures 

based on propagation influence. 

To assess the effectiveness of 12 centralities, we compute 
the propagating ability of ranked nodes by employing the SIR 
model. For differentiating the significant nodes, each node’s 
influence is first computed using the 12 centrality measures 
and then ranked in descending order. Second, every ranked 
node is utilized as an initial infected node (seed node) to infect 
susceptible nodes with an infection probability 𝛽. Finally, the 
count of nodes infected by each seed node is computed. The 
transmission rate of ranked nodes is plotted across the 
networks, as depicted in Fig. 6. The ranked index signifies the 
nodes’ ranking order in descending order according to their 
influence, whereas F(t) signifies the total of infected and 
recovered nodes at time t. The SIR model states that highly 
significant nodes have the capacity to infect a greater number 
of other nodes. For a measure to be efficient, its infection curve 
should show a consistent reduction in the number of infected 
nodes when the node influence decreases from left to right. As 
shown in Fig. 6, the CEG measure exhibits a remarkable 
infection capability compared to the other measures across all 
networks, with its curves appearing smooth and stable with 
minimal fluctuations. The CG measure also performs well in all 

networks, but not as well as the CEG measure. In contrast, the 
infection curves of the CB and CPR measures display numerous 
peaks and troughs in all networks. Thus, both CB and CPR 
measures show the worst performance. 

2) Differentiation capability: 

a) Experiment: Comparison of centrality measures based 

on monotonicity 𝑀 values. 

The monotonicity 𝑀  [20] is applied to quantify the 

differentiation ability of centrality measures and is computed 
as: 

𝑀(𝑌) = [1 − 
∑ 𝑁𝑟(𝑁𝑟−1)𝑟𝜖𝑌

𝑁(𝑁−1)
]

2
                () 

where, 𝑌 designates the ranking pattern, and 𝑁𝑟 designates 
the node count with the identical rank 𝑟. 

The monotonicity 𝑀  values fall between 0 and 1. The 
higher the monotonicity value, the better the differentiation 
capability. In Table VI, it can be clearly shown that the CEP, 
CE, CPR, and CEG measures have the best differentiation 
capability as compared to other measures. In every network, 
the CKS and CHI measures exhibit the poorest performance. 
Table VI emphasizes the best-performing measures in bold. 
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Fig. 6. Influence of propagation on the rankings using 12 measures. 

TABLE VI.  MONOTONICITY VALUES FOR 12 MEASURES 

Network CD  CB CC CE CPR CHI CKS CG CEG CPL CGLS CEP 

LastFM 0.7978 

 

0.8347 

 

0.9997 

 

0.9999 

 

0.9999 

 

0.7570 

 

0.7348 

 

0.9998 

 

0.9999 

 

0.9959 

 

0.9975 

 

0.9999 

 

Power 0.5927 

 

0.8319 

 

0.9998 

 

0.9999 

 

0.9999 

 

0.3930 

 

0.2460 

 

0.9979 

 

0.9997 

 

0.9624 

 

0.9754 

 

0.9999 

 

Webspam 0.8640 

 

0.8471 

 

0.9996 

 

0.9998 

 

0.9998 

 

0.8455 

 

0.8374 

 

0.9998 

 

0.9998 

 

0.9981 

 

0.9988 

 

0.9998 

 

Dolphins 0.8312 

 

0.9623 

 

0.9737 

 

0.9979 

 

0.9979 

 

0.6841 

 

0.3769 

 

0.9979 

 

0.9979 

 

0.9905 

 

0.9958 

 

0.9979 

 
 

3) Efficiency 

a) Experiment: Comparison of centrality measures using 

runtime. 

In this experiment, we have analyzed the runtime of 12 
measures in four networks to measure the efficiency of each 
centrality measure. As shown in Table VII, the run time of the 
CD measure is significantly lower than that of the other 
measures across all networks. The CKS and CHI measures also 

have a low runtime after the CD measure in all networks. 
Among all the measures, the runtime of the CB measure is the 
highest. 

The runtime trends in Fig. 7 indicate that the CB measure 
rises sharply with network size N, unlike the other measures. 
Table VII emphasizes the three best-performing measures in 
bold. 
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Fig. 7. The runtime (in seconds) of the 12 measures as a function of the Network size 𝑁. 

TABLE VII.  RUNTIME (IN SECONDS) OF 12 MEASURES 

Network CD CB CC CE CPR CHI CKS CG CEG CPL CGLS CEP 

LastFM 0.0036 350.6235 57.4717 0.6420 0.0914 0.0726 0.0481 4.7394 4.8089 1.5479 93.8552 21.0344 

Power 0.0035 91.9589 11.3889 0.1699 0.0189 0.0107 0.0108 0.1051 0.1125 0.0870 24.3106 5.5635 

Webspam 0.0035 186.5113 38.4280 0.2338 0.2421 0.0457 0.0402 14.7700 15.1397 8.9812 51.2695 6.6649 

Dolphins 0.00004 0.0055 0.0014 0.0040 0.0018 0.0002 0.0002 0.0017 0.0017 0.0027 0.0093 0.0006 
 

D. Discussion 

Table VIII presents the findings of our research work, 
which indicates that the CEG and CG measures perform better 
than the other measures in every experiment except the run-
time. Gravity-based measures have higher accuracy as 
compared to other measures because they are hybrid measures 

that provide both neighborhood and path information [34]. In 
most of the experiments, the CEG measure attains the first 
position, and the CG measure is at second because the CEG 
measure includes a broader set of neighboring nodes as 
compared to the CG measure. Table VIII depicts the three best-
performing measures that outperform other measures. 

TABLE VIII.  COMPREHENSIVE COMPARATIVE EVALUATION TABLE 

Network Kendall’s tau (𝝉) F(t) vs Ranked Index Monotonicity (𝑴)  Runtime 

LastFM CEG, CG, CGLS CEG, CG, CKS (CEP, CPR, CEG CE) *, CG, CC CD, CKS, CHI 

Power CEG, CG, CE CEG, CG, CGLS (CEP, CE, CPR) *, CC, CEG CD, CHI, CKS 

Webspam CEG, CE, CGLS CEG, CE, CG (CEP, CE) *, (CEG, CPR) *, CG CD, CKS, CHI 

Dolphins CEG, CG, CEP CEG, CEP, CG (CE, CPR, CG, CEG, CEP) *, CGLS, CPL CD, CHI, CKS 

  *Point out those measures that have gained the identical position. 

V. CONCLUSION 

This research has evaluated several centralities to pinpoint 
the significant nodes across diverse social networks. We 
measured the accuracy of several centralities by using the 
Kendall tau and SIR model among different social networks. In 
addition, we applied monotonicity to determine the 
differentiation ability of several centrality measures. It has 
been shown through empirical comparisons that the accuracy 

of both gravity-based measures, extended gravity centrality and 
gravity centrality, is superior to that of other centrality 
measures. Extended gravity measure emerges as the best 
performer, with the gravity measure ranking second. 
Furthermore, these gravity-based measures exhibit superior 
performance in terms of differentiation capability. However, 
both still require refinement to achieve higher efficiency in 
terms of runtime. 
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VI. FUTURE WORK 

To increase the efficiency of the gravity-based measures, 
we will refine these measures in the future. This research work 
is limited to undirected unweighted networks; it can be 
extended to directed weighted networks to get deeper insights 
into the effectiveness of several measures. 

Furthermore, the scalability and robustness of these 
measures can be assessed in dense networks. In order to 
improve the comprehensiveness of our analysis, we will also 
intend to incorporate new measures that have been built 
throughout this research. 
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