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Abstract—Agricultural pests severely reduce global crop 

yields. To mitigate these losses, pest identification systems based 

on artificial intelligence have gained importance. This review 

analyzes worldwide advances in the use of neural networks for 

agricultural pest diagnosis, covering studies from 2007 to 

February 2024 retrieved from the Scopus database. Data were 

processed in Minitab 19 and spreadsheets, and keywords were 

mapped with VOSviewer. Results show that India and China lead 

scientific output, with research focused on corn, tomato, rice, and 

wheat. The most common architectures are ResNet, YOLO, and 

VGG-16/19, achieving performance metrics of up to 99 %. The 

review highlights the strong relationship between economic 

development and the adoption of neural networks. These findings 

provide researchers, agricultural engineers, and policymakers 

with a global perspective to guide future AI-based pest 

management strategies and support automation, especially in 

developing countries. 

Keywords—Neural networks; pests; agriculture; developing 

countries 

I. INTRODUCTION 

Agriculture is fundamental to human health and population 
growth [1]. The world population is expected to reach 9.7 billion 
by 2050; therefore, food production must increase by 70% by 
2050 [2]. But food production suffers from the environmental 
impact of chemicals [3]. In the world, the most important crop 
is soybean, and it is estimated that the crop has occupied 6% of 
the world's arable land since the 1970s [4]. 

Likewise, during the last decades, crops such as rice have 
become a staple food consumed by the majority of people 
around the world [5]. Asia is the center of rice production and 
produces more than 90% of the world's rice [6]. Another 
important commodity is maize, and it is widely grown [7], 
globally. 13% of malnourished children and 900 million poor 
households prefer maize as a staple food [8]. On the other hand, 
in the horticultural industry, tomato is recognized worldwide as 
one of the most cultivated vegetables and has a high nutritional 
value [9]. 

The increasing global demand for food production poses 
significant challenges to farmers in protecting their crops from 
harmful pests [10], with pests destroying up to 40% of global 

crop production each year [11]. Farmers suffer huge economic 
losses as income depends on the number of healthy crops they 
produce [12]. So, overcoming this problem becomes a major 
challenge, as agriculture is the most important economic branch 
in many countries [13]. 

In recent times, the application of artificial intelligence (AI) 
has become widespread in a number of areas, most notably its 
role in plant pest and disease identification [14]. Intelligent deep 
learning (DL) techniques have gained great popularity and have 
been widely adopted, especially in situations where human work 
cannot provide the speed and efficiency needed to analyze data 
on time and cover large areas in the field of monitoring [15]. 

AI and DL, especially image processing and convolutional 
neural networks (CNNs) are effective tools to apply in various 
tasks within the agricultural industry, such as leaf counting, leaf 
segmentation, and yield prediction [16], to enable farmers to 
effectively deal with plant leaf stress [17]. In recent agricultural 
research, techniques based on AI, DL, and CNN have shown 
great promise [10]. For example, in pest management for 
coconut crops [18], the deep learning model, VGG16, showed 
high precision and accuracy in diagnosing diseases, 
contaminated leaves, and insect infestation, demonstrating the 
potential for early disease detection. In studies to detect pests in 
maize [10], the MobileNet-SSD-v2 deep learning model was 
used with an overall relative error rate of 0.1579, which 
demonstrates high potential in real-time pest monitoring. The 
PlaNet model used in research [19] to diagnose diseased and 
healthy leaves achieved 97.95% accuracy. For pakcoy pest 
management [20] used known convolutional neural networks, 
such as MobileNetV2, GoogLeNet, and ResNet101, where the 
accuracy rate of tests reached 98 % as in the research of [9] that 
identified pests in tomato, using a convolutional neural network 
model based on GoogleNet, AlexNet, and ResNet-50c, and 
obtained an accuracy of 96.99%.  While in the research of [21], 
they proposed a lightweight and effective agricultural pest 
detection model for small pests, called YOLO-Pest, which 
achieved 91.9% detection accuracy. On the other hand, research 
to identify agricultural pests [22] adopted the latest 
developments YOLOv3, YOLOv3-Tiny, YOLOv4, YOLOv4-
Tiny, YOLOv6, and YOLOv8 for detection, where YOLOv8 
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achieved a substantial mean average precision (mAP) of 91.9% 
in pest diagnosing. 

Although several studies reported high accuracy and even 
strong mAP values, these metrics must be interpreted with 
caution. Accuracy alone does not capture whether infestations 
are systematically missed (low recall) or whether false alarms 
lead to unnecessary pesticide use (low precision). Therefore, 
integrating precision, recall, and mAP in model evaluation is 
essential to assess their real-world applicability in agriculture. 

 Based on the above, the objective of this research was to 
determine the advances of neural networks for pest diagnosis in 
agriculture through a global literature review. 

The remainder of this paper is organized as follows. 
Section II describes the materials and methods, including the 
literature search strategy, data processing, and keyword 
analysis. Section III presents the results and discussion, 
highlighting global trends, key crops, and the most frequently 
applied neural network architectures for pest diagnosis. 
Section IV provides the main conclusions and outlines 
recommendations for future research and the practical adoption 
of artificial intelligence in agricultural pest management. 

II. MATERIALS AND METHODS 

The bibliography consulted goes back to 2007, up to 
February 2024. Boolean operators were applied, using the 
following terms: “neural networks”, “pests” and “agriculture”. 
All the research was carried out through a search in the Scopus 
database, due to its capacity to compile open access texts, after 
a rigorous peer review [23] and 289 scientific articles were 
found and 129 studies were rescued and used for this study 
(Fig. 1). 

 

Fig. 1. Flowchart of scientific literature selection. 

Publications from 2007 to February 2024 in all languages 
were considered. Titles, abstracts, methodology and main results 
were reviewed to select articles of interest. As well as the 
geographical scope was worldwide. Papers, such as book 
chapters, conference papers, and letters to the editor were 
excluded. Gray literature was also excluded because it did not 
pass peer review [24].  In addition, inconclusive studies and 
duplicates were not taken into account (Fig. 2). 

 

Fig. 2. Exclusion and inclusion process. 

A. Data Analysis 

The data were downloaded in CSV format and processed in 
Minitab 19 and spreadsheets to facilitate the determination of the 
distribution of studies by year and country. Keyword analysis 
was performed with VOSviewer version 1.6.19, a tool widely 
used in the scientific community to represent and visualize 
bibliometric networks. VOSviewer employs several colors to 
help understand and discover keyword relationships [25]. 

III. RESULTS AND DISCUSSION 

Fig. 3 shows the distribution of articles according to 
affiliation and country of origin, showing that the country’s 
leading the studies related to the application of neural networks 
in agriculture are India (40 articles) and China (35 articles). 
These results are related to the advances in agriculture in India 
where approximately 62% of the population lives in rural areas 
and depends directly or indirectly on agriculture, being the main 
source of income. India's agricultural sector contributes almost 
18% of India's GDP and ranks second in the world in production 
of agricultural products [26, 27]. However, the scarcity and lag 
in data availability in developing economies have necessitated 
artificial neural network (ANN) modeling techniques for price 
prediction in developing economies [28]. Likewise, in China, 
the agricultural industry generates jobs for more than 300 
million farmers, and in recent years, the use of artificial neural 
networks (ANNs) has been applied in the agricultural sector 
[29–31]. In developing countries, agriculture plays a key role in 
the economy and provides rural inhabitants with higher incomes 
and job opportunities [32]. 

The evolution of publications per year is also evident; the 
growth occurred since 2016, highlighting 45 articles in the year 
2023 (Fig. 4A), evidencing a breakthrough in the application of 
deep learning techniques to the identification of plant diseases 
and pests, given that they are one of the greatest threats to food 
security [33, 34]. 

The largest amount of scientific production is focused on 
research on corn, tomato, rice, wheat, apple, citrus, grape, and 
cotton crops are the crops that predominate in neural network 
studies for pest diagnosis in agriculture (Fig. 4B). 
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Fig. 3. Distribution of scientific production by country. 

 

 

Fig. 4. Evolution of publications with respect to agricultural crops. 

In Fig. 5, it is evident that the three most used neural network 
architectures in the explored studies are ResNet and versions, 
YOLO and versions, and VGG-16, 19. The neural network 
architectures with GoogleNet were the ones that evidenced 
fewer studies, although these are based on the construction of a 
deeper model to achieve greater accuracy and, at the same time, 
keep it computationally efficient [35]. 

Beyond their frequency of use, each architecture offers 
specific advantages that explain their adoption in agricultural 
applications. ResNet is valued for its ability to train deep 
networks effectively while mitigating vanishing gradient issues, 
making it suitable for complex image classification tasks [9, 49, 
85, 165]. YOLO stands out for its speed and real-time object 
detection, which is essential for pest monitoring directly in the 
field [21, 22, 55, 70]. VGG-16/19, although computationally 
heavier, remains relevant for its high accuracy and robustness in 

image recognition [9, 49, 124]. GoogleNet, with its inception 
modules, provides efficiency with fewer parameters, which is 
particularly advantageous in environments with limited 
computational resources [9, 35]. These differences help explain 
why researchers select certain models depending on the crop, 
available resources, and the practical requirements of the study. 

 

Fig. 5. Known neural network architectures used in research. 

The keyword co-occurrence is related to the emerging theme 
regarding global agriculture, with the keywords “Convolution 
neural networks, image processing, and Deep learning (Fig. 6). 
The network of co-occurrence of words indicates the 
relationship of the emerging studies in the world, due to the 
interest in improving agricultural productivity and promoting 
economic growth through nondestructive alternative techniques 
in pest recognition [36–38]. 

 

Fig. 6. Map of the keyword concurrence network. 

Beyond the bibliometric visualization, these keyword 
clusters reflect concrete agricultural challenges. The prominence 
of terms such as deep learning and convolutional neural network 
highlights the reliance on high computational resources and 
large annotated datasets [30, 38]. However, such requirements 
are difficult to meet in developing countries, where data scarcity, 
limited infrastructure, and high implementation costs restrict 
practical adoption [13, 14]. In these contexts, farmers often 
cannot afford advanced computing systems or generate 
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sufficient labeled images, which limits the transfer of research 
advances to the field [29,171]. Therefore, the co-occurrence 
network not only maps research priorities but also underscores 
the urgent need for cost-effective, data-efficient, and locally 
adaptable AI models to ensure wider adoption in agriculture. 

Table I shows the related studies according to the quartile of 
the journal models/Neural Network Architectures, crops 
evaluated, and the performance metrics of the models, where it 
is evident that the studies are focused on neural networks to 
detect pests and diseases in maize crops, based on improved 
GoogLeNet and Cifar10 models for the recognition of leaf 
diseases [39]. The highest recognition accuracy found was 
95.3%; however, it is limited to the number of diseases in maize 
[40].  As well as its evaluation yield of each year of corn, will 
serve as a basis for making accurate decisions about harvesting 
and marketing of corn grain in real time, minimizing possible 
losses of profitability. 

Tomato is one of the most popular and appreciated 
vegetables among Asians, and worldwide, it is the second most 
consumed vegetable [41]. Moreover, tomato is not only served 
as a vegetable, but also serves as a sauce, jam, etc. and is used 
in the processing of different types. But it is affected by different 
pests; in that sense, to identify tomato pests, have selected image 
datasets from repositories there are convolutional neural 
network (CNN) models to deal with this problem [42]. In this 
regard, several studies using images of common tomato pests 
have classified pest categories [43]; therefore, continuous 
monitoring is necessary for early disease detection [44]. Another 
crop widely studied by CNN models is rice and wheat; this may 
be related to the fact that rice is one of the most important 
agricultural products in the world; this crop is the staple food for 
more than half of the world's population [45, 46]. Approximately 
160 million hectares are planted annually and produce 750 
million tons of rice [47]. Given the scarcity of water for 
agriculture, the increase in food demand, and future drought 
scenarios, it is essential to design new technologies that 
contribute to lower water consumption [48]. 

On the other hand, we have the application of Model Fuzzy 
Modified Faster Fuzzy Region based CNN (MGAN MFRCNN 
with Fuzzy) on leaves of diseased and healthy banana plants [49] 
attacked by banana leaf spot disease [50]. It is important to 
predict leaf disease symptoms at an early stage and to develop 
an automatic detection technique. Considering that India is at 
19% production, followed by Brazil with 15% and Ecuador with 
12%. China produces 10% and the review shows only one 
research, which indicates that studies are just beginning to focus 
on this important sector. 

For the assessment of potato leaf diseases, several machine 
learning techniques have been developed, among them is the 
multilevel deep learning model, where the potato leaves are 
extracted from the potato plant image using the YOLOv5 image 
segmentation technique. Where it is extracted, the potato leaves 
from the potato plant image are used using the YOLOv5 image 
segmentation technique. In this study, the widely used deep 
learning hierarchical CNN (HDLCNN) model is evidenced for 
data sets of diseased and healthy potato plant leaves. This is 
because of the great trend, given the crops are affected by 
various diseases caused by pests and pathogens such as viruses, 
bacteria and fungi [51], hence, the material used for this type of 
work is images taken from healthy and infected leaves of the 
plant and the accuracy has reached up to 98.9% with no signs of 
overfitting [52]. 

It was found that the CNN model was also used to identify 
major diseases in grape crops. As well as an automatic method 
to monitor pests based on a CNN with a dataset of 177 images 
with apple moth, however, researchers mention that CNN 
models have several difficulties in identifying crop diseases due 
to morphological and physiological changes in crop tissues and 
cells, because some studies already report a lightweight CNN 
model called GrapeNet for identification of different symptom 
stages of specific grape diseases [53]. 

TABLE I GENERAL CHARACTERISTICS OF THE SCIENTIFIC PRODUCTION NEURAL NETWORKS FOR PEST DIAGNOSIS IN AGRICULTURE 

Quote Quartile Neural Network Model Dataset Crop(s) Pest(s)/Disease(s) Performance Metrics 

[18] Q1 VGG-16 Kaggle Coco Whitefly Accuracy: 95.71% 

[54] Q1 

VRFNet (Visual 

Regenerative Fusion 

Network) 

D0, IP102 Multiple crops 
Insects (varied age, 

size, shape, color) 

Accuracy: D0 = 99.12%; IP102 = 

68.34% 

[10] Q2 MobileNet-SSD-v2-Lite 2,605 images Corn crops 

Ladybugs, beetles 

(Coccinella sp., 

Anoxia villosa) 

mAP: 0.8923; Relative error: 

15.79% 

[55] Q1 Improved Pest-YOLO 
Pest24 (25,378 

images) 

Leaves of various 

crops 
24 pest classes mAP: 73.4%; Recall: 83.9% 

[56] Q2 

FDPRC-Net (Feature 

Pyramid Dilation Residual 

CNN) 

Mixed (Wang, 

Xie, Tomato 

pests) 

Tomato Mixed pest classes 

Accuracy: Tomato = 98.12%, 

Wang = 97.43%, Xie = 93.98%, 

Overall = 93.46% 

[57] Q3 
CNN (ABC-CNN + Adam 

optimizer) 
Kaggle Tomato Key tomato pests 

Accuracy: 99.33%; MAE: 0.007; 

MSE: 0.007 

[19] Q1 CNN (PlaNet) 
PlantVillage, 

Kaggle 

corn, apple, grape, 

etc. 

Leaf diseases (spot, 

rust, scab) 

Accuracy: 97.95%; AUC: 0.9752; 

F1-score: 0.9686 

[58] Q1 
HCNet (Hierarchical 

Complementary Network) 
IP102 — Diverse insect species Accuracy: 75.36% 
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[59] Q4 
CNN (new proposed 

model) 
19,046 images Rice and wheat 

Green caterpillar, A. 

Tridens, rice bug, etc. 
Accuracy: 99% 

[60] Q1 
CSLSNet (proposed CNN 

model) 
PlantVillage Tomato 

Early blight, mosaic 

virus, yellow virus 
Accuracy: 90.08% 

[20] Q3 MobileNetV2 
1,226 labeled 

images 
Pakcoy cultivation 

Leafminers, cabbage 

butterflies, powdery 

mildew 

Accuracy: 98% 

[61]   Q1 
Cotton LeafNet (CNN-

based) 

22 types of cotton 

leaf disease 

images 

Cotton crops 

Leaf diseases, bacteria, 

fungi, viruses, nutrient 

deficiency 

Accuracy: 99.39% 

[62]   Q1 
ITF-WPI intermodal 

feature fusion model 

10,598 image and 

text samples 
Goji berry 

Wolfberry pests 

(WPIT9K) 

Accuracy: 97.98%, F1-Score: 

93.19% 

[63]   Q1 
RetinaNet with R50-FPN 

and R101-FPN 

400 melon leaf 

images 
Melon leaves Leafminers 

mAP: 92.36%, Recovery Rate: 

92.70% 

[64]   Q2 
MGAN-MFRCNN (CNN + 

Fuzzy logic) 

Healthy and 

diseased banana 

leaf images 

Banana crops 
Xanthomonas, 

Sigatoka 
Accuracy: 98%, F1-Score: 96% 

[65]   Q1 LSTM-CNN 
4,447 pest and 

disease instances 
Apple 

Apple pests and 

diseases 
Accuracy: 99.2% 

[66]   Q2 Mask R-CNN 

Fall armyworm 

(FAW) insect 

dataset 

Corn 
Fall armyworm 

detection 
mAP: 94.21% 

[67]   Q2 
HGS-DCNN (Optimized 

CNN with preprocessing) 

Augmented pest 

dataset with 

variable ages, 

colors, etc. 

Various 
Insect detection across 

variability 

Accuracy: 99.1%, F1-Score: 

97.80% 

[68] Q3 
MIL-CNN (Multi-instance 

learning CNN) 
12,000 images Cotton crops Whitefly detection Accuracy: 98.13% 

[51] Q1 
HDLCNN (Hierarchical 

Deep Learning CNN) 

Dataset of 

diseased and 

healthy potato 

leaves 

Potato Major potato diseases 

Accuracy: +4%; Precision: +6%; 

Recall: +3%; F1-score: +3.5%; 

Specificity: +4.5%; Sensitivity: 

+1%; PSNR: +2% (vs. VGG-

INCEP, Deep CNN, RF, SNN) 

[69] Q3 
Improved YOLOv5 

(lightweight algorithm) 

Dataset with 15 

species of 

agricultural pests 

Various crops 
Insects (various ages, 

colors, shapes, sizes) 

Accuracy improved by 4.3% over 

YOLOv5n; mAP@0.5: 95.3% 

[70] Q1 
YOLOv5s (basic 

architecture) 

7737 images from 

IP102 dataset 
Leaf crops 

Insects (various ages, 

colors, shapes, sizes) 

Accuracy: 98.1%; Recall: 97.5%; 

mAP@0.5:0.95 = 88.1% 

[71] Q1 
EfficientNetB7 and 

VGG16 

600 leaf images 

from different 

species 

Red beans, black 

beans, mango, 

cranberry, 

chickpea, lima 

bean, soybean 

Healthy and diseased 

leaves 
Accuracy: 96%–98% 

[72] Q1 
Perceptron + Fuzzy Logic; 

ANN; CBR 
~600 images Sugarcane 

Eye spot, leaf scald, 

yellow leaf, pokkah 

boeng 

Eye spot: SEN 85.12%, SPEC 

84.96%, Acc 83.72%; Scald: 

SEN 85.16%, SPEC 84.85%, Acc 

83.42%; Yellow leaf: SEN 

85.95%, SPEC 84.26%, Acc 

83.41%; Pokkah Boeng: SEN 

85.76%, SPEC 84.28%, Acc 

83.72% 

[73] Q1 
Mask R-CNN R50 FPN3; 

Fast R-CNN; InceptionV3 

1000 image 

samples 
Olive Fungi and Aceria oleae 

Training accuracy: 90%; 

Validation accuracy: 85% 

[9] Q3 
GoogleNet, AlexNet, 

ResNet-50 

PlantVillage 

dataset 
Tomato 

Bacterial spot, early 

blight, leaf mold, 

Septoria leaf spot 

Accuracy: 96.99% 
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[74] Q2 
Smart Farm Software with 

Sigmoid Sorting 

900 training 

images, 890 test 

images 

Rice Chilo suppressalis 
Accuracy: 88%–92%; Recall: 

91% 

[75] Q1 
Three-Scale Care CNN 

(TSCNNA) 

21,000 pest 

images 
Corn, cabbage 

Corn borer, cabbage 

moths, larvae, cabbage 

blight 

Accuracy: 93.16% 

[76] Q3 15-layer Augmented CNN 
Kaggle rice 

dataset 
Rice 

Leaf charcoal, bacterial 

leaf blight, brown spot 
Accuracy: 95% 

[77] Q4 

Decision Tree (DT), CNN, 

ResNet, Attention-based 

CNN 

Dataset of 18,000 

images 
Common plants Whitefly 

DT: 81%, CNN: 96%, ResNet: 

97.5%, Attention-CNN: 98% 

(Accuracy) 

[78] Q2 
Deep Neural Network 

(DNN) 

Dataset of 430 

images 
Apple trees Apple moth Accuracy > 99% 

[22] Q2 

YOLOv3, YOLOv3-Tiny, 

YOLOv4, YOLOv4-Tiny, 

YOLOv6, YOLOv8 

Dataset of 9,875 

images 
Various crops 

Thistle caterpillars, red 

beetles, citrus psylla  

YOLOv8: mAP = 84.7%, Loss = 

0.7939 

[79] Q1 
YOLOv3 Optimized, 

ResNet50, VGG16 
IP102 dataset Various crops 

Multiple pests 

including rice leaf 

caterpillar, rice leaf 

roller, rice stalk fly 

Accuracy = 96%, F1 Score = 

84% 

[80] Q2 
GPA-Net (Pyramidal CNN 

with Graphical Attention) 
IP102 dataset Cassava leaves 

Multiple agricultural 

pests 
Accuracy = 99% 

[81] Q1 VGG19 Classifier 
Dataset of 862 

images 
Various crops 

Codling moth larvae 

(Spodoptera 

frugiperda) 

Accuracy = 99% 

[21] Q1 YOLO-Pest 
Teddy Cup dataset 

and IP102 
Various crops 

Creatonotus, 

Nilaparvata, 

Staurophora celosia  

mAP@0.5 = 91.9% 

[82] Q1 Custom CNN model 
Dataset of 5,000 

images 
Potato crops 

Sana, black dandruff, 

scabies, blackleg, pink 

rot 

Accuracy = 99%–100% across 

disease classes 

[83] Q3 MLP Neural Network 
Dataset of 300 

images 
Apple tree leaves 

Black spot, Alternaria, 

Minoz blight 
CC index = 0.976, RMSE = 0.098 

[84] Q1 
Multi-image fusion 

recognition method 

IP102, DO, and 

ETP datasets 

Rice, corn, wheat, 

beet, alfalfa, 

citrus, tomato, 

mango 

Leaf roller, caterpillar, 

wireworm, bactrocera 

tsuneonis 

Accuracy = 88.7% 

[85] — R-CNN, ResNet 

Full dataset 

(images & videos 

of diseased and 

healthy leaves) 

Tea, apple trees Leaf diseases Accuracy = 99.2% 

[86] Q3 
RDODL-APDC, NestNet, 

MobileNet-v3 

Dataset of 7,222 

grape and 7,771 

apple disease 

images 

Apple, grape 

plants 

Scab, Black Rot, Rust, 

Cedar Apple, Leaf 

Blight 

Apple disease accuracy = 95.8%, 

Grape = 97.19% 

[87]   Q1 EfficientNetV2 
PlantVillage, 

IP102 
Various crops 

Leaf spots, rust, late 

blight, cucumber 

mosaic virus, tomato 

mosaic virus, etc. 

Accuracy = 99.71% 

[88]   Q4 ResNet50 1,221 images Grenada crops 

Bacterial blight, 

anthracnose, fruit spot, 

fusarium wilt, fruit 

borer 

Accuracy = 98.55% 

[89]   Q4 

VGG16, ResNet50, 

AlexNet, EfficientNetB2, 

EfficientNetB3 

41,763 images Tomato leaves 
Tomato pests and 

diseases 
Accuracy = 99.85% 

[90]   Q2 
Enhanced CNN (VGG16-

based) 

1,003 wheat 

images 
Winter wheat 

Aphid, powdery 

mildew, leaf rust, 

linear rust 

Accuracy = 96.02% 
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[91]   Q1 YOLOv7 IP102 Corn Corn borer, budworm 
mAP@0.5:0.95 = 96.69%, 

Accuracy = 99.95% 

[92]   Q2 Hybrid CNN + GAN Xie2 Various crops 

Green-horned 

caterpillar, stink bug, 

Helicoverpa, etc. 

Performance gain: AlexNet = 

+3.75%, ResNet50 = +2.74%, 

ResNet101 = +1.54%, GoogleNet 

= +1.76%, VGG16 = +1.76%, 

VGG19 = +2.74%, Simple CNN 

= +2.14% 

[93]   Q2 
ANN (Model 1: PMD, 

Model 2: VMD) 
400 images Apple trees Blister moth 

Model 1: Accuracy = 98%, 

Model 2: Accuracy = 94% 

[1]   Q3 

VGG16, VGG19, 

InceptionV3, 

MobileNetV2-mod 

Corn image 

database 

(augmented) 

Corn Budworm 

VGG16 = 96.17%, VGG19 = 

97.15%, InceptionV3 = 99.23%, 

MobileNetV2-mod = 99.13% 

[94]   Q1 YOLOv5s (modified) 1,565 images Various crops 

Ants, grasshoppers, 

palm weevils, shield 

bugs, wasps 

Precision = 0.018, Recall = 0.015, 

mAP = 0.011 

[95]   Q2 

Custom CNN (convolution 

+ clustering, batch 

normalization layers in 

series and parallel) 

598 citrus images 

(Citrus Leaves 

Prepared) 

Citrus leaves 
Black spot, canker, 

greening 

Accuracy = 96%, F1-score = 

95%, Precision = 96%, Recall = 

95% 

[96]   Q1 
CNN with fine-tuned 

ResNet50 

1896 images of 

oranges 
Orange Black spot 

Accuracy = 99.5%, F1-score = 

100% 

[97]   Q1 

ADM (Anomaly Detection 

Model), DIM (Disease 

Identification Model), 

LPDM (Leaf Powder 

Distinction) 

~9000 tomato leaf 

images 
Tomato leaves 

Leaf mold and 

powdery mildew 

ADM Acc = 97.4%, DIM Acc = 

93.63%, LPDM Acc = 98.7% 

[98]   Q1 VGG19 

2892 rice leaf 

images (Kaggle 

dataset) 

Rice 
Hispa, brown spot, leaf 

blight, NPK deficiency 
Accuracy = 91.8% 

[99]   Q1 Fine-tuned Inception-v3 IP102 dataset Various crops 

Parasitic insect pests 

(e.g., rice leaf 

caterpillar, rice roller, 

Apolygus lucorum, 

etc.) 

Accuracy = 67.88% 

[100]   Q1 
Hybrid CNN (transfer 

learning and fine-tuning) 

PlantVillage 

dataset 
Tomato crops 

Bacterial spot, early 

blight, late blight, leaf 

mold, Septoria leaf 

spot, spider mites, 

target spot, TYLCV 

Accuracy = 98.1% 

[101]   Q2 
OplusVNet (CNN13 + 

VGG16) 
2071 citrus images Citrus 

Canker, leaf miner, 

rust scab, rusty wall, 

citrus scab, etc. 

Accuracy = 99% 

[102]   Q1 Optimized MobileNetV2 IP102 dataset Various crops 

Insect pests (e.g., rice 

leaf caterpillar, rice 

roller, Apolygus 

lucorum, etc.) 

Accuracy = 71.32% 

[103] Q2 
Faster R-CNN, Mask R-

CNN, YOLOv5 

Baidu AI insect 

dataset, IP102 
Rice, wheat, corn 

Military armyworm, 

Asian rice borer, 

brown planthopper, 

rice borer, English 

grain aphid, rice gall 

midge 

YOLOv5 >99%, Faster/Mask-

RCNN >98% 

[104] Q2 
New CNN model built 

from scratch 

Plant Village 

dataset 
Grape crops Main grape diseases 

Accuracy = 99.34%; F1 score = 

0.9934 

[105] Q2 
Hybrid deep learning 

model 

Dataset with most 

common crop 

pests 

Various plants 

Insects of different 

ages, colors, sizes, and 

shapes 

SSIM = 0.99; MAE < 0.2; AP = 

89.67% 

[106] Q2 CNN with image mosaic 

Dataset of 58,349 

images of beetle-

bitten leaves 

Brassica chinensis 
Flea beetle (Phyllotreta 

undulata) 
99.7% detection of bitten leaves 
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[107] Q3 
Deep learning architecture 

with minimal parameters 
Kaggle dataset Yucca plants 

Cassava bacterial 

blight (CBB), brown 

streak (CBSD), 

cassava green mite 

(CGM), cassava 

mosaic (CMD) 

Accuracy = 90% 

[108] Q2 Classic ResNet50 network 
Dataset of 900 

images 
Corn husks Spodoptera frugiperda 

Validation accuracy: ResNeSt50 

= 98.77%, ResNet50 = 97.59%, 

EfficientNet = 97.89%, RegNet = 

98.07% 

[109] Q2 

CNN with majority voting 

ensemble and early merger 

ensemble 

Turkey 

PlantDataset 

(4,447 images) 

Apples, peaches, 

pears, cherries, 

etc. 

Aphis spp., Eriosoma 

lanigerum, Monilia 

laxa, drying symptom, 

Parthenolecanium 

corni, Erwinia 

amylovora 

Accuracy: Majority voting = 

97.56%, Early merger = 96.83% 

[17] Q1 

Two-stage CNN: semantic 

segmentation + 

symptomatic lesion 

classification 

BRACOL dataset Coffee leaves 

Leaf miner, brown leaf 

spot, Cercospora leaf 

spot, rust, general leaf 

spot 

Accuracy > 97% 

[110] Q1 
Faster R-CNN with 

MobileNetV3 backbone 

Dataset of 36,000 

images 
- 

Popillia japonica, 

Cetonia aurata, 

Phyllopertha horticola 

Accuracy = 92.66% 

[111] Q3 Tuned CNN 
Dataset of 4,868 

images 
Cucumber leaves 

Spider, leaf miner, 

downy mildew, 

powdery mildew 

Accuracy = 98.19% 

[112] Q4 
Ensemble CNN (VGG-19, 

ResNet-50, InceptionV3) 

Dataset of 18,345 

images 
Tomato and cotton 

Bacterial spot, early 

blight, late blight, leaf 

mold, septoria leaf 

spot, bacterial blight, 

curly top virus, 

Fusarium wilt 

Accuracy = 97.9% 

[113] Q3 

Ensemble Learning 

(VGG16 + VGG19 + 

Xception, transfer learning) 

PlantVillage 

(grape leaves) 
Grape 

Black Rot, Black 

Measles (Esca), Leaf 

Blight 

Accuracy: 99.82%; 

Precision/Recall/F1 = 1.00 

[114] Q1 

CNN + Transfer Learning 

(ResNet50, DenseNet121, 

InceptionV3) 

Custom image 

dataset (field‐

collected tomato 

leaves) 

Tomato 

Early blight, Late 

blight, Septoria leaf 

spot 

Accuracy: 98.7%; Precision: 

98.5%; Recall: 98.6%; F1-score: 

98.5% 

[115] Q2 
Modified Capsule Network 

(MCapsNet) 
~2000 images - 

Mucolycid worms, 

corn borers, moths, 

caterpillars, ladybugs, 

aphids, cotton 

bollworms, cicadas 

Accuracy = 87.52%; Recovery = 

78.30% 

[5] Q2 RDD_CNN Model 4398 images Rice leaves 

Brown spot disease, 

bacterial blight, 

stemborer 

Accuracy = 98.47% 

[116] Q2 Enhanced EfficientNet IP102 dataset - Various pests 
Accuracy = 69.45%; F1 score = 

63.06 

[103] Q1 
Multi-branch CNN (Mb-

CNN) 

1100 images 

(aphids) 

Wheat, corn, 

rapeseed 
Aphids MAE = 10.22; MSE = 12.24 

[117] Q4 
ResNet50, ResNet18, 

Inception-V3 
1493 images Pomegranate 

Bacterial blight, 

anthracnose, fruit 

blotch, wilt, fruit borer 

ResNet50 = 97.92%; ResNet18 = 

87.5%; Inception-V3 = 78.75% 

[118] Q4 
Super-Resolution CNN 

(SRCNN) 
54,343 images 

Apples, tomatoes, 

grapes, corn, 

potatoes 

Apple scab, black rot, 

bacterial spot, citrus 

greening, etc. 

Accuracy = 99.175% 

[119] Q2 Enhanced MobileNet-V2 
3503 images 

(Kaggle) 

Apple, cassava, 

corn, cotton 

Rust, apple scab, 

cassava brown streak, 

corn rust, etc. 

Accuracy = 92.20% 
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[12] Q4 CNN segmentation model 2424 images Tomato leaves Tuta absoluta  
Min. confidence = 70% in 5 

seconds 

[120] Q1 Big data + deep learning 52,322 images Pear leaves Leucoptera malifoliella  
Accuracy = 91.3–99.5%; F1 = 

0.69–0.93 

[121] Q1 
Mask R-CNN (ResNet 

backbone) 
2500 images Strawberry 

Angular leaf spot, 

anthracnose, gray 

mold, powdery 

mildew, etc. 

Accuracy = 82.43% 

[122] Q1 
Lightweight CNN 

(SimpleNet) 
568 images Wheat Glume spot scab Accuracy = 94.1% 

[123] Q1 Faster R-CNN IP102 dataset - 

Aphids, cicadellidae, 

linseed budworm, flea 

beetles, mites 

Accuracy = 99.0% 

[124] Q2 
Deformable VGG-16 

(DVGG-16) 
>2000 images - 

Rice borers, moths, 

caterpillars, 

bollworms, bugs, 

locusts 

Accuracy = 91.14% 

[125] Q4 
DL + RMSProp, Adam, 

SGDm 
8000 images Citrus crops Snail infestation Accuracy = 98.73% 

[126] Q1 InceptionResNetV2 Kaggle dataset Rice leaves 
Leaf blight, brown 

spot, bacterial blight 
Accuracy = 95.67% 

[127] Q1 
DNN-SAR (Optimization 

method) 
2326 images Rice 

Cnaphalocrocis 

medinalis, 

Scirpophaga incertulas 

Accuracy = 98.29% 

[128] Q1 GoogleNet and ResNet50 60,659 images Cotton leaves Cotton leaf diseases 
GoogleNet = 86.6%; ResNet50 = 

89.2% 

[129] Q2 Cascade approach CNN 
Greenhouse image 

dataset 
- 

Flies, midges, thrips, 

whiteflies 

F1 = 0.92/0.90; Count accuracy = 

0.91/0.90 

[130] Q1 
Deep learning + computer 

vision 
841 images Grape leaves Mildew, spider mite Accuracy = 94%; F1 = 0.94 

[131] Q1 

Hand-designed CNN + 

MobileNet + 

InceptionResNetV2 

1564 images Coconut palms 

Hemorrhagic stem 

disease, leaf blight, red 

palm weevil 

CNN = 96.94%; MobileNet = 

82.10%; InceptionResNetV2 = 

81.48% 

[132] Q3 AlexNet 4344 images Rice 

Borer, brown 

leafhopper, leaf folder, 

green leafhopper 

Accuracy = 96.9% 

[133] Q3 YOLOv5 5000 images - 
Ambrosia, amaranth, 

bromo 
Accuracy = 82–92% 

[134] Q3 Custom DL model 
3000 images in 

wheat fields 
Weeds 

Capsella, 

Chenopodium, Sinapis 

arvensis, 

Tripleurospermum 

Accuracy = 98% 

[135] Q4 DenseNet201 859 images Tomato crops Major tomato pests Accuracy = 94.87% 

[136] Q2 VGG-19-based model 3199 images Peach 
Multiple bacterial and 

fungal diseases 
Accuracy = 94% 

[137] Q2 ResNet-50 tuning 3549 images Rice 

Leptocorisa acuta, 

Locusta migratoria, 

etc. 

Accuracy = 95.01% 

[138] Q1 Tiny-YOLOv3 ~5000 images Longan Tessaratoma papillosa mAP = 89.72–95.33% 

[139] Q3 CNN architecture 
Plant Village + 

Digipathos 
Various crops 

Multiple fungal and 

bacterial diseases 
Accuracy = 99.85% 

[140] Q1 Seq-RNN Plant Village Bell pepper 
Bacterial spot, other 

bell pepper diseases 
Performance = 98.17 

[141] Q1 New CNN model 
CPAF dataset, 

73,635 images 
- Insects and larvae Accuracy = 92.26% 

[142] Q1 Faster RCNN ResNet-50 IP102 + Bugwood - 
Diverse insects (e.g., 

ants, grasshoppers) 
Accuracy = 94% 

[143] Q1 BridgeNet-19 12,561 images Citrus 
Citrus pests (e.g., 

psyllid, aphids, cicada) 
Accuracy = 95.47% 
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[144] Q1 ResNet-18 CNN 4753 images - 
Drosophila suzukii 

(fruit fly) 
AUC = 0.506–0.603 

[145] Q3 DenseNet121-based CNN 
Dataset of 66 pest 

species 
- 

66 pest species incl. 

Spodoptera, Chilo, 

Leptocorisa 

ID rate = 93.9%; False alarm = 

8.2% 

[146] Q1 Proposed CNN model 1600 images Cotton 

Aphis gossypii, 

Anthonomus grandis, 

Helicoverpa spp. 

Accuracy = 98% 

[147] - Proposed CNN 4300 images Mango 
Capsid bug, Cecid fly, 

Fruit fly, Leaf hoppers 
Accuracy = 88.75% 

[148] Q1 ResNet50-based 1747 images Coffee 
Leafminer, rust, 

cercospora  

Symptom class. >97%; Severity = 

86.51%; Biotic rating = 95.24% 

[149] Q4 AlexNet IP102 dataset Multiple crops 
Xylotrechus, 

Ampelophaga, etc. 
Accuracy = 89.33% 

[150] Q3 DenseNet169 859 images Tomato 

Tuta absoluta, 

Bactrocera, Bemisia 

tabaci 

Accuracy = 88.83% 

[151] Q3 R-CNN and Mask R-CNN 1239 images Bell pepper Whitefly, thrips, mites 
R-CNN = 89%; Mask R-CNN = 

81% 

[152] Q1 WRN (Wide ResNet) >36,000 samples 
Tomato, potato, 

grape, apple, corn 
Typical crop diseases Accuracy = 85–99% 

[153] Q1 New CNN architecture >100,000 images 
Wheat, rice, corn, 

barley, rapeseed 
Various plant diseases BAC = 0.98 

[154] Q1 CFN 2200 images 
Wheat, corn, 

canola  
Aphids Accuracy = 76.8% 

[155] Q1 
CNN (NBAIR + 

Xie1/Xie2) 
Diverse datasets 

Rice, wheat, corn, 

soy, sugarcane 
10+ pests Accuracy = 96.75% 

[156] Q1 Transfer Learning CNN 2 weed types Weeds 
Sisymbrium sophia, 

Veronica persica 
Accuracy = 98.92% 

[157] Q1 Weakly DenseNet-16 12,561 images Citrus 
Medfly, psyllid, stink 

bug, canker 
Accuracy = 93.33% 

[158] Q1 Residual neural system 8178 images Wheat 
Septoria, Tan spot, 

Rust 
Balanced accuracy = 0.87 

[159] Q3 
CNN (Real-time 

monitoring) 
Grain pest dataset Wheat Sitophilus oryzae, etc. Accuracy > 90% 

[160] Q1 CNN + augmentation 4400 images Wheat, rice 
Sawfly, Aphid, Mite, 

Leafhopper 
mAP = 81.4% 

[161] Q2 
CNN (Morphological 

analysis) 
280 images Rice 

Chilo spp, Gryllotalpa, 

etc. 
Accuracy = 81.82–94.44% 

[162] Q1 AlexNet, VGGNet, ResNet 10,000 images Soybean Defoliation estimation MSE = 4.57 

[163] Q1 VGG16 687 images Rice 
BPH (Brown 

grasshopper) 
Accuracy = 95% 

[164] Q1 
Faster R-CNN, R-FCN, 

SSD 
5000 images Tomato 

Leaf miner, mold, 

whitefly, etc. 

FRCNN: 0.413–0.906; R-FCN: 

0.7545–0.9492; SSD: 0.762–

0.8841 

[165] Q1 Residual CNN 555 images 
Corn, wheat, soy, 

canola  
5 insect pests Accuracy = 98.67% 

[166] Q1 CNN whitefly ID algorithm 3185 images - 

Bemisia tabaci, 

Frankliniella 

occidentalis 

Precision: 0.92–0.96; F1: 0.94–

0.95 

[167] Q1 CNN moth detector 177 images - Apple moth 
AUC increased from 0.931 to 

0.934 

CNN: Convolutional Neural Network; VGG16: CNN with 16 depth layers; YOLO: You Only Look Once, real -time object detection; ResNet: Residual Neural Network; Inception: CNN with multi-scale filters; 
EfficientNet: Scalable CNN; MobileNet: Lightweight CNN; DenseNet: Densely Connected CNN; Mask R-CNN: Region-based CNN for detection and segmentation; LSTM: Long Short-Term Memory; GAN: Generative 

Adversarial Network. 
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Fig. 7. Behavior of co-citation of articles by authors (7A) and countries (7B). 

Fig. 7 shows the co-citation of the evaluated articles, this 
indicates a strong co-occurrence relationship that occurs when 
two items from the existing literature are cited [168], among 
them are the articles of Yang, Zhang, Wang, Chen and Xie. 
While in the country’s co-citation is led by India and the most 
emerging citations is led by India and China. These results are 
related to the advancement of smart agriculture and have 
actively responded to climate change achieved sustainable 
breakthroughs [169–171]. This indicates that new technologies 
should be incorporated in all countries, especially in developing 
countries in order to close research gaps [172]. 

A. Comparison with Previous Research 

The trends identified in this review are consistent with earlier 
bibliometric and application-oriented studies on artificial 
intelligence in agriculture. For example, recent analyses have 
also highlighted India and China as leading contributors to 
neural network-based pest detection, reflecting their rapid 
adoption of AI technologies in agriculture [26, 27, 169, 170]. 
Similar dominance of ResNet and YOLO architectures was 
reported in global surveys of deep learning for plant disease 
diagnosis, where these models achieved high accuracy across 
multiple crops [35, 39, 55, 70, 91]. However, our findings reveal 
an even stronger concentration of research in Asia than those 
reports, while Latin America and Africa remain 

underrepresented, echoing the gaps in agricultural automation 
noted in previous works [173–175]. These comparisons 
reinforce the need for international collaboration and targeted 
funding to expand AI-driven pest management research in 
developing regions. 

IV. CONCLUSION 

The studies of neural networks in the diagnosis of pests show 
that the countries of India and China lead in the publications, 
focused on corn and rice crops, the most used neural network 
architectures in the studies explored were ResNet and versions, 
YOLO and versions, VGG-16 showing a great performance, this 
is related to the keywords that stand out are “Convolution neural 
networks, image processing and Deep learning”. In that sense, 
this review provides emerging research information, evidencing 
that there is a dire need to implement these advanced and 
innovative technologies, such as AI. By adopting these 
advanced technologies, farmers will improve their farming 
practices. The advancement of such advanced technologies will 
lead to sustainable agriculture. 

Future research should also address the geographic 
imbalance identified in this review by promoting studies in 
underrepresented regions such as Latin America and Africa, and 
by conducting comparative evaluations of different neural 
network architectures under diverse climatic and cropping 
conditions to identify the models with the best cost-benefit ratio 
for real-world implementation. Likewise, collaborative 
initiatives among researchers, policy makers, and local farming 
communities would foster technology transfer and the practical 
adoption of AI-based pest management in smallholder and 
resource-limited agricultural systems. 
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