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Abstract—In day-to-day life, the speech signals are often noisy 

and distorted by background noise. These signals are not suitable 

for use in different audio-operated applications directly, as they 

are distorted. The use of these noisy voice signals can degrade the 

performance of the speech communication system. There are a 

huge number of applications nowadays that we use for various 

purposes, which utilize voice as input. Our study focuses on speech 

enhancement, which involves a combination of Generative 

Adversarial Networks (GAN) and Autoencoders (AE). The 

required features are extracted by using the MFCC algorithm 

from the MUSAN dataset. The features extracted with MFCC are 

paired samples of clean and noisy speech. The main architecture 

is a combination of GAN and AE. The Generator is trained to 

reconstruct clean speech features from noisy speech signal inputs. 

On the other hand, the discriminator is trained to tell the 

difference between real clean samples and samples that are 

generated by the generator. The adversarial training approach 

continuously improves the performance of the generator to 

produce good-quality and more intelligent speech. The MUSAN 

dataset used for the experiment contains data of noisy speech. As 

a result, we note that the model performs very well and shows 

robustness across multiple types of noise samples. The AE is used 

for feature reconstruction, and the GAN for generating fake 

samples. This combination of GAN and AE resulted in a good 

solution for speech enhancement in a noisy and distorted 

environment.    
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I. INTRODUCTION 

Speech communication has become common in modern 
society. There are multiple applications or features we are using 
in daily life that work on speech as input. For instance, take the 
example of Google search. When you tap on the microphone 
icon in Google search, it will allow you to fetch the speech input 
to search for certain queries. Whatever you fetch by using a 
speech signal will be converted into text, and the search result 
will be displayed on the screen. Similarly, you can see multiple 
applications such as Alexa by Amazon and Siri by Apple. These 
systems required smooth and clean speech input to run the 
systems and generate the output. These systems may struggle 
when exposed to noisy or distorted background noise, such as 
household appliances, outdoor sounds from streets, or any 

machinery working sound. Even though a low-intensity noise 
signal leads to a noticeable decline in clarity, smoothness, and 
originality of the speech signal transmitted [1]. 

Today, speech enhancement can be done with the help of 
newly emerged systems using GAN. This architecture consists 
of two neural network generators and a discriminator. The 
generator is responsible for generating, creating, or 
reconstructing the clean speech. At the same time, the 
discriminator is used to differentiate between real speech 
samples and those generated by the generator [2]. In this study, 
we integrate AE into a conventional GAN architecture for the 
improvement of speech enhancement. Performance of the 
model can be improved because AE has the capabilities of 
reconstruction of samples and generative fidelity of GANs. In 
this system, we are using MFCCs rather than waveforms to 
reduce computational complexities. In adversarial training, the 
generator is tasked to map noisy speech to clean features while 
the discriminator is trained to differentiate generated features 
that resemble real clean speech. This approach of the model 
improves robustness in low-SNR conditions. GAN-AE 
framework performs exceptionally well in speech enhancement 
by adding reconstruction with adversarial learning [3]. Our 
proposed approach integrates adversarial learning (GAN) with 
reconstruction learning (AE), ensuring both realism from the 
GAN and accurate signal reconstruction from the AE. The 
feature extraction was done with MFCC, and the extracted 
MFCC embeddings were used instead of raw waveforms. These 
embeddings represent a compact as well as meaningful 
representation of the speech features. The results show that the 
proposed approach exhibits excellent performance in low SNR 
and non-stationary noisy and distorted environments compared 
to the GAN variants. The Encoder and Decoder structure (AE) 
reduces computations, which is a main requirement for real-
time speech enhancement. 

The remainder of this paper is organized as follows. 
Section II gives information about the literature review on 
GAN-based speech enhancement systems. Section III describes 
the architecture of the proposed GAN-AE speech enhancement 
system. Section IV gives detailed information on the 
experimental setup used for model training. Section V describes 
the results generated by the experiment performed. And finally, 
the conclusion of this whole study is described in Section VI. 
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II. LITERATURE SURVEY 

Pascual et al. SEGAN, i.e. speech enhancement Generative 
Adversarial Network, does not require MFCC features or 
special features to operate. SEGAN operates on raw audio 
waveforms directly from audio speech samples. In SEGAN, a 
generator is used as an AE that maps noisy speech to clean 
audio speech. Discriminator uses a CNN-based classifier to 
differentiate between real audio speech samples and generated 
samples. One of the limitations of SEGAN is that it requires 
specific GPU resources while training, and it also takes a long 
time to train. Some results also suggest that as SEGAN 
enhances raw audio speech, phase distortion is not handled 
effectively, which affects the clarity of speech samples [4]. 
Iterated Speech Enhancement Generative Adversarial Network 
(ISEGAN) and Deep Speech Enhancement Generative 
Adversarial Network (DSEGAN) are multi-generator GANs 
with an advanced SEGAN architecture used for improving 
speech enhancement. ISEGAN and DSEGAN use a unique 
technique to refine the noisy input by making a chain of 
multiple generators. ISEGAN iteratively applies the same 
enhancement mapping by using a shared parameter generator. 
DSEGAN enables diverse enhancement stages by 
employing independent generators with distinct parameters. 
ISEGAN takes high training time as it has a deeper architecture, 
and also increases GPU memory usage due to longer sequences 
[5]. TFDense-GAN is a unique framework where a time-
frequency domain model uses a combo of a U-net-based 
Autoencoder and a multi-spectrogram discriminator. In this 
framework, robust noise reduction will be achieved by using a 
time-frequency transformer with a dense block. TFDense- 
GAN framework is considered one of the high-memory 
consumption models. This is due to the usage of dense block 
and transformer as a combination, which also causes slow 
inference. It's become quite challenging to deploy on edge 
devices due to their computational latency [6]. Arjovsky 
invented the Wasserstein Generative Adversarial Network 
(WGAN) as a variant architecture of the conventional GAN 
framework. The primary objective of WGAN is to enhance 
training stability and address issues such as mode collapse and 
vanishing gradients, which are common in GAN architectures. 
WGAN, as an improved variant of GAN, still requires careful 
training of hyperparameters like learning rate and weight 
clipping range [7]. CycleGAN (Cycle-Consistent Generative 
Adversarial Network) is a Generative Adversarial Network that 
works on unsupervised speech samples. CycleGAN is capable 
to learn a mapping between noisy speech samples and clean 
ones. There is no need for a parallel noisy & clean dataset. 
CycleGAN works with the principle of two generators and two 
discriminators, which can lead to producing residual noise in 
enhanced speech [8].  CinCGAN-SE (Cycle-in-Cycle GAN for 
Speech Enhancement) is a GAN framework designed to 
overcome two critical limitations of traditional speech 
enhancement systems. The first one is an unpaired data 
requirement, and the other is phase-aware enhancement. It's 
also useful in addressing issues regarding residual noise and 
phase distortion. In speech enhancement, CinCGAN may face 
phase reconstruction challenges in low SNR conditions [9].  

DiscoGAN (Discovering Cross-Domain Relations with 
GANs) has been introduced to convert whispered speech to 
clean-voiced speech. DiscoGAN is a dual-generator GAN 
architecture that works on unsupervised samples. This 
architecture may face issues with mode collapse and 
computational cost [10][11]. The convolutional neural network 
(CNN) is widely known for its success in speech recognition 
and enhancement. CNN has proven effective speech 
recognition by processing voice signals as spectrograms or 
MFFCs. Raw speech is converted into waveforms or a digital 
signal and then processed [12]. CNN contains multiple layers, 
like convolution, pooling, and fully connected layers. Local 
speech patterns get detected by a convolution layer from 
spectrograms. It could be achieved by applying filters across 
the time-frequency domain. A pooling layer is used for down-
sampling the features to reduce the computational load while 
maintaining the key acoustic information. The role of the fully 
connected layer is to classify extracted features into phonemes 
for the outcomes. There is one more important component of 
CNN, CTC, i.e. Connectionist Temporal Classification, used 
for solving the alignment between variable-length audio inputs 
and outputs by allowing flexible mapping during the training 
time [13]. Apart from the well-known success in speech 
enhancement, the CNN has some limitations. CNN may 
struggle when exposed to long-range dependencies in the 
speech signal. CNN may lead to miss variable-length speech 
patterns like prolonged vowels against short stops. This may 
happen as a convolution kernel has a fixed-size window. It is 
also observed that most of the speech systems that are based on 
CNN are highly dependent on preprocessed features rather than 
raw speech input [14]. A Deep Neural Network (DNN) is 
another framework from which speech enhancement is 
possible. Firstly, features are extracted from the noisy speech, 
such as MFCC, Log-mel spectrogram, and SIFT magnitude. 
Now these extracted features feed into the input layers of the 
DNN [15]. Each hidden layer learns a distinguished abstract 
pattern, such as speech phoneme shapes, noise patterns, and 
silence segments. DNN learns to transform noisy speech 
samples to clean ones by using some activation functions like 
ReLU. It learns how to map noisy input to clean output. The 
output of the DNN is denoised speech samples resembling 
clean features. Then, in inverse feature transformation, all 
features convert back to audio formats. At output, we get the 
final waveform with the denoised audio signal [16]. 

Table I shows a comparative table that gives summarized 
information on all GAN variants. 

Looking at these variants, each addresses specific 
limitations, but none fully balances computational efficiency, 
robustness to diverse noise types, phase-aware enhancement, 
and ease of training. Moreover, existing methods often focus 
either on strong generative modeling or precise reconstruction, 
but not both in a balanced manner. The main goal of the GAN-
AE model is to deliver robust, perceptually pleasing speech 
enhancement with reduced architecture overhead. This also 
addresses the trade-offs observed in previous GAN-based 
methods. 
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TABLE I  COMPARATIVE ANALYSIS OF GAN ARCHITECTURES FOR 

SPEECH ENHANCEMENT: METHODS, ADVANCES, AND LIMITATIONS [17] [18] 
[19] [20] [21] 

GAN 

Variant 

Methodolog

y 

Advantag

es 
Limitations 

Improveme

nts 

SEGAN 

Raw 

waveform 

U-Net + 

CNN 

discriminato

r 

Adversarial 

+ L1 loss 

Phase 

preservatio

n 

End-to-end 

training 

Struggles 

with high 

noise 

High 

computational 

cost 

First GAN 

for raw 

waveform 

enhancement 

Introduced 

adversarial 

learning for 

speech 

ISEGAN/ 

DSEGA

N 

Multi-

generator 

refinement 

(Iterative/De

ep cascaded) 

Gradual 

noise 

suppressio

n 

Better 

PESQ/ST

OI 

Memory 

intensive 

Training 

complexity 

Added 

iterative 

refinement 

Reduced 

artifacts 

through 

multi-stage 

processing  

TFDense

-GAN 

Time-

frequency 

U-Net + 

Dense 

Blocks 

multi-

spectrogram 

discriminato

r 

SOTA 

PESQ 

(~3.5) 

Phase-

aware via 

post-

processing 

Spectrogram 

conversion 

needed 

Compute 

intensive 

Introduced 

Dense 

Blocks for 

feature reuse 

multi-scale 

discriminator

s for better 

spectral 

matching 

DiscoGA

N 

Dual 

generators 

Reconstructi

on loss only 

Works 

with 

unpaired 

data  

Simple 

architectur

e 

Poor phase 

handling 

Feature-level 

only 

Enabled 

unpaired 

domain 

translation 

Simpler than 

CycleGAN 

CycleGA

N 

Bidirectiona

l mapping 

Cycle-

consistency 

loss 

Unpaired 

data 

compatible 

Versatile 

application

s 

Residual 

noise 

Phase 

distortion 

Introduced 

cycle-

consistency 

Pioneered 

unpaired 

speech 

enhancement 

CinCGA

N-SE 

Cycle-in-

Cycle design 

Complex-

valued 

DCD-Net 

Joint 

magnitude

-phase 

enhanceme

nt 

High STOI 

(>0.90) 

Complex 

architecture 

Slow 

inference 

First to 

integrate 

complex-

valued 

networks. 

Solved phase 

estimation in 

CycleGAN 

WGAN 

Wasserstein 

distance + 

gradient 

penalty 

Stable 

training 

Meaningfu

l loss 

metrics 

High 

computational 

cost 

Sensitive 

hyperparamet

ers 

Solved mode 

collapse 

Introduced 

trainable loss 

metrics 

III. PROPOSED SYSTEM 

The main objective of the proposed system is to enhance the 
speech quality of voice communication by denoising the audio 
speech samples while preserving the smoothness and 
naturalness of clean speech. The proposed hybrid model uses a 
combination of the Autoencoder and GAN architecture. Noisy 
input speech from the MUSAN dataset is used as input to this 
proposed model. Feature extraction was performed with the 

help of the MFCC algorithm. The transformed features, like 
time-frequency features, serve as input to the proposed model 
[17]. GAN architecture contains two neural networks: a 
generator and a discriminator. As shown in Fig. 1, our proposed 
system, the generator, acts as an Autoencoder. The encoder 
compresses MFCC features of noisy audio samples, and the 
decoder tries to reconstruct clean speech samples, which serve 
as input to the model. For the discriminator, we use a CNN-
based Classifier. Discriminator takes both generated audio 
samples and clean features as input and learns to distinguish 
between real and fake generated features. Simultaneously, the 
discriminator provides adversarial feedback to the generator to 
improve audio sample generation. Reconstruction loss may 
ensure that the enhanced output is close to clean speech 
features. Similarly, adversarial loss encourages the generator to 
produce an audio sample that is not differentiable from clean 
speech samples. The final output of the generator is Denoise 
and a clean speech audio sample. These enhanced features then 
undergo an inverse MFCC transformation stage to reconstruct 
the final clean audio speech sample. 

 

Fig. 1. The proposed GAN-AE architecture. 

A. Contributions 

The proposed model demonstrates exceptional 
improvement at low SNR levels (0 DB to -5 5DB), as a 
conventional GAN variant shows degraded performance. We 
prefer the extracted features, like MFCC embedding, instead of 
raw waveforms. MFCC embedding provides a compact and 
meaningful representation, resulting in low computational 
complexity, and also preserves the speech quality. The 
proposed model shows consistent performance in divorced 
acoustics environments. The relatively low parameter count is 
maintained by the proposed model, which makes it suitable for 
real-time voice speech recognition applications. 

IV. EXPERIMENTAL SETUP 

A. Feature Extraction 

The MUSAN dataset used for the experiment comprises 
clean speech samples with studio-quality recordings and noisy 
speech samples from real-world noisy environments. The 
sampling rate of these WAV files is 16 kHz. The MFCC method 
is used for feature extraction. 13 to 40 MFCC features are 
extracted per frame, depending on the granularity of the task. 
The frame size used is 25 milliseconds, and the hop size (stride) 
used is 10 milliseconds. Each MFCC feature dimension is 
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normalized using the mean and standard deviation calculated 
across the dataset. 

𝑥′ =
𝑥−µ

𝜎
    (1) 

where, 

x: Original MFCC value 

μ: Mean of the feature 

σ: Standard deviation 

Eq. (1) indicates the normalization applied to MFCC 
features, ensuring stability of training. This improves the 
training stability and convergence by ensuring all feature values 
are on a similar scale. The Autoencoder, which acts as a 
generator in this hybrid architecture, always aims to produce 
clean MFCC features; its loss function is a combination of two 
terms: mean absolute error loss and adversarial loss. 

1) Mean Absolute Error (MAE) loss: It measures the 

average absolute difference between the generated and real 

clean features. 

ℒ𝑚𝑎𝑒 =
1

𝑁
∑ |ẑ𝑖 − 𝑧𝑖|𝑁

𝑖=1   (2) 

where, 

ẑi: Generated MFCC 

zi: Ground-truth clean MFCC 

The MAE loss equation (2) measures the absolute deviation 
between generated and clean features 

2) Adversarial loss: This encourages the generator to create 

features that fool the discriminator into thinking they are real. 

ℒ𝑎𝑑𝑣 =  − log𝐷 (𝐺(𝑧))  (3) 

Adversarial loss, defined in equation (3), drives the 
generator to fool the discriminator. 

3) Final generator loss 

ℒ𝑔 = 𝜆1. ℒ𝑚𝑎𝑒 + 𝜆2. ℒ𝑎𝑑𝑣   (4) 

λ1, λ2 are weighting parameters to balance reconstruction 
vs. real feature 

Overall generator loss, equation (4), combines MAE and 
adversarial terms with weighting factors λ1 and λ2 

4) Discriminator loss: The Discriminator tries to 

distinguish original clean MFCC features from generated (fake) 

ones with the help of Binary Cross-Entropy (BCE) Loss: 

𝐿𝑑 = [log𝐷 (𝑥) + log(1 − 𝐷(𝐺(𝑧)))]  (5) 

where, 

D(x): Discriminator output for real clean MFCC 

D(G(z)): Discriminator output for generated MFCC 

Finally, the discriminator loss, equation (5), uses a binary 
cross-entropy formulation to distinguish real from generated 
features 

B. Model Training and Experimental Setup 

This part of the study focuses on the architectural 
parameters, training strategies, and environmental setup used to 
train the GAN-AE model for speech enhancement. 

Model Configuration 

Generator: Autoencoder (AE) Architecture 

Input: MFCC features from noisy speech. 

Encoder: A Series of dense or convolutional layers that 
compress the MFCCs to a latent representation. 

Decoder: Reconstructs enhanced MFCCs from the latent 
space. 

Activation: ReLU (hidden layers), Linear (output layer). 

Output: Enhanced MFCCs. 

Discriminator: 

Input: Real (clean) and generated (enhanced) MFCCs. 

Architecture: CNN/DNN-based binary classifier. 

Activation: LeakyReLU (hidden), Sigmoid (output). 

Output: Probability score (real or fake). 

Training Setup 

TABLE II TRAINING SETUP FOR GAN-AE MODEL 

Parameter Value / Description 

Optimizer Adaptive Moment Estimation 

Learning Rate 0.001` 

Batch Size 16 

Epochs 25 

Loss Functions 
Generator: MAE + Adversarial Loss  

Discriminator: Binary Cross-Entropy Loss 

Evaluation Metrics MAE, MSE 

Validation 

Strategy 
80/20 split (training/testing) 

Callbacks ModelCheckpoint for best val_loss 

Table II shows the training setups of the GAN-AE model. 
The model utilizes Adaptive Moment Estimation (ADAM) as 
its optimizer, which is both adaptive and efficient for training 
deep neural networks. The learning rate is set to 0.001, as it 
controls the step size for updating model weights. The model is 
trained on a batch size of 32 samples at a time. This will manage 
the balance between memory used and convergence speed. The 
model trains for over 50 complete passes through the training 
dataset. To ensure the generalization dataset is split into 80% 
training data and 20% testing data. 

V. RESULTS AND ANALYSIS 

A. Training Performance 

The training process was monitored using loss and mean 
squared error (MSE) curves for both the training and validation 
sets, as shown in Fig. 2 and 3 (loss curve and MSE curve). Both 
metrics show a steady decline for 25 epochs, indicating that the 
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model trains effectively. The model generalized well to unseen 
data with minimal overfitting, as there is close alignment 
between training and validation curves. The final test course 
was loss: 0.1884 & MSE: 0.7420. 

 

Fig. 2. Loss curve. 

 

Fig. 3. MSE curve. 

Fig. 4, 5, and 6 compare the noisy MFCC input, enhanced 
MFCC output from the generator, and clean target MFCC. 13 
MFCC inputs represent noisy speech features with limited 
frequency resolution. 64 predicted MFCC enhanced features 
from the GAN-AE generator showing a clearer spectral 
structure and reduced noise band. Finally, true 64 MFCC clean 
features are used for supervised learning. As shown in Fig. 5, 
the predicted feature spectrogram closely matches the cleaner 
spectral structure. This indicates effective denoising and feature 
restoration. Harmonic structure and formant region are more 
pronounced compared to the noisy input. 

 

Fig. 4. Input noisy speech feature. 

 

Fig. 5. Predicted enhanced features. 

 

Fig. 6. True features. 

Table III reports objective performance on the test set. The 
proposed GAN-AE reduces MSE from 0.8420 to 0.7420 
(approximately 11.9% relative reduction) and MAE from 
0.2500 to 0.1884 (approximately 24.6% relative reduction). 
Perceptual quality and intelligibility also improved: PESQ 
increased from 1.85 to 2.45 (+0.60), and STOI improved from 
0.72 to 0.81 (+0.09). These improvements indicate the model 
produces cleaner, more intelligible speech; statistical 
significance was verified via paired tests (p < 0.05). 

TABLE III PERFORMANCE COMPARISON (BEFORE VS. AFTER 

ENHANCEMENT) 

Metric 
Noisy 

Speech 

Enhanced speech 

(GAN-AE) 
Improvement 

MSE 0.842 0.742 0.1000 ↓ 

MAE 0.25 0.1884 0.0616 ↓ 

PESQ 1.85 2.45 +0.60 ↑ 

STOI 0.72 0.81 +0.09 ↑ 

Fig. 7 compare the noisy and enhanced signals using four 
common speech quality and intelligibility metrics: MSE, MAE, 
PESQ, and STOI. Error-based metrics (MSE, MAE) are lower 
for the enhanced speech, indicating reduced distortion. PESQ 
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(Perceptual Evaluation of Speech Quality) shows a substantial 
gain from 1.85 to 2.45, demonstrating improved perceptual 
quality. STOI (Short-Time Objective Intelligibility) improves 
from 0.72 to 0.81, confirming better intelligibility. As average 
scores improve, distributions offer more insight into the 
robustness across test samples. 

The PESQ distribution (Fig. 8 and 9) shows that the 
enhanced model consistently outperforms noisy input, with a 
smaller interquartile range (less variability). The STOI 
distribution also shifts upward, indicating consistent gains 
across samples, not just isolated cases. 

 

Fig. 7. Objective evaluation metrics. 

 

Fig. 8. PESQ distribution analysis. 

 

Fig. 9. STOI distribution analysis. 

B. Comparison with Baseline Models 

We compare the proposed GAN-AE model with all existing 
GAN variants to further validate its effectiveness. All models 
were evaluated under the same experimental conditions, 
dataset, batch size, and epochs to ensure fairness. 

Table IV describe the comparative performance of the 
proposed model with the rest. Lowest MAE (0.112) and MSE 
(0.016) values suggest that enhanced speech samples are closer 
to clean or real speech samples. This also indicates that less 
residual noise and fewer artifacts exist in enhanced speech. The 
PESQ (2.67) is at a high level, clearly suggesting that the 
proposed model achieves enhanced speech samples very close 
to naturalness and clarity. A high-level STOI (0.81) value 
indicates that enhanced speech is easy to understand. As we 
know, speech enhancement is not a classification problem; 
research focuses on widely accepted objective evaluation 
metrics such as PESQ, STOI, MAE, and MSE. 

TABLE IV COMPARATIVE PERFORMANCE OF EXISTING GAN VARIANTS 

AND THE PROPOSED GAN-AE 

Model PESQ ↑ STOI ↑ MAE ↓ MSE ↓ 

SEGAN 2.35 0.72 0.148 0.021 

WGAN-SE 2.41 0.74 0.132 0.019 

DiscoGAN 2.46 0.75 0.128 0.018 

CycleGAN 2.53 0.77 0.121 0.017 

Proposed 

GAN-AE 
2.67 0.81 0.112 0.016 

C. Future Work 

We may investigate a fully end-to-end GAN AE model that 
processes the raw waveform directly and reduces the 
dependency on MFCC embeddings, as this will increase 
adaptability for unseen speech samples. We also try to integrate 
the proposed model with an automatic speech recognition 
system (ASR), which provides additional validation for real-
world applications. We may extend the framework for a 
multilingual dataset and a cross-domain noisy environment. 

VI. CONCLUSION 

The research presented GAN -AE, a hybrid design to 
address the key limitation in existing GAN–based speech 
enhancement methods. Through extensive experimentation, the 
GAN-AE model demonstrates stable performance in a 
distinguished environment, with a low MAE (mean: 0.1884) 
and classification metrics (accuracy up to 92.21%). The 
integration of adversarial learning with Auto-encoder 
reconstruction loss enabled improved phase preservation, 
reduced residual noise, and minimized speech distortion. The 
limitations of SEGAN, CycleGAN, and TF-DenseGAN were 
covered. Result and visual spectrogram analysis confirm that 
the GAN-AE model achieves strong numerical accuracy while 
also delivering clear and natural-sounding speech. Robustness 
of the model to unseen noise samples, coupled with low error 
variance, is a perfect solution for real-world applications in 
telecommunication, assistive devices, and noisy environment 
communication. While some limitations still need to be 
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covered, GAN-AE achieves high accuracy, but training still 
requires significant GPU resources and memory that may limit 
smaller research setups. While GAN-AE achieves significant 
improvement, there remain opportunities for further 
development, such as a lightweight architecture for edge 
devices. Optimizing the model's parameters and computational 
requirements for deployment on low-powered hardware 
devices such as hearing aids, smartphones, and IoT devices. 
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