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Abstract—Traffic accidents have significant societal impacts 

due to the substantial human and material losses they cause. 

Recently, numerous AI-based traffic surveillance technologies, 

such as Saher, have been implemented to improve traffic safety in 

Saudi Arabia. The prompt detection of vehicle accidents is crucial 

for enhancing the response time of accident management systems, 

thereby reducing the number of injuries resulting from collisions. 

This study evaluates various deep learning algorithms to 

determine the most effective method for detecting and classifying 

car accidents. Multiple deep-learning models were trained and 

tested using an extensive dataset of car accident images, allowing 

for the accurate identification and classification of different types 

of accidents. Among the six pre-trained models analyzed, ResNet-

101 achieved the highest accuracy, with a classification rate of 

93%. For accident detection, YOLOv5 attained a mean Average 

Precision (mAP) of 97.8%, indicating superior performance 

compared to YOLOv8 and YOLOv9, and highlighting its 

capability to effectively detect accidents in video footage. The 

research’s primary goal is to enhance urban safety by enabling 

rapid accident detection, which supports timely emergency 

responses, minimizes fatalities, and contributes to the 

development of safer and more resilient smart cities. 
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I. INTRODUCTION 

Traffic accidents pose a significant global public health 
issue, with an annual toll of approximately 1.35 million deaths 
or disabilities. Each day, around 3,700 lives are lost in fatal 
accidents, impacting vulnerable road users such as cyclists, 
motorcyclists, and pedestrians the most. This issue is not 
confined to specific regions but affects countries worldwide. For 
instance, Saudi Arabia faces considerable challenges, with cities 
like Riyadh reporting around 4,000 daily traffic-related injuries 
[1]. In contrast, Jeddah, Makkah, and Taif report 2,500, 800, and 
200 daily injuries, respectively. These statistics highlight the 
urgent need for enhanced road safety measures and effective 
strategies to reduce traffic accidents, save lives, and mitigate 
associated social and economic repercussions. A review of 
existing traffic management and accident detection systems 
indicates that while several technological solutions have been 
implemented, gaps remain in their real-time detection accuracy 
and rapid emergency response capabilities. 

A. Modern Car Accident Mitigation Technologies in Saudi 

Arabia 

In response to the global goal of reducing traffic accident 
fatalities, Saudi Arabia has set ambitious targets within its 
Vision 2030 framework, aiming to halve road accident fatalities. 
This initiative involves utilizing modern technologies to identify 
and manage high-risk areas, known as "black spots." Key 
measures implemented include the "Saher" automated 
monitoring system, active enforcement by traffic officers, and 
advancements in traffic management systems. These efforts 
have resulted in a significant 35% reduction in road accident 
fatalities over the past five years [2]. The number of deaths 
decreased from 9,311 in 2016 to 6,651 in 2021 as reported by 
the Global Health Organization. However, despite these 
advancements, current systems still struggle with automatic 
detection and classification of accidents from real-time visual 
data, limiting their effectiveness in minimizing response times. 

Machine learning (ML), a subset of artificial intelligence 
(AI), involves creating algorithms and models that enable 
computers to learn from data and make predictions or decisions 
without explicit programming. ML’s ability to handle complex 
data and solve intricate problems has led to its widespread use. 
Core types of ML algorithms include: 

● Supervised Learning: Uses labeled datasets to train 
models to map inputs to outputs. It is commonly applied 
in classification and regression tasks. 

● Unsupervised Learning: Involves training models on 
unlabeled data to identify patterns and relationships. 
Techniques include clustering and association. 

● Semi-Supervised Learning: Combines labeled and 
unlabeled data to improve model accuracy, often used 
when labeled data is scarce [3]. 

● Reinforcement Learning: Focuses on training agents to 
make decisions by rewarding or punishing actions, 
aiming to maximize cumulative rewards. 

ML methods such as Bayesian networks, decision trees, 
neural networks, and support vector machines are employed 
across various fields, including autonomous vehicles, audio and 
image recognition, natural language processing, and healthcare 
diagnostics. 

*Corresponding author. 
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Deep learning, a branch of machine learning, involves the 
use of deep neural networks with multiple layers to model 
complex data representations. Inspired by the human brain’s 
neural network structure, deep learning excels in tasks like 
speech and image recognition. Key models include: 

● Convolutional Neural Networks (CNNs): Effective for 
image analysis and feature extraction, used in image 
classification and object detection. 

● Recurrent Neural Networks (RNNs): Suitable for 
sequential data, including time series and natural 
language text. Variants like Long Short-Term Memory 
(LSTM) and Gated Recurrent Units (GRUs) address 
long-term dependencies. 

● Generative Models: Such as Generative Adversarial 
Networks (GANs) and Variational Autoencoders 
(VAEs), are used to create new data samples by learning 
from existing data distributions. 

Deep learning’s ability to automatically extract hierarchical 
features from data has revolutionized fields such as computer 
vision and natural language processing. 

Computer vision is a field of AI focused on enabling 
computers to interpret and understand visual information from 
images or videos. Techniques and applications include: 

● Image Classification: Assigning labels to images using 
CNNs, which have shown significant advancements in 
complex recognition tasks. 

● Object Detection and Recognition: Identifying and 
localizing objects in images, enhanced by methods like 
R-CNN, YOLO, and SSD. 

● Image Segmentation: Dividing images into segments to 
understand object boundaries and relationships, with 
methods like FCNs and U-Net. 

● Face Recognition: Identifying and verifying individuals 
based on facial features, employing techniques like 
FaceNet and DeepFace. 

● Video Analysis: Analyzing video data for tasks such as 
activity detection and tracking, using RNNs and 3D 
CNNs. 

● Augmented Reality (AR) and Virtual Reality (VR): 
Enabling immersive experiences through object tracking 
and scene understanding. 

● Medical Imaging: Assisting in diagnosis through tasks 
like tumor detection and image segmentation. 

B. Problem Statement 

Delayed responses to traffic accidents can lead to increased 
fatalities, severe complications for the injured, and significant 
economic burdens. Inefficient emergency response times 
impede the timely delivery of medical care and emergency 
services, exacerbating injury severity and reducing survival 
chances. There is an urgent need for effective solutions to 
improve emergency response systems and enhance public safety 
on roadways. Current automated detection methods are limited 
in their ability to provide rapid and accurate identification of 

accidents in real-time, highlighting a critical gap that this 
research aims to address. 

C. Objectives and Contribution 

This research aims to evaluate various models for detecting 
and identifying traffic accidents or collisions using image 
datasets. The research focuses on analyzing visual data and 
leveraging deep learning techniques to develop effective models 
for accident detection. Key objectives include: 

● Analyzing and processing visual data to accurately 
recognize and classify car accidents. 

● Training and evaluating six deep learning models to 
detect and classify accidents, assessing their 
performance to determine the most effective approach. 

By employing advanced image and video analysis 
techniques, this project seeks to enhance the accuracy and 
efficiency of traffic accident detection systems. 

In summary, while significant efforts and technological 
advancements have been made to reduce traffic accidents, gaps 
remain in the real-time detection and accurate classification of 
accidents using visual data. This paper addresses this gap by 
evaluating and developing deep learning-based models for 
effective accident detection. The following sections will review 
related literature, present the methodologies employed, analyze 
results, and discuss how these approaches can improve 
emergency response systems and enhance overall road safety. 

II. LITERATURE REVIEW 

A. AI and IoT in Transportation Safety Systems 

 Recent systematic and bibliometric studies emphasize that 
the integration of machine learning (ML) and Internet of Things 
(IoT) technologies is driving innovation in smart transportation 
and other smart-city applications. Chahal et al. [40] conducted a 
comprehensive bibliometric review that highlighted healthcare, 
smart cities, energy, industrial IoT, security, agriculture, and 
transportation as the most prominent IoT application domains. 
Within transportation, their study specifically identified tasks 
such as traffic congestion prediction, road surveillance, parking, 
and accident detection as major areas where ML and IoT 
convergence has been most effective. They further categorized 
IoT data into real-time sensor streams, spatiotemporal data, and 
high-dimensional multimodal inputs, noting that these complex 
datasets often require deep learning or hybrid ML approaches 
for effective analysis. Importantly, the review concluded that 
deep learning typically outperforms traditional ML in vision- 
and data-intensive IoT applications, supporting the growing use 
of CNNs and object-detection models in transportation. It also 
emphasized that performance is commonly assessed with 
accuracy, precision, recall, F-measure, and mean Average 
Precision (mAP)—the same metrics applied in this paper to 
evaluate YOLO and CNN-based accident-detection models. 
Together, these insights place the present study within current 
research trends, showing alignment in application domain, data 
challenges, chosen methodologies, and evaluation practices, 
thereby reinforcing its novelty and practical contribution to 
smart transportation. 
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 Complementing this perspective, Alshuaibi, Almaayah, and 
Ali [41] examined how ML can strengthen IoT systems by 
mitigating cybersecurity vulnerabilities and ensuring the 
reliability of connected infrastructures. While their focus was on 
the role of ML in protecting IoT environments against evolving 
threats, our work extends this principle to transportation by 
integrating IoT with advanced deep learning models such as 
YOLOv5 and ResNet-101, which achieved 97.8% mAP and 
93% accuracy respectively for accident detection and 
classification. Both studies highlight the strength of AI-driven 
IoT frameworks in enhancing safety-critical applications, with 
theirs emphasizing security resilience and ours emphasizing 
rapid accident recognition to improve emergency response. 

 Similarly, Mousa and Shehab [42] conducted a structured 
risk analysis in the workstation domain, systematically 
classifying threats, vulnerabilities, and countermeasures through 
four stages: identifying key components, recognizing threats, 
pinpointing vulnerabilities, and determining effective controls. 
Although their study concentrated on cybersecurity—
addressing risks such as malware, man-in-the-middle attacks, 
and unpatched software—the strength of their work lies in the 
rigorous methodology for proactively reducing risks in complex 
environments. Our research applies the same principle in the 
transportation domain, where deep learning models such as 
ResNet-101 and YOLOv5 were employed to detect and classify 
car accidents with high accuracy. In both cases, AI serves as the 
foundation for systematically identifying vulnerabilities and 
implementing rapid countermeasures, whether through 
cybersecurity defenses or accident detection systems that 
improve emergency response in smart cities. This parallel 
underscores how different domains can benefit from AI and IoT 
integration to enhance resilience, minimize risks, and contribute 
to safer, smarter environments. 

B. Machine Learning Algorithms in Transportation 

Applications 

This section will focus on references that use Machine 
Learning algorithms in transportation applications. Table I 
summarizes the combined references, presenting the algorithm 
name, the number of references for each application, the 
algorithm type, and the respective learning type. 

Due to geographical interdependence and changeable traffic 
patterns, traffic forecasting is difficult. To estimate traffic status, 
Cui et al. [4] introduced TGC-LSTM, a deep learning 
framework that models the traffic network as a graph. Based on 
network architecture, they define traffic graph convolution and 
explain its connection to spectral graph convolution. 
Interpretability is improved by L1 and L2 regularization. The 
model outperforms baselines on real-world datasets, according 
to experimental results. Graph convolution weight visualization 
reveals important route segments. 

Luo et al. [5] discussed the use of deep convolutional neural 
networks (CNN) for traffic sign classification and the challenges 
of obtaining labeled training data. The authors propose a 
solution using generative adversarial networks (GANs) to 
synthesize traffic sign images. By inputting a traffic sign 
template and a background image into the generative network, 
the method generates realistic synthetic images. Experimental 
results demonstrate that the proposed method outperforms 

conventional image synthesis approaches. Additionally, when 
these synthesized images are added to the training data for a 
CNN model, improved accuracy in traffic sign classification is 
achieved. Similarly, our work tackles the data scarcity problem 
by incorporating semi-realistic images from video games and 
simulators to create a more diverse and extensive dataset, 
thereby enhancing the models' ability to generalize to a wider 
range of real-world accident scenarios. 

Zhang et al. [6] proposed ST-ResNet, a deep-learning-based 
approach for forecasting crowd flow in cities. It takes into 
account things like weather, events, and traffic between regions. 
A special end-to-end structure that integrates spatiotemporal 
data is used by ST-ResNet. For temporal features, residual 
neural networks are used, and residual contraction units are used 
for spatial aspects. Based on data, the model dynamically 
combines the outputs from various networks and gives branches 
and regions varying weights. It also considers outside variables 
like the day of the week and the weather. Experimental results 
on Beijing and New York City crowd flows demonstrate that 
ST-ResNet works better than six other approaches. Their work 
effectively addresses traffic forecasting with time-series data, 
but we chose to focus on a different, equally critical challenge 
in smart city safety. Our research uses image-based deep 
learning models to enable real-time accident detection, which is 
the foundation for a rapid emergency response system. 

Quddus et al. [7] examined intelligent transport systems 
(ITS) and the critical role of map-matching algorithms in 
combining location and road network data. These algorithms 
have evolved using Kalman filtering, probabilistic theory, and 
topological analysis. However, they struggle to meet navigation 
needs in complex, crowded city situations. The study conducted 
an in-depth literature review to identify current map-matching 
algorithm limitations. It also discussed future implications, 
including the European Galileo and EGNOS systems. The 
research stressed the importance of algorithm integrity, noting 
that the algorithms discussed are general and do not rely on 
future data for simplicity. 

Hou et al. [8] tested a Regression Tree to predict short-term 
and long-term traffic flow in work zones. Regression trees and 
decision trees are comparable, but in a regression tree, the 
response variable is a numerical value rather than a binary class. 
The independent variables in a regression tree are used to fit the 
response variable in a regression. The squared regression error 
is then computed by a binary recursive partitioning process. The 
branch that has the variables with the lowest squared error total 
is selected. In the previously described study, the FF-NN or the 
RF performed better at traffic predictions than the regression 
tree. 

As autonomous vehicles (AVs) become more widespread, 
training policies, mobility, and energy efficiency all increase, as 
Tran and Bae showed in this study [9]. AVs significantly reduce 
traffic congestion and improve traffic flow. Full-autonomy 
traffic surpasses other AV penetration rates, with 2.55 times less 
wait time and 1.38 times higher average speed compared to all 
human-driven cars. The leading autonomous vehicle experiment 
outperforms both human-driven and other AV trials. The paper 
introduces a deep reinforcement learning framework and 
proposed PPO hyper-parameters for modeling mixed-autonomy 
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traffic at different AV penetration rates. The approach becomes 
more effective with higher AV penetration. Future research 
focuses on employing the latest deep learning algorithms to 
enhance the effectiveness of multiple autonomous cars in multi-
intersection networks. In another study, uncertainty was added 
to the detection of freeway incidents using the Bayesian deep 
learning (BDL) approach [10]. The Bayesian statistical 
framework and deep learning are combined in the BDL method. 
The BDL framework combines the capacity for perception and 
reasoning by integrating the advantages of deep learning in 
representation learning with the approach of Bayesian inference. 
This study proposed a Bayesian deep learning model with 
uncertainty quantification for detecting highway accidents. 
Experiments were conducted to examine the efficiency and 
reliability of the proposed model using a real-world dataset from 
the Portland area. The results obtained demonstrate that the 
suggested model can minimize the false alarm rate from 29.18% 
to 5.09% and boost detection from 87.83% to 90.53%. Table  I 
summarizes all the research mentioned above. 

TABLE I. MACHINE LEARNING ALGORITHMS IN TRANSPORTATION 

APPLICATIONS 

No Algorithm Reference 
Algorithm 

Type 

Learning 

Type 

1 GCN [4] GNN 
Supervised 

Learning 

2 cGAN [5] GAN 
Unsupervised 

Learning 

3 RNN [6] RNN 
Supervised 

Learning 

4 
ITS using 

Decision Trees 
[7] 

Decision 

Trees 

Supervised 

Learning 

5 FF-NN [8] ANN 
Supervised 

Learning 

6 PPO [9] 

Deep 

Learning 

(PPO) 

Reinforcement 

Learning 

7 
LSTM and 

Bayesian model 
[10] RNN 

Supervised 

Learning 

C. Machine Learning Algorithms in Car Accident Detection 

and Classification 

Several scientific papers discussed and proposed solutions to 
the task of detecting and classifying car accidents. In the first 
study, the researchers applied the binary image classification 
technique to identify potential traffic accidents utilizing models 
that combine transfer learning with deep learning [11]. The 
model MobileNetV2 had been selected due to its speed in 
execution, while the model EfficientNetB1 was considered due 
to its high prediction quality. The model EfficientNetB1 
achieved a 0.89 mAP, while the MobileNetV2 has a mAP of 
0.88. The dataset consists of a set of images obtained from a 
traffic surveillance camera that was placed on a road in Finland. 
Synthetic photos were created since there was no real accident 
data available. Therefore, both synthetic and actual data were 
used to train the models. Our work builds on this by employing 
a significantly larger and more diverse dataset of 1568 images, 
sourced from a variety of real-world and simulated 
environments, to improve model generalization and robustness 
in varied real-world scenarios. 

In another study, the proposed system utilizes computer 
vision and deep learning methods to improve traffic flow and 

safety [12]. It is composed of three models and an alert system 
integrated into a graphical user interface (GUI). The dataset 
involved 8000 annotated images and was obtained from several 
open sources. For real-time vehicle detection and tracking, the 
first model uses the DeepSORT tracker in conjunction with the 
YOLOv5 algorithm. It reached 99.2%, as a (mAP) rate. Also, 
the YOLOv5 algorithm is employed by the second model, which 
forms the basis of the system, to precisely identify and 
categorize the degree of accident severity. It achieved an 83.3% 
mAP. The third model uses ResNet152 transfer learning 
algorithm to classify post-collision vehicular fires. It attained a 
mAP rate of 98.955%. Our research provides a distinct 
contribution by conducting a rigorous comparative analysis of 
YOLOv5 against its newer versions, YOLOv8 and YOLOv9, 
specifically for the task of accident detection. This focused 
evaluation is essential for determining the most efficient and 
accurate model for a dedicated accident detection system. 

Radu et al. [13] proposed a traffic accident detection system 
through a video sequence from a first-person perspective of the 
dash-cam, which is more beneficial for the automated driving 
systems. Their primary contribution was comparing various 
architectures using a dataset of videos from the dash-cam. They 
used ResNet-50 and EffcientNet-b4 and compared their 
performance to each other, where ResNet achieved an accuracy 
rate of 78.58%, while EffcientNet-b4 achieved an accuracy rate 
of 76.76%. For the video classification, their architecture was 
based on ResNet and Long Short-Term Memory (LSTM). 
Furthermore, they demonstrated how incorporating a depth 
estimate module may increase the performance of the suggested 
classifier. Our study validates the performance of models like 
ResNet-101 and EfficientNetB7 on a significantly more diverse 
and extensive dataset from various angles and environments, 
making our findings more applicable to a wider range of real-
world surveillance systems. 

In another research paper, deep learning algorithms, VGG19 
and VGG16, were employed to help insurance companies detect 
car accidents, evaluate the location of the accident and its degree 
of severity [14]. In order to improve the system accuracy, they 
apply a combination of transfer learning and L2 regularization 
to the VGG models. The accuracy of the VGG19 and VGG16 in 
damage detection reached 95.22% and 94.56% respectively. In 
damage localization, the accuracy of VGG19 reached 76.48% 
and 74.39% of VGG16. Our research focuses on the broader and 
more challenging task of general accident detection. Our 
VGG16 model achieves a high accuracy of 92% on a larger and 
more diverse dataset, demonstrating its robust ability to detect 
and classify a wider range of accident scenarios beyond just car 
damage. 

Pathik et al. [15] highlighted the significance of addressing 
road accidents through the implementation of an accident 
detection and rescue system that is based on IoT and AI. It was 
built to help shorten delays in rescuing people in case of 
accidents. The system consists of sensors, GPS and GSM 
modules, controllers, a camera, and Raspberry Pi. The workflow 
of the intelligent system is composed of three phases. In the first 
stage, data related to accidents is collected through IoT 
equipment. In the second stage, deep learning-based models, 
such as ResNet-50 and InceptionResNetV2, are used to confirm 
the output of IoT. In the third stage, after confirming the 
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detection of the accident, information is sent to the rescue team 
and the family. Due to the integration of AI and IoT, the model 
has low false positives during testing and zero false positives 
during training. Building upon this concept of a multi-
component system, our work contributes a detailed comparative 
analysis of six different deep learning models for both 
classification and detection tasks, providing a comprehensive 
performance evaluation that is crucial for selecting the optimal 
model for rapid accident detection. 

In another study, they designed a network consisting of two 
streams for accident detection called Attention R-CNN [16]. The 
appearance stream is responsible for object detection using 
Faster-RCNN with modifications to maximize efficiency. 
Features extracted from the appearance stream’s backbone are 
transformed into characteristic features via the characteristic 
stream, which is subsequently used for computing object 
characteristic properties. While the Attention R-CNN model is 
effective, our research provides a more comprehensive 
comparison of multiple single-stage and classification-based 
models, which is crucial for identifying the most efficient and 
accurate solution for real-world deployment. 

Zantalis et al. [17] emphasized the integration of IOT and 
ML approaches in smart transportation, addressing a range of 
applications including accident prevention and detection, 
streetlights, route optimization, road anomalies, infrastructure, 
and parking. The research draws attention to the growing 
interest in route planning, parking, and accident detection as 
important ITS research topics. The research also highlighted a 
possible gap in ML coverage of applications for smart parking 
and lighting technologies. Its overall goal is to give an in-depth 
examination of current developments in various sectors and to 
point out potential topics for further study. Our project provides 
a concrete and detailed implementation that supports their 
findings. We offer a practical solution for real-time accident 
detection that leverages deep learning on visual data, thereby 
addressing a critical need they identified in their review of the 
field. Table II summarizes all the research mentioned above. 

Although previous studies have made significant progress in 
applying machine learning and computer vision techniques for 
accident detection, they also present notable limitations. Several 
works relied on synthetic or limited datasets, which may not 
generalize well to diverse real-world environments. Others 
achieved high accuracy but lacked scalability or applicability in 
real-time scenarios, particularly under poor lighting or complex 
traffic conditions. Moreover, many studies focused on single 
models, making them less robust in handling different accident 
types and severities. IoT-based approaches showed promise in 
reducing false positives, but they require additional 
infrastructure, which limits widespread adoption. These 
limitations highlight the need for a more comprehensive 
approach that leverages multiple deep learning models and 
diverse datasets to enhance robustness, accuracy, and real-time 
applicability. This research aims to address these gaps by 
evaluating and comparing several deep learning architectures for 
accident detection, ultimately contributing to more reliable and 
efficient emergency response systems. 

TABLE II. MACHINE LEARNING ALGORITHMS IN CAR ACCIDENT 

DETECTION AND CLASSIFICATION 

No Algorithm Reference 
Algorithm 

Type 

Learning 

Type 

1 MobileNetV2 [11] CNN 
Supervised 

learning 

2 EfficientNetB1 [11, 13] CNN 
Supervised 

learning 

3 YOLOv5 [12] 
Object 

Detection 

Supervised 

learning 

4 ResNet [12, 13] CNN 
Supervised 

learning 

5 VGG [14] CNN 
Supervised 

learning 

6 InceptionResNetV2 [15] CNN 
Supervised 

learning 

7 Faster-RCNN [16] 
Object 

Detection 

Supervised 

learning 

III. PROPOSED SYSTEM 

The proposed system for detecting and classifying car 
accidents includes the following phases: 

1) Data collection: Relevant data is gathered from open 

sources, including CCTV images of accidents, traffic images, 

and semi-realistic images from video games. 

2) Data preprocessing: The data is split into training, 

testing, and validation sets, and cleaned to prepare it for 

analysis. 

3) Data labeling: The collected data is labeled to indicate 

whether it represents an accident for classification and to assign 

bounding boxes for detection. This manual annotation is 

performed using Roboflow. 

4) Training phase: 

a) Car accident classification: Pre-trained models (e.g., 
VGG, ResNet, EfficientNet) are fine-tuned on the dataset. We 
modify the final layers to match the accident classes, freezing 

original weights while updating the new layers. Model 
performance is evaluated using accuracy, precision, and recall 
by applying it to a different test set. Fig. 1 illustrates the 

proposed system for classifying car accidents. 

b) Car accident detection: A detection head is added to 
the pre-trained model to predict bounding box coordinates and 
class labels. Both the pre-trained model and detection head’s 
weights are updated. Performance is assessed using metrics like 
mean Average Precision (mAP). We conducted an 
experimental evaluation comparing the performance of 

YOLOv5, YOLOv8, and YOLOv9 as object detection models. 
The proposed system for detecting car accidents is 

demonstrated in Fig. 2. 

 

Fig. 1. The workflow of the system for car accident classification. 
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Fig. 2. The workflow of the system for car accident detection. 

IV. MATERIALS AND METHODS 

A. Datasets 

Sources: We took the initiative to create our dataset by 
collecting videos of car traffic and accidents in different 
countries from YouTube. These videos were converted into 
individual frames using the CV2 Python library. Additionally, 
we collected images from the extensive Mapillary Vistas 
Dataset [18]. It includes photos taken in different seasons, 
weather conditions, and daytime hours. To further augment our 
dataset, we incorporated data from Kaggle [19]. In order to 
enhance the diversity of the dataset, we also captured semi-
realistic images from video games and car crash simulators [20]. 
This diverse collection helped us maintain a balanced 
distribution of data for both classes, "accident" and "no-
accident", preventing over-fitting. Our dataset comprises a total 
of 1568 images. Each image had a size of 1280 by 720 pixels. 
Samples from our dataset for accident and non-accident images 
are illustrated in Fig. 3. 

1) Dataset splitting: Our dataset was then divided into 

three main segments: training data, testing data, and a 

validation set. The training data is utilized to train the model 

while the testing data is reserved for evaluating the model’s 

performance during testing. The model is adjusted, and its 

performance is assessed during training using the validation set. 

It facilitates the determination of the model’s optimal hyper-

parameters. 

B. Algorithms and Models 

The deep learning algorithms that have been pre-trained on 
large-scale datasets are useful for a variety of tasks. By 
leveraging the learned representations, pre-trained models offer 
transferable knowledge and efficient solutions for new tasks, 
enhancing generalization and reducing the need for extensive 
training from scratch. In this project, the following models were 
included: 

1) VGG16 

a) Overview: VGG16 is a deep learning model for 
computer vision and image recognition, consisting of 16 
convolutional layers. It was developed by Simonyan and 
Zisserman [21]. Simonyan is known for its success in achieving 

a top 5 test accuracy of 92.7% on the ImageNet dataset. 

b) Architecture: The model utilizes small 3x3 
convolutional filters in successive layers, with ReLU activation 
functions, and includes three fully connected layers. Despite its 

simplicity and uniform structure, VGG16 is a complex network 

with approximately 138 million parameters. 

2) ResNet-101: 

a) Overview: ResNet, proposed by He et al. [22], in 2015 

revolutionized deep learning by introducing residual 
connections (skip connections) that addressed the vanishing 
gradient problem, enabling the training of very deep neural 

networks with improved accuracy. 

b) Architecture: ResNet comes in multiple versions, 
including ResNet-18, ResNet-34, ResNet-50, ResNet-101, and 
more, differing in the number of layers. ResNet-50 and later 
models use a bottleneck design for efficiency, while ResNet-

101, with 101 layers, is known for its depth and effectiveness 

in complex recognition tasks. 

 
(a) Accident image dataset. 

 
(b) No Accident image dataset 

 
(c) Rainy weather 

 
(d) Semi-realistic image 

Fig. 3. Images from the dataset. 

3) EfficientNet 

a) Overview: EfficientNet is a CNN architecture known 

for its exceptional efficiency and accuracy in computer vision 
tasks like image classification and object detection. It includes 
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seven models (EfficientNet-B0 to B7), each optimized for 

different performance and resource requirements. 

b) Architecture: The architecture of EfficientNet begins 

with the EfficientNet-B0 model, designed using Neural 
Architecture Search (NAS). It features Mobile Inverted 
Bottleneck Convolution (MBConv) layers, which are optimized 
for efficiency, especially on mobile and resource-constrained 

devices. 

4) YOLOv5: 

a) Overview: YOLOv5, introduced in 2020 [23], is a 
leading single-stage object detection algorithm known for its 
efficiency and accuracy. It is an evolution of the YOLO (You 

Only Look Once) series, initially launched in 2016 [24], and is 
designed to be faster and more flexible. YOLOv5 is available 
in four variants (small, medium, large, and extra-large), 
offering a balance between accuracy, speed, and computational 

requirements. 

b) Architecture: YOLOv5 utilizes a lightweight 
architecture based on Scaled-YOLOv4. It employs a single-
stage object detection framework that integrates anchor boxes 
and anchor clustering for predicting bounding boxes and class 
probabilities. The model design involves selecting a deep 

neural network backbone (e.g., ResNet or EfficientNet) for 
feature extraction, followed by additional convolutional layers 
for feature fusion and multi-scale object detection. YOLOv5’s 

architecture prioritizes simplicity and deployment flexibility. 

5) YOLOv8: 

a) Overview: YOLOv8, released by Glenn Jocher in 
January 2023 [25], maintains high accuracy while offering 
faster inference speeds and introduces developer-friendly 

features like an easy-to-use command-line interface (CLI) [26]. 

b) Architecture: YOLOv8 is built on a deep 
convolutional neural network (CNN) architecture, consisting of 
a backbone (CSPNet) for feature extraction and a head for 
prediction. It also features an anchor-free design, which reduces 

box prediction numbers and improves Non-Maximum 

Suppression (NMS) speed [27]. 

6) YOLOv9: 

a) Overview: YOLOv9 is the latest iteration of the 

YOLO (You Only Look Once) real-time object detection 
system [28], building on the legacy of previous versions. It 
incorporates advanced deep learning techniques to achieve 
superior accuracy, speed, and efficiency in object detection 

tasks. 

b) Architecture: YOLOv9 introduces a novel 
architectural design by integrating the Generalized ELAN 
(GELAN) architecture with Programmable Gradient 
Information (PGI). This combination enhances the model’s 

performance, making it faster and more accurate for real-time 

object detection. 

C. Software and Libraries 

1) Programming language: Python was employed for 

model implementation due to its extensive support for machine 

learning and data analysis libraries [29]. 

2) Deep learning frameworks: 

a) PyTorch: Used for training detection models. PyTorch 
was chosen for its dynamic computation graph and user-

friendly interface [30]. 

b) Tensorflow: Used for training classification models. 

And it was selected due to its simplicity and popularity [31]. 

3) Development environment and platforms: 

a) Google Colab: Leveraged for its cloud-based 
environment, which offers accelerated computation and ease of 
use without the need for local installations. Google Colab was 

instrumental in efficiently training Python-based models [32]. 

b) Kaggle: Datasets were obtained from Kaggle, a 
leading platform for data science and machine learning 
competitions, offering a variety of datasets, code, and resources 

crucial for training, and evaluating models [33]. 

c) Mapillary: It is a collection of street-level pictures that 
has been annotated into 66 object categories and includes 25000 

high-resolution images from all over the world [18]. 

d) Roboflow: This platform was employed for object 
detection and classification tasks. Roboflow assists in 
developing computer vision models and provides 

functionalities for data augmentation and model training [34]. 

4) Libraries and tools: 

a) NumPy: Utilized for numerical computations and 

handling data arrays. 

b) OpenCV: Used for image processing tasks, such as 
resizing and augmenting images, that helps in developing the 

field of computer vision (CV) [35]. 

c) CV2: It is used for image and video processing tasks, 
such as reading and writing images, applying filters, detecting 

edges, and performing image transformations. 

d) Torch: Widely used for tasks like computer vision, 

natural language processing, and reinforcement learning. 

e) Torchvision: Provide tools specifically for computer 

vision tasks. 

f) Matplotlib: Used for creating static, interactive, and 

animated visualizations in Python. 

D. Computational Resources 

To effectively train and evaluate the object detection models, 
we utilized the following: 

a) MacOS: M1 pro chip, CPU: 10 core GPU: 14 core, 

Memory: 16G 

b) Windows: CPU: Intel core i7, GPU: NVIDIA 

GetForce MX330 2GB, Memory: 16G 

E. Performance Metrics 

To evaluate the performance of our models, we used the 
following metrics: 

1) Detection models: Mean Average Precision (mAP) was 

used as the primary metric to assess the accuracy of object 

detection models. We also considered Precision and Recall. 

2) Classification models: For classification models, we 

used Accuracy, Precision, and Recall [36]. 
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V. RESULTS 

The findings of the detection and classification models used 
in this research to precisely identify and detect car accidents are 
presented in this section. It provides a comprehensive analysis 
of the models’ performance and effectiveness in classifying and 
detecting car accidents in real-world scenarios. The following 
subsections outline the evaluation metrics, the classification 
model’s performance in identifying accident-related images, and 
the object detection model’s effectiveness in localizing the 
involved vehicles. The results demonstrate the models’ efficacy 
in automating the detection and classification process, 
contributing to more efficient accident response and improved 
road safety. 

A. Classification 

The models presented were trained using the TensorFlow 
deep learning framework. The categorical classes targeted by the 
model were “Accident” and “No-Accident”. The training 
process utilized the Adam optimizer [37], a popular gradient-
based optimization algorithm, to update the model’s parameters. 
To evaluate the performance of our models, we employed 
standard evaluation metrics including accuracy, recall, and 
precision, and visualized these metrics using plots. 

In the subsequent section, we will present the results 
obtained from the evaluation of classification models. The 
different versions of VGG16, EfficientNetB7, and ResNet101 
were conducted with a consistent configuration, employing a 
batch size of 100, and 25 epochs for training. The proposed deep 
learning models were trained using TensorFlow and 
implemented within the Google Colab environment. As part of 
the training process, all training and test images were uniformly 
resized to dimensions of 224 x 224. Table III summarizes the 
results achieved in classification models with a detailed 
illustration of the training parameters. 

TABLE III. CAR ACCIDENT CLASSIFICATION: OPTIMAL EXPERIMENTAL 

RESULTS 

Algorithm 
Epoch/ 

Iteration 

Batch 

Size 
Accuracy Recall Precision 

ResNet101 25 100 93% 96% 96% 

EfficientNetB7 25 100 91% 96% 96% 

VGG16 25 100 92% 98% 96% 

The VGG16 model, trained with 25 epochs, exhibited an 
impressive accuracy of 0.92. The accuracy and loss results for 
the training and validation are shown in Fig. 4. With a precision 
and a recall of 0.96 and 0.98, respectively shown in Fig. 7(a) and 
8(a) depicts the confusion matrix for the VGG16 model during 
the training and testing phases. 

Similarly, the EfficientNetB7 model achieved an accuracy 
of 0.91 after 25 epochs of training. The accuracy and loss trends 
for both training and validation iterations are illustrated in Fig. 5. 
With a precision and a recall of 0.96 and 0.96, respectively 
shown in Fig. 7(b). The confusion matrix for the EfficientNetB7 
model is shown in Fig. 8(b). 

 
(a) VGG16 Training Accuracy. 

 
(b) VGG16 Training Loss. 

 
(c) VGG16 Validation Accuracy. 

 
(d) VGG16 Validation Loss. 

Fig. 4. Visualizing accuracy and loss of training and validation for VGG16. 

Lastly, the ResNet101 model attained accuracy of 0.93 after 
25 epochs of training. The accuracy and loss curves for training 
and validation iterations are plotted in Fig. 6. With a precision 
and a recall of 0.96 and 0.96 respectively shown in Fig. 7(c). The 
confusion matrix for the ResNet101 model is presented in 
Fig. 8(c). 
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(a) EfficientNetB7 Training Accuracy 

 
(b) EfficientNetB7 Training Loss 

 
(c) EfficientNetB7 Validation Accuracy 

 
(d) EfficientNetB7 Validation Loss 

Fig. 5. Visualizing accuracy and loss of training and validation for 

EfficientNetB7. 

 
(a) ResNet101 Training Accuracy 

 
(b) ResNet101 Training Loss 

 
(c) ResNet101 Validation Accuracy 

 
(d) ResNet101 Validation Loss 

Fig. 6. Visualizing accuracy and loss of training and validation for 

ResNet101. 
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(a) VGG16 precision recall curve 

 
(b) EfficientNetB7 precision recall curve 

 
(c) ResNet101 precision recall curve 

Fig. 7. Visualizing precision recall curve for VGG16, EfficientNetB7 and 

ResNet101. 

 
(a) VGG16 Confusion Matrix 

 
(b) EfficientNetB7 Confusion Matrix 

 
(c) ResNet101 Confusion Matrix 

Fig. 8. Visualizing confusion matrix for VGG16, EfficientNetB7 and 

ResNet101. 

B. Detection 

In the subsequent section, we will present the results 
obtained from the evaluation of detection models. The different 
versions of YOLO were conducted with a consistent 
configuration, employing a batch size of 16 and 100 epochs for 
training. The proposed deep learning models were trained using 
Pytorch and implemented within the Google Colab 
environment. As part of the training process, all training and test 
images were uniformly resized to dimensions of 640 x 640. 
summarization of the results achieved in detection models with 
a detailed illustration of the training parameters is shown in 
Table IV. 

TABLE IV. CAR ACCIDENT DETECTION OPTIMAL EXPERIMENTAL 

RESULTS 

Algorithm 
Epoch/ 

Iteration 

Batch 

Size 
mAP Recall Precision 

YOLOv5 100 16 97.8% 96.6% 95.7% 

YOLOv8 100 16 95.3% 90.8% 94% 

YOLOv9 100 16 95.7% 93.4% 94.1% 
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The YOLOv5 model, trained with 100 epochs, exhibited an 
impressive mean Average Precision (mAP) of 0.978. The mAP 
and loss results for 100 of the training and testing iterations 
shown in Fig. 9. With a precision and a recall of 0.957 and 0.966 
respectively shown in Fig. 10(a) and (b). Fig. 11 depicts the 
confusion matrix for the YOLOV5 model during the training 
and testing phases. 

 
Fig. 9. mAP, training loss and validation loss for YOLOv5. 

 
(a) Precision-confidence curve for YOLOv5. 

 
(b) Recall-confidence curve for YOLOv5 

Fig. 10. Visualizing the precision-confidence and recall-confidence curves of 

YOLOv5. 

 
Fig. 11. Confusion matrix for YOLOv5. 

The evaluation of YOLOv8 and YOLOv9 models yielded 
noteworthy findings regarding their mean Average Precision 
(mAP) values. YOLOv8 demonstrated a commendable mAP 
score of 0.953 in Fig. 12. Meanwhile, YOLOv9 demonstrated a 
notably elevated mean Average Precision (mAP) of 0.957 as 
illustrated in Fig. 15. Additionally, YOLOv9 showcased 
superior recall performance in Fig. 16(b) with a score of 0.934, 
whereas YOLOv8 achieved a recall value of 0.908 in Fig. 13(b). 
In terms of precision, YOLOv9 achieved a score of 0.941 as 
shown here in Fig. 16(a), while YOLOv8 attained a precision 
value of 0.94 in Fig. 13(a). The confusion matrices for YOLOv8 
and YOLOv9 are presented in Fig. 14 and 17, respectively, 
providing a comprehensive visual representation of the model’s 
performance. 

 
Fig. 12. mAP, training loss and Validation loss for YOLOv8. 

 
(a) Precision-confidence curve for YOLOv5. 

 
(b) Recall-confidence curve for YOLOv8. 

Fig. 13. Visualizing the precision-confidence and recall-confidence curves of 

YOLOv8. 

The superior performance of our YOLOv5 model compared 
to the newer YOLOv8 and YOLOv9 versions is a noteworthy 
finding. While YOLOv8 and YOLOv9 incorporate more 
advanced architectural features, such as the anchor-free design 
and the Generalized ELAN (GELAN) architecture, our results 
suggest that these innovations did not provide a significant 
advantage on our specific dataset. We hypothesize that the 
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simpler, well-optimized framework of YOLOv5 proved to be 
exceptionally effective at learning the nuanced features of our 
mixed dataset. This indicates that while newer models offer 
theoretical improvements, an earlier, well-optimized model can 
still achieve state-of-the-art performance, especially when its 
architecture is well-suited to the characteristics of the training 
data. 

 
Fig. 14. Confusion matrix for YOLOv8. 

 
Fig. 15. mAP, training loss and validation loss for YOLOv9. 

 
(a) Precision-confidence curve for YOLOv9. 

 

 
(b) Recall-confidence curve for YOLOv9 

Fig. 16. Visualizing the precision-confidence and recall-confidence curves of 

YOLOv9. 

 
Fig. 17. Confusion matrix for YOLOv9. 

VI. DISCUSSION 

The results obtained from our experiments demonstrate the 
effectiveness of the proposed system. A key contribution of this 
work is the comprehensive comparative analysis of multiple 
state-of-the-art deep learning models on a diverse, custom-built 
dataset. This approach not only identifies the most effective 
model for the task but also provides crucial insights into the 
performance trade-offs between model architecture, training 
time, and dataset characteristics, which is often a missing 
element in prior research. 

According to study findings and prior research, traffic 
accidents rank among the top causes of death and disability 
worldwide. This highlights the necessity of improving urban 
safety through rapid accident detection and quick response. Our 
proposed framework contributes to solving these problems and 
achieving the safety of roads and communities. We trained and 
evaluated different deep learning models for car accident 
classification and detection on an extensive dataset of labeled 
images for "accident" and "no-accident" to assess their 
performance. The results obtained from our experiments 
demonstrate the effectiveness of the proposed system. In this 
section, analogous frameworks that have been conducted will be 
comprehensively compared. 

A. Classification 

In this section, we evaluate the performance of our proposed 
classification models: 

ResNet-101, EfficientNetB7, and VGG16. The evaluation is 
carried out using precision, recall, and accuracy metrics which 
provide a comprehensive understanding of the models’ 
classification capabilities. ResNet-101 achieved a precision and 
recall of 96%, with an accuracy of 93%. EfficientNetB7 
exhibited a similar precision and recall of 96%, but with a 
slightly lower accuracy of 91%. VGG16 demonstrated a 
precision of 96% and a higher recall of 98%, with an accuracy 
of 92%. Based on these results, all three models showcase high 
precision values, indicating their ability to accurately classify 
positive instances. However, VGG16 stands out with a higher 
recall, suggesting its proficiency in correctly identifying positive 
instances while minimizing false negatives. When considering 
accuracy, ResNet-101 achieved the highest value of 93%, 
closely followed by VGG16 at 92% and EfficientNetB7 at 91%. 
The chart in Fig. 18 presents a comparative analysis of 
classification models, highlighting their performance in terms of 
Precision, Recall, and Accuracy metrics. 
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Fig. 18. Comparative analysis of classification models. 

To assess the performance of our proposed model, we 
conducted a comparative analysis with a previously published 
paper [15]. The referenced paper employed the ResNet 
architecture for training on a dataset consisting of 500 images. 
They utilized ResNet-50 with a batch size of 64, a learning rate 
of 0.0001, and trained the model for 50 epochs. Stochastic 
Gradient Descent (SGD) was applied as an optimizer. The 
achieved accuracy was an impressive 99.3%. In our study, we 
trained our proposed model throughout 25 epochs. Our model 
attained an accuracy of 93%. This 6.3% decrease in accuracy 
can be attributed to several critical factors. The study's smaller, 
more specialized dataset likely led to a higher accuracy score 
due to its focused nature, while our model's slightly lower score 
reflects its ability to generalize to a broader range of scenarios 
and variations present in our diverse dataset. Additionally, the 
longer training duration (50 epochs) in the cited study may have 
allowed the model to fine-tune its parameters more thoroughly. 
Our comprehensive evaluation highlights the trade-offs between 
dataset size, diversity, training time, and overall model 
performance, underscoring the value of our approach on a more 
robust dataset. 

In [11], the performance of EfficientNetB1 was evaluated 
using a dataset comprising 164 images. The model was trained 
for 300 epochs, employing a batch size of 32. The results of the 
study revealed that the EfficientNetB1 model achieved a 
commendable mAP of 89%. Contrastingly, our proposed 
EfficientNetB7 model surpassed the mAP reported in the study 
by achieving an accuracy of 91%, indicating an improvement of 
2%. This is a significant finding given that our model was 
trained with a much shorter duration of only 25 epochs. This 
indicates that our model, leveraging a more advanced 
architecture and a larger, more diverse dataset, demonstrates 
enhanced performance and superior efficiency, making it a more 
viable solution for real-world applications where training time is 
a critical factor. 

In another study [14], the VGG16 model was trained using a 
dataset consisting of 1150 images depicting damaged cars. The 
accuracy achieved in damage detection task was reported to be 
94.56%. Notably, the study also focused on damage localization, 
where the VGG16 model achieved an accuracy of 74.39%. In 
comparison, our proposed system demonstrated encouraging 
results, achieving an accuracy of 92% in accident detection. This 
indicates that our model performs at a similar level of 
effectiveness as the VGG16 model utilized in the cited study, 
albeit with a larger dataset. The differences in dataset 
composition, quality, and diversity could impact the model’s 

performance. It is possible that the dataset used in the study [14] 
provided a more targeted representation of damaged car images, 
leading to higher accuracy. Our model's ability to achieve high 
accuracy on a larger, more diverse dataset highlights its robust 
performance and adaptability to a wider range of accident 
scenarios. Table V summarizes the comparison between our 
research and other studies. 

TABLE V. COMPARISON TABLE OF CLASSIFICATION MODELS 

Model Accuracy/mAP Epochs 
Batch 

size 
Dataset 

ResNet-50 [15] 99.3% 50 64 500 

ResNet-101 93% 25 100 1568 

EfficientNetB1 [11] 89% 300 32 164 

EfficientNetB7 91% 25 100 1568 

VGG16 [14] 94.56% - - 1150 

VGG16 92% 25 100 1568 

B. Detection 

The evaluation conclusions show that YOLOv5 exceeds 
both YOLOv8 and YOLOv9 in terms of mAP, recall, and 
precision. It achieved the highest mAP score of 97.8%, 
demonstrating that it can accurately detect objects. YOLOv8 and 
YOLOv9 achieved slightly lower mAP scores of 95.3% and 
95.7%, respectively. In terms of recall, YOLOv5 scored 96.6%, 
outperforming YOLOv8 and YOLOv9. This indicates that 
YOLOv5 performs more effectively at capturing a greater 
proportion of relevant objects. Similarly, YOLOv5 achieved an 
outstanding precision score of 95.7%, which indicates its ability 
to reliably detect objects with a high level of confidence. 
YOLOv9 had a precision score of 94.1%, which was somewhat 
lower than YOLOv5, while YOLOv8 had a precision score of 
94%. The models were trained on the same training setup 
including dataset size, epochs, batch size, and image size. we 
can make a more direct comparison of the training times. 
YOLOv5 took approximately 0.408 hours to train, YOLOv8 
required around 0.924 hours, and YOLOv9 took approximately 
2.027 hours 

Overall, YOLOv5 achieved the highest mAP, recall, and 
precision scores among the three models while having the 
shortest training duration. YOLOv8, despite slightly lower 
mAP, recall, and precision scores compared to YOLOv5, 
requires longer training time, suggesting it may not significantly 
outperform YOLOv5 in performance. YOLOv9, on the other 
hand, achieved competitive performance metrics, particularly in 
recall and precision, but its long training time may be a concern 
in time-sensitive applications or resource-constrained 
environments. The chart in Fig. 19 presents a comparative 
analysis of detection models, highlighting their performance in 
terms of Precision, Recall, and mAP metrics. 

According to YOLOv5, we performed a comparison study 
with prior research [12]. The cited research utilized the 
YOLOv5 model trained on 8000 images of vehicles extracted 
from CCTV footage to detect and track vehicles. The model was 
trained in 900 epochs, with a batch size of 16 achieving 99.2% 
mAP. Additionally, the YOLOv5 was employed to detect 
accident severity, and it achieved 83.3% mAP. In contrast, our 
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YOLOv5 model was trained on 1568 annotated images of car 
accidents collected from several sources. Our model attained 
97.8% mAP by training it with 100 epochs. These comparative 
results highlight the superior performance of the YOLOv5 
model. This is a significant finding that highlights the 
importance of a carefully curated dataset. Despite using less data 
and a shorter training time, our model's strong performance 
demonstrates that the quality and diversity of our dataset—
which includes a wide range of real-world and simulated 
accident scenarios—is a more critical factor for achieving high-
performance results than sheer data quantity. Furthermore, the 
efficient YOLOv5 architecture, which combines high accuracy 
with real-time inference speeds, proved to be particularly well-
suited for our dataset and task, making it a viable choice for real-
world applications. 

Another study employed YOLOv8 to detect windshields as 
a subsystem of automated detection of drivers and passengers 
without seat belts [38]. The dataset includes 3289 video frame 
images of windshields labeled for use in the windshield 
detection. The model trained in 100 epochs with a batch size of 
16 and achieved 95% mAP. Conversely, our YOLOv8 model 
was trained using 1568 images in 100 epochs with a batch size 
of 16, achieving an impressive 95.3% mAP in the more complex 
task of car accident detection. This is a significant finding that 
highlights the importance of a well-curated dataset. While the 
cited study focused on a single object within a larger system, our 
model's performance on a smaller, yet more diverse and 
challenging dataset demonstrates its robust generalizability 
across different detection tasks. This proves that a high-quality, 
representative dataset can be more effective than a larger but 
more specialized one, a crucial insight for real-world 
applications where data collection can be a major challenge. The 
comparison of our study with previous studies is summarized in 
Table VI. 

 
Fig. 19. Comparative analysis of detection models. 

TABLE VI. COMPARISON TABLE OF DETECTION MODELS 

Model mAP Epochs Batch size Dataset 

YOLOv5 [12] 99.2% 900 16 8000 

YOLOv5 97.8% 100 16 1568 

YOLOv8 [38] 95% 100 16 3289 

YOLOv8 95.3% 100 16 1568 

C. Online Deployment 

Considering the superior performance demonstrated by 
YOLOv5, a hosted video inference API developed by Roboflow 
is used to deploy the generated model [39]. This integration 
opens up a realm of possibilities for leveraging the robust 
capabilities of YOLOv5 in real-world applications, empowering 
users to harness its exceptional object detection and tracking 
capabilities for a wide range of video analysis tasks. The model 
demonstrates a remarkable ability to detect accidents within 
videos by meticulously analyzing individual frames and 
accurately assigning class labels to the objects present in the 
video. 

Fig. 20(a) and (b) demonstrated the output of deploying the 
video on the hosted inference API. Each identified object is 
accompanied by a bounding box that precisely delineates its 
spatial positioning within the frames. 

 
(a) Accident output. 

 
(b) No-Accident output. 

Fig. 20. YOLOv5 deployment on inference API. 

D. Practical Implications, Limitations, and Future Direction 

The findings of this research, particularly the superior 
performance demonstrated by YOLOv5, have significant 
practical implications for real-world deployment in smart cities. 
The model's reliability in accurately identifying and classifying 
car accidents is a critical first step in automating emergency 
response. The short training time for YOLOv5 is also a crucial 
factor, making it a viable solution for real-time applications and 
resource-constrained environments. In a smart city context, this 
model can be integrated with a camera and a notification system. 
This automated system for accident detection and classification 
can then swiftly notify medical facilities and security of any 
accidents. This would allow emergency services to react more 
quickly and efficiently, potentially saving lives and reducing the 
severity of injuries. 

The findings of this research, while promising, are subject to 
certain limitations that warrant consideration for future work. 
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Firstly, the models' effectiveness may be hampered by factors 
such as low-quality footage or restricted camera coverage in 
real-world scenarios. Secondly, the computational resources 
required for training complex deep learning models can be a 
significant obstacle, as seen with our attempts to implement the 
Single Shot Detector (SSD) model. This limitation may affect 
the model's ability to reliably detect all types of accidents and 
can impact its effectiveness in time-sensitive applications. 

The next logical step is to move from theoretical evaluation 
to practical implementation. This involves integrating the 
trained model with a camera and a notification system. Future 
research will also focus on expanding the dataset to include a 
wider variety of accident types, such as multi-vehicle collisions 
or accidents involving pedestrians, to improve the model's 
versatility. Finally, while our research focused on object 
detection and classification, exploring the integration of other 
data sources, such as real-time vehicle telemetry data, could 
provide a more comprehensive and accurate accident detection 
system in the future. 

VII. CONCLUSIONS 

To conclude, using different deep learning algorithms in the 
realm of accident detection and classification holds immense 
potential to enhance safety, and offers a proactive approach to 
accident detection, response, and prevention. In our project, we 
concentrated on employing diverse artificial intelligence 
algorithms, particularly algorithms within the realm of deep 
learning, to attain optimal outcomes aligned with the objectives 
of our project. We have employed six of the top computer vision 
models three of them specializing in classification task and the 
rest in object detection task are included to achieve our aim 
which is to successfully help detect and reduce accidents, 
thereby preserving more lives and decreasing the annual fatality 
rate. During the training phase, we observed satisfactory results 
across both classification and detection tasks. In the 
classification task, we obtained the following results: VGG16 
model (accuracy of 0.92, precision 0.96, and recall 0.98). 
EfficientNetB7 model (accuracy of 0.91, precision 0.96, and 
recall 0.96). ResNet101 model (accuracy of 0.93, precision 0.96, 
and recall 0.96). 

In the detection task we obtained the following results: 
YOLOv5 model (mAP of 0.978, precision 0.957, and recall 
0.966). YOLOv8 model (mAP of 0.953, precision 0.94, and 
recall 0.908). YOLOv9 model (mAP 0.95, precision 0.941, and 
recall 0.934). According to classification results, The VGG16, 
EfficientNetB7, and ResNet101 models demonstrated high 
precision scores, with VGG16 exhibiting superior recall 
performance. In terms of accuracy, ResNet101 achieved the 
highest score among the models. And according to detection 
results, YOLOv5 exhibited superior performance with the 
highest mAP, recall, and precision scores among the three 
models, along with the shortest training duration. 

These results underscore the efficacy of our approach in 
accident detection and classification tasks. The robust 
performance metrics, including high accuracy rates and recall 
scores, alongside the promising generalization capabilities of 
our models, highlight their potential for real-world deployment 
and scalability. Overall, our findings emphasize the vi ability 
and effectiveness of leveraging deep learning algorithms to 

enhance safety measures and mitigate the impact of road 
accidents. 
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TLA - Three letter acronym. 

LD - Linear dichroism. 
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