
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

349 | P a g e
www.ijacsa.thesai.org

Prioritizing Non-Functional Requirements and

Influencing Factors for API Quality Framework: An

Industry Approach

Aumir Shabbir1, Aziz Deraman2*, Mohamad Nor Bin Hassan3, Kamal Uddin Sarker4, Shahid Kamal5*

Faculty of Computer Science and Mathematics, Universiti Malaysia Terengganu, Kuala Nerus Terengganu, 21030, Malaysia1, 2, 3
Department of Business and Management Studies, Gulf College, Al Mabaila - Muscat 133, Oman1

Department of Computer Science and MIS, Oman College of Management and Technology, Al Barka, 320, Oman 4

Faculty of Computing & Informatics, Multimedia University, Cyberjaya, Selangor, 63100, Malaysia 5

Abstract—Application Programming Interface (API)

management is currently a trending research area; however, APIs

require careful attention to Non-Functional Requirements (NFRs)

to ensure system performance, maintainability, security, and

resiliency. The software industry struggles to maintain API

quality, especially NFRs, due to a focus on functional aspects in

standards like the OpenAPI Specification (OAS). Similarly,

standards, such as ISO/IEC 25010:2023, evaluate the quality of

general software but offer limited guidance on addressing API

challenges. Based on the industry perspective, this paper

prioritizes the most critical quality attributes and their influencing

factors for APIs, supporting the development of a Non-Functional

Requirement Quality Framework for APIs (NFRQF-API). We

adopted ISO/IEC 25010 as our reference standard and surveyed

industry experts. Eleven NFRs are added in the survey, including

nine from ISO/IEC 25010 and two additional attributes,

Observability and Resiliency, identified through the literature

review. A structured survey tool has been validated, pilot-tested,

and distributed to 38 API practitioners, with data analyzed

through IBM Statistical Package for the Social Sciences (IBM

SPSS). SPSS demonstrates strong internal consistency (α > 0.7)

across items within each group. Additionally, Maintainability

(4.29) and Resiliency (4.20) have been identified as core NFRs,

while Interaction Capability (3.18), Flexibility (3.18), and Safety

(2.93) have lower scores based on their mean calculation. The

remaining six NFRs are moderately significant, highlighting their

ongoing importance. These findings, based on NFR classification,

establish a solid foundation for developing a Quality Framework

for APIs aligned with modern Software engineering requirements.

The article supports researchers and practitioners to build a

strong understanding towards NFR prioritization, which is a

crucial step for API quality management.

Keywords—Non-Functional Requirements (NFRs); Application

Programming Interface (API); software development practices; API

quality; Non-Functional Requirement Quality Framework for APIs

(NFRQF-API); ISO/IEC 25010

I. INTRODUCTION

In the modern landscape, APIs have become the core
elements of digital ecosystems, such as cloud computing, mobile
platforms, and microservices architectures. APIs cover both
technical and business aspects. Technically, solutions are
provided by the APIs based on the problems faced by business
organizations and establish a set of requirements that determine

how the application interacts and supports in the exchange of
data. On the other hand, from a business perspective. APIs serve
the organizations in utilizing their resources more efficiently to
generate value, both across various departments and in
collaboration with external partners [1]. As APIs gain significant
popularity in the modern software ecosystems, their quality,
explicitly focusing on NFRs, is crucial for their success [2].
However, despite their importance, organizations mainly face
challenges in managing API quality, particularly regarding
scalability, security, maintainability, and performance [3], [4].

NFRs are referred to as constraints and quality attributes [5],
however, neglecting them can result in expensive post-
development rework in software applications, which is usually
a significant risk in the success of any project [6], [7]. Similarly,
Observability and Resiliency have emerged as vital quality
attributes in managing the complexity and reliability of modern
APIs and microservices. As the behaviour of an API differs from
that of traditional software, Observability as a quality attribute
not only specifies the quality of the API's behaviour but also the
tools, logs, and monitoring systems that provide transparency
into its real-time operations [8], [9]. Likewise, Resiliency
supports the graceful handling of failures without any
disruptions in API services [10], [11]. Recent studies have
demonstrated that integrating degradation and recovery through
automated requirement-driven adaptations significantly
improves overall system resilience and minimizes downtime
[12].

The OpenAPI Specification (OAS) is one of the popular
existing RESTful APIs standards [13], but it primarily focuses
on functional aspects [14], [15], and limited to address the NFRs
[16], [17]. Additionally, international quality standards, such as
ISO/IEC 25010:2023, outline nine quality attributes, including
Functional Suitability, Performance Efficiency, Compatibility,
Interaction Capability, Reliability, Security, Maintainability,
Flexibility, and Safety [18] but it mainly focuses on maintaining
the quality of general software, and is limited in addressing API-
specific challenges [19]. Therefore, the lack of comprehensive
API guidance in these standards may lead to poor API
management, which can impact quality and reliability [20].
Hence, improving API quality through a comprehensive
framework that considers the broader range of quality attributes,
including both design-time and runtime aspects, remains a

*Corresponding author.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

350 | P a g e
www.ijacsa.thesai.org

significant unexplored domain in software engineering [21],
[22], “in press” [23].

This study identifies and prioritizes key NFRs along with
their influencing factors that affect API quality, based on
industry perception. The industry feedback has been collected
through a structured, validated questionnaire that underwent
expert reviews, pilot testing, and statistical validation,
contributing a refined classification of NFRs relevant to real-
world software development. The findings based on the
classification of NFRs support the development of an NFR
Quality Framework for APIs, which builds a strong
understanding towards the quality management of APIs for both
researchers and industry.

This paper is organized into the following sections:
Section II presents the literature review, Section III describes the
methodology, including the comprehensive NFR prioritization
process, while Section IV covers the results and a brief
discussion. Similarly, Section V discusses practical and
theoretical implications, whereas Section VI concludes by
summarizing the findings and proposing directions for future
research.

II. LITERATURE REVIEW

A. Significance of Application Programming Interface (API)

The API standard was first developed in the 1940s as a
modular software library for EDSAC [24]. The term
"Application Program Interface" was first introduced in the
1960s [25] to denote the data structures and functions associated
with computer graphics on remote systems [26]. In the 2000s, as
the Internet became famous, the Representational State Transfer
(REST) architecture was formalized with the name of a network-
based API, where the REST and similar APIs have been
collected and are called "Web API" [27]. The growing
significance of APIs in today’s dynamic digital environment has
accelerated software development [28], [29]. APIs serve as
intermediaries, facilitating communication between various
systems and enhancing integration, which promotes efficiency,
innovation, and collaboration [30].

1) API development life cycle: APIs are not just a

component that a developer can set and forget [31]. Developers

need to plan, create, deploy, and monitor APIs to keep them

aligned with business needs and know when to retire them. In

his article, Stephen J. Bigelow [32] explains the five stages of

an API lifecycle: Plan, Develop, Test, Deploy and Retire, as

shown in Fig. 1:

Fig. 1. API development life cycle.

B. Managing Non-Functional Requirements (NFRs)

One of the significant challenges in the dynamic world of
software development is managing Non-Functional
Requirements (NFRs) because of the deployment and frequent

changes they face during the development lifecycle [33], [34].
NFR, as a term, was first used by Roman, G-C., in 1985 [35].
Furthermore, this term is also called quality attributes [5], goals,
and non-behavioural requirements, respectively [35].
Krishnamurthy and Saran (2007) use the term "auxiliary
requirements" to expand the interpretation of NFR [36]. Some
NFRs are crucial and required to be addressed while designing
the APIs, such as reliability, security, performance,
maintainability, compatibility, and usability [37]. NFRs impact
software systems' overall quality and success in a growing
software development environment, where a poor approach to
NFR management may be the reason for project failure [38].

Observability is one of the key attributes that support
enhancing the system’s reliability and performance [39]. It
covers most of the post-deployment aspects of APIs, such as
logging, monitoring, and metrics collection [40], [41]. Similarly,
the observability also supports efficient debugging and cost
management in APIs [42], [43]. Organizations can ensure that
their APIs are robust, efficient, and cost-effective by following
the three main components of observability, such as logging
completeness, real-time monitoring, and distributed tracing [43],
[44]. Similarly, the Resiliency covers fault tolerance, graceful
degradation, automatic recovery, and self-healing, which are the
crucial aspects in maintaining continuous service and reliability
in distributed systems [45]. Fault tolerance is a crucial aspect in
APIs that ensures that systems can continue their services even
in the failures [12]. It provides the reliability of APIs during
failures, which is essential for maintaining high availability and
performance. Automatic recovery mechanisms are integral to
self-healing systems, which aim to restore normal operations
after a failure [46]. Kumar et al. in 2022 [47] highlight the
critical importance of NFRs during software development by
emphasizing that usability, security, and reliability are often
overlooked or inefficiently addressed. While various existing
development methodologies, such as Agile, Scrum, Spiral,
DevOps, etc., mainly focus on the Functional areas [48],
however, the developers ignore the crucial aspect of NFRs when
designing the APIs [49], even though the quality of an
application is primarily based on the NFRs [50].

Like traditional software, the quality of an API is crucial [51]
that can be analyzed by evaluating multiple aspects, such as
functional and non-functional [52]. The functional quality is
mainly maintained by referring to the requirements that have
been collected and documented. However, the Non-Functional
Requirements are partially addressed, which can affect the
quality of the software [53] as well as APIs [15]. Hence,
software quality is essential in a software development
environment and needs to be maintained frequently [54].

C. Review of Quality Factors Addressed

ISO/IEC25010 is the latest product quality model, updated
in 2023 as the second edition. This model belongs to the Systems
and Software Quality Requirements and Evaluation (SQuaRE)
family, which applies to Information and Communication
Technology (ICT) and software products. To assess the quality
of the products, this model comprises nine quality characteristics
[20], such as, Functional Suitability, Performance Efficiency,
Compatibility, Interaction Capability, Reliability, Security,
Maintainability, Flexibility, and Safety [20], as shown in Fig. 2.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

351 | P a g e
www.ijacsa.thesai.org

Fig. 2. A Diagrammatic model of ISO/IEC 25010:2023.

In Table I, we have analyzed few studies based on quality
attributes addressed such as, Functional Suitability (FS),
Performance Efficiency (PE), Compatibility (CY), Interaction
Capability (IC), Reliability (RL), Security (SE), Maintainability
(MY), Flexibility (FY), Safety (SA), along with the two
emerging quality attributes, Observability (OY) and, Resiliency
(RS).

By summarizing the review of the above-mentioned articles
in terms of the comparison of quality factors addressed, Table I
shows that the majority of articles only addressed Performance
efficiency, Security, Maintainability, and to some extent,
Functional suitability and Reliability as quality attributes in their
research. However, their focus on the remaining NFRs
mentioned in ISO/IEC 25010:2023 is limited. The two emerging
quality attributes, Observability and Resiliency, identified in the
literature review, are also addressed in a limited manner.
However, the NFRQF-API effectively addresses all key non-
functional quality attributes in alignment with ISO/IEC 25010.

TABLE I. LITERATURE REVIEW ON QUALITY FACTORS ADDRESSED

References
List of Quality Attributes

FS PE CY IC RL SE MY FY SA OY RS

[46] 򢝖 򢝖 򢝖

[12] 򢝖

[55] 򢝖 򢝖 򢝖

[56] 򢝖

[41] 򢝖 򢝖

[47] 򢝖 򢝖 򢝖 򢝖 򢝖

[57]

[58] 򢝖

[59] 򢝖

[60] 򢝖

[61] 򢝖

[62] 򢝖

[63] 򢝖

[64] 򢝖 򢝖

[65] 򢝖 򢝖 򢝖

[66] 򢝖 򢝖

[67] 򢝖 򢝖

[68] 򢝖 򢝖 򢝖

[69] 򢝖 򢝖

[70] 򢝖 򢝖 򢝖

NFRQF- API

Legend: =Fully Addressed, =Not Addressed, 򢝖= Partially Addressed

III. METHODOLOGY

This study adopts a quantitative research methodology to
identify and prioritize the key NFRs that affect the quality of
APIs. The quantitative approach has been selected due to its

suitability in collecting expert perceptions. Fig. 3 shows a
systematic structure of the Methodology adopted in this study.
The structure of the Methodology consists of five phases,
including Survey design, Expert Validation Process, Survey
Distribution (covering both Pilot and Final Survey distribution),

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

352 | P a g e
www.ijacsa.thesai.org

Cronbach’s alpha reliability test using IBM SPSS Statistics, and
Data analysis (utilizing descriptive statistical tools such as mean
and Standard Deviation).

Fig. 3. A Structure of a research methodology structure.

A. Implementation of Methodology

1) Phase 1: Survey Design. The questionnaire for the pilot

study comprises two primary sections: demographic data to

contextualize participant responses, and targeted questions

assessing the perceived importance of quality attributes

mentioned in ISO/IEC 25010:2023. The first section includes

12 closed-ended and open-ended questions to collect detailed

demographic data, focusing on participants' professional roles,

industry sectors, and experience with API management. The

second section includes 47 closed-ended questions linked to 11

quality attributes and the factors influencing them. Each quality

attribute grid includes a mandatory 5-point Likert scale to

assess respondent feedback, ensuring accurate and consistent

responses.

2) Phase 2: Expert Validation Process. To ensure the

accuracy, clarity, and appropriateness of the questionnaire, both

face validity and content validity [71] assessments have been

conducted prior to distribution, as mentioned below:

a) Face validity. The face validity [71], [72] of the

questionnaire has been assessed through direct consultations

with four academic experts possessing relevant backgrounds in
research methodology, software engineering, and computer
science. Their feedback has been pursued to ensure that the
questionnaire is not only visually appealing and structurally
sound but also suitable for effective data collection and

analysis. Their feedback addressed:

• The overall clarity and understandability of the
questions.

• The formatting of Likert scale responses for consistency
and ease of use.

• Vocabulary adjustments to simplify technical jargon for
broader respondent comprehension.

• Structural suggestions include expanding the number of
questions per variable to enhance statistical reliability.

b) Content validity. Content validity [71], [73] is assessed
by five domain experts in API development and software

architecture, who evaluated the questionnaire for:

• Relevance and representativeness of the selected NFRs.

• Alignment with real-world industry practices, such as
development environments, tools, and common
development challenges.

• Addition of two novel NFRs and improvements to
demographic and technical sections.

Overall, other industry experts have provided positive and
encouraging feedback on the questionnaire. They also
recognized that the inclusion of two emerging NFRs from the
literature, along with attributes mentioned in the ISO/IEC 25010
standard, enhances the questionnaire's comprehensiveness and
practicality. This feedback shows the applicability and
usefulness of the questionnaire for both academic and
professional domains.

3) Phase 3: Survey distribution

a) Pilot study and validation process. To ensure the
instrument's quality and reliability, a pilot study [74], [75] with
16 respondents across various countries has been conducted. By

following the guidelines of M. Tavakol and R. Dennick (2011)
[76], a Cronbach’s Alpha has been employed, which has
supported identifying issues related to low reliability, such as
redundancy, ambiguity, and imbalance among items. Based on
the pilot results presented in Table II, overlapping or unclear
questions have been refined, and the questionnaire structure has

been adjusted to assign an equal number of 4 items, resulting in
a total number of 44 questions. This adjustment helps to avoid

potential biases in the calculation of mean scores.

b) Final survey distribution. The questionnaire-based

survey methodology employed a non-probabilistic convenience
sampling approach, following the expert recommendations of
Wohlin, Fowler Jr, and Kasunic [77], [78], [79] to gather data
from industry experts specialized in API domains across
multiple countries. Convenience sampling involves selecting
participants based on their accessibility and availability, with a

particular focus on their expertise and relevance to API

management.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

353 | P a g e
www.ijacsa.thesai.org

c) Data collection. Data collection has occurred through
an online survey platform (Google Forms), chosen for its
accessibility and effectiveness in managing responses. The
survey has been accessible to respondents for over four weeks,
allowing industry experts sufficient flexibility to participate and

complete the questionnaire conveniently. A total of 38 relevant
and valid responses have been collected during the four-week

period.

4) Phase 4: Content Validity Indices (I-CVI and S-CVI)

and Reliability Test

a) Item-level content validity index and scale-level content

validity index. Table III provides a detailed summary of the I-
CVI (Item-level Content Validity Index) values for individual
items and the overall S-CVI (Scale-level Content Validity
Index) score, reflecting the content validity of the

questionnaire.

TABLE II. GROUP-WISE CRONBACH’S ALPHA RELIABILITY FOR NFR

ITEMS (PILOT STUDY)

Sr.# NFRs Number of Items
Cronbach's Alpha

(Pilot Study)

1. FS 5 0.61

2. PE 4 0.57

3. CY 4 0.41

4. IC 5 0.72

5. RL 3 0.48

6. SE 4 0.75

7. MY 5 0.54

8. FY 3 0.52

9. SA 5 0.50

10. OY 4 0.80

11. RS 5 0.77

TABLE III. I-CVI (ITEM-LEVEL CVI) AND S-CVI (SCALE-LEVEL CVI)

NFR Factors
Experts rating

3 or 4
I-CVI

FS

FS1: It is important that the API provides all the required functions for users. 5 1.00

FS2: It is important that the API covers all tasks and goals thoroughly. 4 0.80

FS3: It is important that the API provides accurate and reliable results. 5 1.00

FS4: It is essential that Functional Suitability supports API quality by allowing tasks to be completed without

unnecessary steps.
5 1.00

PE

PE1: It is important that the API provides a quick response time under expected load conditions. 4 0.80

PE2: It is important that the API ensures minimal resource usage during operations. 5 1.00

PE3: It is important that the API efficiently handles high traffic, ensuring performance under peak conditions. 5 1.00

PE4: It is essential that Performance Efficiency enhances API speed, responsiveness, and resources used to ensure

quality.
4 0.80

CY

CY1: It is important that the API integrates seamlessly with other systems, regardless of platform. 4 0.80

CY2: It is important that the API supports multiple platforms (e.g., mobile, web, IoT) and environments. 5 1.00

CY3: It is important that the API ensures backward compatibility with previous versions. 4 0.80

CY4: It is essential that Compatibility supports API quality by ensuring seamless integration with multiple platforms

and systems.
5 1.00

IC

IC1: It is important that the API’s interface is intuitive and easy for users to operate and control. 4 0.80

IC2: It is important that the API provides meaningful error messages for troubleshooting. 4 0.80

IC3: It is important that users can quickly learn to use the API. 4 0.80

IC4: It is essential that an API’s quality depends on strong Interaction Capability, including clear documentation, a user-

friendly interface, and easy integration.
4 0.80

RL

RL1: It is important that the API consistently performs its intended functions without failure, even under load. 5 1.00

RL2: It is important that the API ensures high availability with minimal downtime to maintain service continuity. 5 1.00

RL3: It is important that the API remains operational even in the event of an error. 5 1.00

RL4: It is essential that Reliability supports API quality by ensuring consistent performance, high availability, and

minimal downtime.
4 0.80

SE

SE1: It is important that the API provides strong authentication and authorization to secure access. 5 1.00

SE2: It is important that the API uses data encryption during transmission and storage to protect sensitive information. 5 1.00

SE3: It is important that the API is resilient against common security threats, such as injection and cross-site scripting

attacks.
4 0.80

SE4: It is essential that Security supports API quality by protecting data, preventing unauthorized access, and meeting

security standards.
4 0.80

MY

MY1: It is important that the API has a clear modular architecture to support easy maintenance and upgrades. 5 1.00

MY2: It is important that the API allows seamless updates and versioning without disrupting service or breaking

backward compatibility.
5 1.00

MY3: It is important that well-structured and clear documentation helps maintain and troubleshoot the API efficiently. 5 1.00

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

354 | P a g e
www.ijacsa.thesai.org

MY4: It is essential that Maintainability enables easy updates, bug fixes, and adaptation to new requirements over time. 5 1.00

FY

FY1: It is important that the API supports multiple deployment models (e.g., cloud, on-premises). 4 0.80

FY2: It is important that the API can be installed easily. 4 0.80

FY3: It is important to design APIs that are scalable to support flexibility. 4 0.80

FY4: It is essential that the API stays flexible so it can adapt to new business needs and changing technologies. 5 1.00

SA

SA1: It is important that the API does not cause harm to people, property, or the environment. 4 0.80

SA2: It is important that the API works within safe limits to prevent unsafe actions. 4 0.80

SA3: It is important that the API can help find risks that could cause harm. 4 0.80

SA4: It is essential that Safety helps ensure API quality by preventing unsafe actions and switching to a safe mode if

something goes wrong.
4 0.80

OY

OY1: It is important that the API captures and retains logs for debugging, auditing, and monitoring performance. 5 1.00

OY2: It is important that the API provides real-time monitoring and alerts to notify of any failures. 4 0.80

OY3: It is important that the API uses distributed tracing to track requests across services. 5 1.00

OY4: It is essential that Observability supports API quality by enabling monitoring, logging, and troubleshooting to

maintain optimal performance.
5 1.00

RS

RS1: It is important that the API handles failures smoothly without disrupting service. 5 1.00

RS2: It is important that the API keeps partial functionality available instead of failing completely. 5 1.00

RS3: It is important that the API can recover automatically from failures without requiring manual intervention. 5 1.00

RS4: It is essential that Resiliency supports API quality by effectively managing failures, recovering quickly, and

maintaining uninterrupted operations.
5 1.00

S-CVI (Average of I-CVIs) 0.91

N= Number of Experts = 5

M= Number of Items = 44

Ai= Number of experts who rated item (i) as 3 or 4

𝐼 − 𝐶𝑉𝐼𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑡𝑠 𝑟𝑎𝑡𝑖𝑛𝑔 3 𝑜𝑟 4 (𝐴𝑖)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑥𝑝𝑒𝑟𝑡𝑠

IF, (Ai= 5 and N= 5) 𝐼 − 𝐶𝑉𝐼𝑖 (𝑓𝑜𝑟 24 𝑖𝑡𝑒𝑚𝑠) =
5

5
, 𝐼 −

𝐶𝑉𝐼𝑖 = 1.00

IF, (Ai= 4 and N= 5)

𝐼 − 𝐶𝑉𝐼𝑖 (𝑓𝑜𝑟 20 𝑖𝑡𝑒𝑚𝑠) =
4

5
, 𝐼 − 𝐶𝑉𝐼𝑖 = 0.80

𝑆 − 𝐶𝑉𝐼𝐴𝑣𝑒 =
∑ (𝐼 − 𝐶𝑉𝐼 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑡𝑒𝑚𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑡𝑒𝑚𝑠 (𝑀)

Hence,

𝑆 − 𝐶𝑉𝐼𝐴𝑣𝑒 =
40

44
, 𝑆 − 𝐶𝑉𝐼𝐴𝑣𝑒 = 0.91

To ensure the relevance and appropriateness of the
questionnaire items before the final distribution, a Content
Validity Index (CVI) has been calculated based on ratings from
five domain experts. Each expert has rated all 44 items on a 4-
point scale (1 = Not Relevant to 4 = Highly Relevant). An item-
level CVI (I-CVI) has been computed by dividing the number of
experts who rated an item as 3 or 4 by the total number of
experts. All 44 items have achieved an I-CVI ≥ 0.78, indicating
acceptable content validity based on the standard threshold
recommended by Lynn (1986) [80] and supported by the recent
studies of Almohanna et al., (2022) [81]. Thus, no items have
been eliminated at this stage. By following the guidelines of

Polit, D. F., & Beck, C. T. (2006), the Scale-level Content
Validity Index (S-CVI) has been calculated as the average of all
I-CVI values across the instrument, which shows 0.91,
indicating excellent overall content validity [73].

b) Reliability test (Cronbach’s alpha). By following the
guidelines of M. Tavakol and R. Dennick (2011) [76], a
Cronbach’s Alpha is employed to assess the reliability of the
questionnaire shown in Table IV, followed by Fig. 4, which

ensures that the set of questionnaire items is reliable.

The above-mentioned Table IV and Fig. 4 demonstrate the
acceptable reliability (α > 0.7) [76], [82] of the items mentioned
against each NFR. Reliability coefficients across all NFRs in the
final study exceeded the acceptable threshold of 0.70, with
Compatibility (CY), Security (SE), and Observability (OY)
achieving the highest reliability, above 0.80. However,
Functional Suitability (FS), Performance Efficiency (PE),
Interaction Capability (IC), Reliability (RL), Maintainability
(MY), Flexibility (FY), Safety (SA), and Resiliency (RS)
remained between 0.70 and 0.80, indicating good reliability
coefficients.

5) Phase 5: Data Analysis. The collected data have been

prepared for analysis through coding and categorization based

on participant responses to Likert-scale items. By applying

IBM SPSS Statistics, descriptive statistical tools such as mean

and standard deviation are used to compute the ranking of NFRs

for identification purposes. Table V, together with Fig. 5,

below, shows the mean and standard deviation range to

compute the ranking of NFRs. By following the guidelines of

“Boone & Boone, 2012” [83], an interpretation based on the

mean and standard deviation has also been included in the table.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

355 | P a g e
www.ijacsa.thesai.org

TABLE IV. GROUP-WISE CRONBACH’S ALPHA RELIABILITY FOR NFR ITEMS (FINAL STUDY)

Sr.# NFRs
Final Study

Number of Items Cronbach's Alpha

1. FS 4 0.72

2. PE 4 0.74

3. CY 4 0.81

4. IC 4 0.73

5. RL 4 0.76

6. SE 4 0.82

7. MY 4 0.75

8. FY 4 0.76

9. SA 4 0.76

10. OY 4 0.82

11. RS 4 0.79

Fig. 4. Group-wise Cronbach’s a lpha reliability for NFR items (final study).

TABLE V. OVERALL MEAN AND STANDARD DEVIATION FOR 11 NFRS

NFR Mean Standard Deviation Interpretation

MY 4.29 0.58 High Importance, High Consensus

RS 4.20 0.69 High Importance, High Consensus

FS 4.18 0.54 Moderate Importance, High Consensus

OY 4.16 0.61 Moderate Importance, High Consensus

SE 4.14 0.65 Moderate Importance, High Consensus

RL 4.09 0.62 Moderate Importance, High Consensus

PE 4.08 0.65 Moderate Importance, High Consensus

CY 3.97 0.66 Moderate Importance, High Consensus

IC 3.18 0.68 Low to Moderate Importance, High Consensus

FY 3.18 0.55 Low to Moderate Importance, High Consensus

SA 2.93 0.63 Low to Moderate Importance, High Consensus

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

FS PE CY IC RL SE MY FY SA OY RS

0.72

0.74

0.81

0.73

0.76

0.82

0.75
0.76 0.76

0.82

0.79

Cronbach's Alpha (Final Study)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

356 | P a g e
www.ijacsa.thesai.org

Fig. 5. NFR-wise mean and standard deviation.

The above-mentioned Table V, followed by Fig. 5 shows
that Maintainability and Resiliency achieve “High Importance”
as Core NFRs, while Functional Suitability (FS), Observability
(OY), Security (SE), Reliability (RL), Performance Efficiency
(PE), and Compatibility (CY) are considered to have moderate
importance and are regarded as Critical NFRs. Conversely,
Interaction Capability (IC), Flexibility (FY), and Safety (SA) are
assessed as “Low to Moderate Importance” and are interpreted

as Contextual NFRs. On the other hand, the standard deviation
indicates a high level of variability in participants’ responses to
each item in the questionnaire.

For a detailed analysis of the factors influencing each NFR,
Table VI offers an interpretation of each factor based on the
mean and standard deviation.

TABLE VI. INTERPRETATION BASED ON FACTOR-WISE MEAN AND STANDARD DEVIATION

NFR Factors Mean Standard Deviation Mean Interpretation Standard Deviation Interpretation

FS

FS1 4.29 0.65 High Importance High Consensus

FS2 4.03 0.82 Moderate Importance Moderate Consensus

FS3 4.03 0.79 Moderate Importance High Consensus

FS4 4.37 0.63 High Importance High Consensus

PE

PE1 4.18 0.83 Moderate Importance Moderate Consensus

PE2 3.87 0.96 Moderate Importance Moderate Consensus

PE3 4.03 1.00 Moderate Importance Moderate Consensus

PE4 4.24 0.63 High Importance High Consensus

CY

CY1 3.95 0.87 Moderate Importance Moderate Consensus

CY2 4.26 0.72 High Importance High Consensus

CY3 3.79 0.87 Moderate Importance Moderate Consensus

CY4 3.87 0.84 Moderate Importance Moderate Consensus

IC

IC1 3.21 0.93 Low to Moderate Importance Moderate Consensus

IC2 3.18 0.93 Low to Moderate Importance Moderate Consensus

IC3 3.11 0.89 Low to Moderate Importance Moderate Consensus

IC4 3.24 0.88 Low to Moderate Importance Moderate Consensus

RL

RL1 3.87 0.99 Moderate Importance Moderate Consensus

RL2 4.05 0.80 Moderate Importance Moderate Consensus

RL3 4.05 0.80 Moderate Importance Moderate Consensus

RL4 4.37 0.63 High Importance High Consensus

SE
SE1 4.18 0.8 Moderate Importance Moderate Consensus

SE2 4.11 0.86 Moderate Importance Moderate Consensus

0

1

2

3

4

5

MY RS FS OY SE RL PE CY IC FY SA

4.29 4.20 4.18 4.16 4.14 4.09 4.08 3.97

3.18 3.18
2.93

0.58 0.69 0.54 0.61 0.65 0.62 0.65 0.66 0.68 0.55 0.63

Mean Standard Deviation

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

357 | P a g e
www.ijacsa.thesai.org

SE3 3.95 0.87 Moderate Importance Moderate Consensus

SE4 4.34 0.71 High Importance High Consensus

MY

MY1 4.21 0.74 High Importance High Consensus

MY2 4.05 0.90 Moderate Importance Moderate Consensus

MY3 4.53 0.65 High Importance High Consensus

MY4 4.37 0.75 High Importance High Consensus

FY

FY1 3.11 0.80 Low to Moderate Importance Moderate Consensus

FY2 3.16 0.79 Low to Moderate Importance High Consensus

FY3 3.24 0.63 Low to Moderate Importance High Consensus

FY4 3.21 0.66 Low to Moderate Importance High Consensus

SA

SA1 2.84 0.82 Low to Moderate Importance Moderate Consensus

SA2 2.84 0.89 Low to Moderate Importance Moderate Consensus

SA3 3.29 0.69 Low to Moderate Importance High Consensus

SA4 2.74 0.86 Low to Moderate Importance Moderate Consensus

OY

OY1 4.16 0.82 Moderate Importance Moderate Consensus

OY2 4.05 0.84 Moderate Importance Moderate Consensus

OY3 4.18 0.69 Moderate Importance High Consensus

OY4 4.26 0.69 High Importance High Consensus

RS

RS1 3.97 0.91 Moderate Importance Moderate Consensus

RS2 4.32 0.84 High Importance Moderate Consensus

RS3 4.32 0.90 High Importance Moderate Consensus

RS4 4.21 0.87 High Importance Moderate Consensus

The above-mentioned Table VI shows an in-depth analysis
of the factors associated with each NFR, where each NFR is
divided into four items based on the factors affecting it. Table VI
presents the Mean, Standard deviation, and interpretation based
on the mean and standard deviation of the four items for each
NFR. Out of the 11 NFRs (44 items), 8 NFRs (32 items) are
categorized as having “High” or “Moderate” importance.
However, 3 NFRs (12 items) specifically Interaction Capability

(IC), Flexibility (FY), and Safety (SA) are assessed as having
"Low to Moderate" importance.

IV. RESULTS AND DISCUSSION

A. Comparison of Pilot and Final Studies

Table VII, followed by Fig. 6 below, summarizes the key
differences between pilot and final reliability metrics.

TABLE VII. GROUP-WISE CRONBACH’S ALPHA RELIABILITY COMPARISON OF PILOT AND FINAL STUDY

Sr.# NFR
Pilot Study Final Study

Number of Items Cronbach's Alpha Number of Items Cronbach's Alpha

1. FS 5 0.61 4 0.72

2. PE 4 0.57 4 0.74

3. CY 4 0.41 4 0.81

4. IC 5 0.72 4 0.73

5. RL 3 0.48 4 0.76

6. SE 4 0.75 4 0.82

7. MY 5 0.54 4 0.75

8. FY 3 0.52 4 0.76

9. SA 5 0.50 4 0.76

10. OY 4 0.80 4 0.82

11. RS 5 0.77 4 0.79

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

358 | P a g e
www.ijacsa.thesai.org

Fig. 6. Group-wise Cronbach’s alpha reliability comparison of pilot and final study.

Based on the comparison between the Pilot and Final studies
mentioned in the above Table VII, the final survey achieved
higher Cronbach’s alpha scores and confirmed improved
internal consistency, with group-wise reliability for each NFR
exceeding the threshold of 0.70, demonstrating strong reliability
across all individual dimensions.

The Item-Level Content Validity Index (I-CVI) was
calculated as the proportion of experts rating each item as three
or four. Twenty-four items were rated three or four by all five
experts, resulting in an I-CVI of 1.00. Conversely, 20 items
received ratings of three or four from four experts, resulting in
an I-CVI of 0.80. Consequently, all items exceeded the
recommended minimum of 0.78 for five reviewers. Using the
average method, the Scale-Level Content Validity Index (S-
CVIAve) also confirmed the excellent overall content validity of
the instrument as 0.91.

B. Prioritization of NFRs

Analysis of expert responses based on the Descriptive
analysis of NFRs (mentioned in Tables V and VI) shows:

• Maintainability (MY) and Resiliency (RS) have been rated
as highly important (Mean ≥ 4.20) with strong consensus
(SD ≤ 0.79) and are classified as Core NFRs.

• Functional Suitability (FS), Performance Efficiency (PE),
Compatibility (CY), Reliability (RL), Security (SE), and
Observability (OY) demonstrate moderate importance
(Mean 3.40 – 4.19), with varying levels of consensus and
are categorized as Critical NFRs.

• Interaction Capability (IC), Flexibility (FY), and Safety
(SA) are rated as low to moderate significance (Mean 2.60
– 3.39), with standard deviations reflecting considerable
variability in responses and are classified as Contextual
NFRs.

• The factor-wise analysis also reveals similar trends: the
dimensions related to MY and RS were rated as highly
important, while those associated with IC, FY, and SA
scored comparatively lower.

C. Validation and Related Work

The classification of NFRs into Core, Critical, and
Contextual categories was validated through experts’ feedback,
as demonstrated by the results of descriptive statistics. These
results align with recent research that identifies Maintainability
[84], [85] and Resiliency [10] as the essential NFRs of API
quality and long-term adaptability [86]. Other studies highlight
Resiliency as a key attribute for modern microservice and cloud-
native APIs, emphasizing fault tolerance and automatic recovery
to ensure uninterrupted service [11], [12]. Similar support exists
for Functional Suitability, Performance Efficiency,
Compatibility, Reliability and Security as primary quality
attributes in API design [85], [3], [4]. Likewise, observability as
a quality attribute not only defines the behaviour of the API but
also covers the tools, logs, and monitoring systems that offer
transparency into its real-time operations [8], [9]. By integrating
these findings with the ISO/IEC 25010 quality model and
expanding it to incorporate emerging factors such as
Observability and Resiliency, this study bridges established
standards with current industry needs, offering both theoretical
foundation and practical relevance.

V. PRACTICAL AND THEORETICAL IMPLICATIONS

This research offers both practical and theoretical
contributions through the presentation of a validated
prioritization of NFRs for API development. These
requirements are categorized as Core, Critical, and Contextual,
aligning with ISO/IEC 25010 while incorporating emerging
NFRs such as Observability and Resiliency. The classification
supports industry professionals in early planning of high- and
medium-prioritized NFRs and their influencing factors during
the development phases of APIs. Conversely, lower-prioritized
Contextual NFRs are addressed as context-based on specific
project requirements. Furthermore, theoretically, it enhances the
literature by integrating emerging API-specific NFRs with an
international standard, offering researchers with a structured and
empirically supported foundation for future studies and for
developing a comprehensive NFR-based API quality
framework.

0.00

0.20

0.40

0.60

0.80

1.00

FS PE CY IC RL SE MY FY SA OY RS

0.61 0.57

0.41

0.72

0.48

0.75

0.54 0.52 0.50

0.80 0.77

0.72 0.74
0.81

0.73

0.76 0.82

0.75 0.76 0.76
0.82 0.79

Cronbach's Alpha (Pilot Study) Cronbach's Alpha (Final Study)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

359 | P a g e
www.ijacsa.thesai.org

VI. CONCLUSION AND FUTURE WORK

This study introduces a practical and validated instrument
for capturing industry insights on API-related NFRs. The
comprehensive pilot process, expert feedback, and strong
internal consistency verify that the instrument is reliable and
relevant for guiding future framework development. Moreover,
our study successfully prioritize the most critical NFRs that
influence API quality, as determined by relevant industry
experts. We have gathered feedback from 38 respondents with
considerable expertise in the API domain. The key findings
emphasize that Maintainability and Resiliency are top priorities
as core NFRs, reflecting the need for APIs that are easy to
update, troubleshoot, and recover after failures. Meanwhile,
moderate importance for critical NFRs highlights that
Functional Suitability, Performance Efficiency, Compatibility,
Reliability, Security, and Observability remain essential.
Considering the low ratings for Interaction Capability,
Flexibility, and Safety, our proposed framework should focus on
developer-focused usability, in addition to the user-focused
usability defined under Interaction Capability in the ISO
standard. Furthermore, the framework will also assess whether
the installability, as mentioned in the Flexibility and physical
safety aspects of Safety, genuinely applies to the API domain.

Based on the preliminary findings, future research should
focus on developing a comprehensive Non-Functional
Requirement Quality Framework for APIs (NFRQF-API) that
aligns with current quality standards. Additionally, these
insights can significantly support both academic research and
industry practices, offering a solid foundation for developing an
API Non-Functional Requirements Quality Framework for APIs
that aligns well with modern software engineering approaches
and practical implementation needs.

ACKNOWLEDGMENT

We sincerely thank Universiti Malaysia Terengganu (UMT)
and the Ministry of Higher Education (MOHE) Malaysia for
their support in conducting this research. We also appreciate
Gulf College, Muscat, Oman and the Ministry of Higher
Education, Research and Innovation - Sultanate of Oman for
their vital research assistance.

REFERENCES

[1] S. Andreo and J. Bosch, “API Management Challenges in Ecosystems,”

in Eur. Commission, Louxembourg, Louxembourg, UK, Tech. Rep.

JRC118082, 2019.

[2] A. Rashwan, “Automated quality assurance of non -functional

requirements for testability,” 2015.

[3] S. Andreo and J. Bosch, “API Management Challenges in Ecosystems,”

in Software Business: 10th International Conference, ICSOB 2019,

Jyväskylä, Finland, November 18–20, 2019, Proceedings 10, Springer,

2019.

[4] M. Ahmad, J. J. Geewax, A. Macvean, D. Karger, and K.-L. Ma, “API

Governance at Scale,” in Proceedings of the 46th International

Conference on Software Engineering: Software Engineering in Practice,

New York, NY, USA: ACM, Apr. 2024.

[5] F.-L. Li et al., “Non-functional requirements as qualities, with a spice of

ontology,” in 2014 IEEE 22nd International Requirements Engineering

Conference (RE), IEEE, Aug. 2014.

[6] X. Zhang and X. Wang, “Tradeoff Analysis for Conflicting Software

Non-Functional Requirements,” IEEE Access, vol. 7, pp. 156463–

156475, 2019.

[7] U. S. Shah, S. J. Patel, and D. C. Jinwala, “Constructing a Knowledge -

Based Quality Attributes Relationship Matrix to Identify Conflicts in

Non-Functional Requirements,” J. Comput. Theor. Nanosci., vol. 17, no.

1, pp. 122–129, Jan. 2020.

[8] M. Cinque, R. Della Corte, and A. Pecchia, “Microservices Monitoring

with Event Logs and Black Box Execution Tracing,” IEEE Trans. Serv.

Comput., vol. 15, pp. 294–307, 2019.

[9] M. Scrocca, R. Tommasini, A. Margara, E. Della Valle, and S. Sakr, “The

Kaiju project: enabling event-driven observability,” Proc. 14th ACM Int.

Conf. Distrib. Event-based Syst., 2020.

[10] J. Zhang, Y. Rong, J. Cao, C. Rong, J. Bian, and W. Wu, “DBFT: A

Byzantine Fault Tolerance Protocol With Graceful Performance

Degradation,” IEEE Trans. Dependable Secur. Comput., vol. 19, pp.

3387–3400, 2021.

[11] Y. Lin, S. Kulkarni, and A. Jhumka, “Automation of fault -tolerant

graceful degradation,” Distrib. Comput., vol. 32, pp. 1–25, 2019.

[12] P. Rajput and G. Sikka, “Multi-agent architecture for fault recovery in

self-healing systems,” J. Ambient Intell. Humaniz. Comput., vol. 12, pp.

2849–2866, 2020.

[13] A. Shabbir, N. Tahir, M. Shahzad, and T. D. A. Deraman, “Perceptions

on Restful APIS Testing and Evaluation for Digitial AI Deployed

Applications-A Literature Review and Systematic Survey,” Well Test. J.,

vol. 33, no. S2, pp. 551–570, 2024.

[14] A. Karavisileiou, N. Mainas, and E. G. M. Petrakis, “Ontology for

OpenAPI REST Services Descriptions,” in 2020 IEEE 32nd International

Conference on Tools with Artificial Intelligence (ICTAI), IEEE, Nov.

2020.

[15] S. Bucaille, J. L. Cánovas Izquierdo, H. Ed-Douibi, and J. Cabot, “An

OpenAPI-Based Testing Framework to Monitor Non-functional

Properties of REST APIs,” in International Conference on Web

Engineering, Springer, 2020.

[16] R. Pergl and N. Jíša, “Semantic Analysis of API Blueprint and OpenAPI

Specification,” in World Conference on Information Systems and

Technologies, Springer, 2024.

[17] A. Gamez-Diaz et al., “The role of limitations and SLAs in the API

industry,” in Proceedings of the 2019 27th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 2019, pp. 1006–1014.

[18] R. Nacheva, “Conceptual Model of a Software Accessibility Evaluation

System”.

[19] E. dos Santos and S. Casas, “API Management and SQuaRE: A

Comprehensive Overview from the Practitioners’ Standpoint,” in

Argentine Congress of Computer Science, Springer, 2023, pp. 137–150.

[20] ISO, “ISO/IEC 25010:2023,” Online Browsing Platform (OBP). [Online].

Available: https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-2:v1:en

[21] L. Murphy, M. B. Kery, O. Alliyu, A. Macvean, and B. A. Myers, “API

designers in the field: Design practices and challenges for creating usable

APIs,” in 2018 ieee symposium on visual languages and human -centric

computing (vl/hcc), IEEE, 2018, pp. 249–258.

[22] A. Ehsan, M. A. M. E. Abuhaliqa, C. Catal, and D. Mishra, “RESTful API

testing methodologies: Rationale, challenges, and solution directions,”

Appl. Sci., vol. 12, no. 9, p. 4369, 2022.

[23] A. Shabbir, A. Deraman, M. Nor Bin Hassan, K. U. Sarker, and S. Kamal,

“Enhancing API Quality: A Comprehensive Review of Non -Functional

Requirements for Quality-centric Framework Development,” KSII Trans.

INTERNET Inf. Syst. ISSN 1976-7277, 2025.

[24] A. Svensson, “What is the best API from adeveloper’s perspective?:

Investigation of API development with fintechdevelopers in the

spotlight,” 2024.

[25] W. Granli, J. Burchell, I. Hammouda, and E. Knauss, “The driving forces

of API evolution,” in Proceedings of the 14th International Workshop on

Principles of Software Evolution, 2015, pp. 28–37.

[26] J. Peddie, “Application Program Interface (API),” in The History of the

GPU - Eras and Environment, Cham: Springer International Publishing,

2022.

[27] N. Kratzke, “A brief history of cloud application architectures,” Appl.

Sci., vol. 8, no. 8, p. 1368, 2018.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

360 | P a g e
www.ijacsa.thesai.org

[28] T. Shimosawa, “Quality is not an act, it is a habit—Aristotle,” Hypertens.

Res., vol. 46, no. 5, pp. 1221–1226, May 2023.

[29] J. Ofoeda, R. Boateng, and J. Effah, “Application Programming Interface

(API) Research,” Int. J. Enterp. Inf. Syst., vol. 15, no. 3, pp. 76–95, Jul.

2019.

[30] M. Raatikainen, E. Kettunen, A. Salonen, M. Komssi, T. Mikkonen, and

T. Lehtonen, “State of the Practice in Application Programming Interfaces

(APIs): A Case Study,” in European Conference on Software

Architecture, Springer, 2021.

[31] B. Jin, S. Sahni, and A. Shevat, Designing Web APIs: Building APIs That

Developers Love. “ O’Reilly Media, Inc.,” 2018.

[32] Stephen J. Bigelow, “5 stages of an API lifecycle explained,” TechTarget.

[33] J. Eckhardt, A. Vogelsang, and D. M. Fernández, “Are" non-functional"

requirements really non-functional? an investigation of non-functional

requirements in practice,” in Proceedings of the 38th international

conference on software engineering, 2016, pp. 832–842.

[34] W. Behutiye, P. Karhapää, D. Costal, M. Oivo, and X. Franch, “Non -

functional requirements documentation in agile software development:

challenges and solution proposal,” in International conference on product-

focused software process improvement, Springer, 2017, pp. 515–522.

[35] J. Alvarado-Uribe, A. Y. Barrera-Animas, M. Gonzalez-Mendoza, A. L.

Garcia-Gamboa, and N. Hernandez-Gress, “Towards a Standardized

Evaluation of APIs Non-Functional Requirements Focused on

Completeness and Soundness Qualities,” Comput. y Sist., vol. 27, no . 4,

pp. 889–897, 2023.

[36] N. Krishnamurthy and A. Saran, Building software: a practitioner’s guide.

Auerbach Publications, 2007.

[37] G. J. Singh, “10 Non-functional requirements for API design.”

[38] A. C. da Silva Andrade, J. L. Braga, A. L. de Castro Leal, and F. H.

Zaidan, “Risk management in software projects: an approach based on

non-functional requirements,” Sist. Gestão, vol. 14, no. 2, pp. 188–196,

2019.

[39] H. Ahmed, S. Zehra, U. Faseeha, H. J. Syed, and F. Samad, “Observability

in Microservices: An In-Depth Exploration of Frameworks, Challenges,

and Deployment Paradigms,” IEEE Access, vol. 13, pp. 72011–72039,

2025.

[40] I. Gorton, L. Fong-Jones, and A. Larsson, “Observability Q&A,” IEEE

Softw., vol. 41, pp. 50–54, 2024.

[41] A. Chandrasehar, “The Role of Observability in Modern Software

Development Lifecycle,” Int. J. Sci. Res., 2021.

[42] B. Balakrishna, “Optimizing Observability: A Deep Dive into AWS

Lambda Metrics,” J. Artif. Intell. & Cloud Comput., 2022.

[43] N. Kratzke, “Cloud-Native Observability: The Many-Faceted Benefits of

Structured and Unified Logging - A Multi-Case Study,” Futur. Internet,

vol. 14, p. 274, 2022.

[44] B. Sharma and D. Nadig, “eBPF-Enhanced Complete Observability

Solution for Cloud-native Microservices,” ICC 2024 - IEEE Int. Conf.

Commun., pp. 1980–1985, 2024.

[45] R. Dhall, “Designing Graceful Degradation in Software Systems,” pp.

171–179, 2017.

[46] S. Chu, J. Koe, D. Garlan, and E. Kang, “Integrating Graceful

Degradation and Recovery Through Requirement-Driven Adaptation,”

2024 IEEE/ACM 19th Symp. Softw. Eng. Adapt. Self -Managing Syst.,

pp. 122–132, 2024.

[47] D. Kumar, A. Kumar, and L. Singh, “Non-functional requirements

elicitation in agile base models,” Webology, vol. 19, no. 1, pp. 1992–

2018, 2022.

[48] A. A. Khan, J. A. Khan, M. A. Akbar, P. Zhou, and M. Fahmideh,

“Insights into software development approaches: mining Q &A

repositories,” Empir. Softw. Eng., vol. 29, no. 1, p. 8, 2024.

[49] J. Zou, L. Xu, M. Yang, X. Zhang, and D. Yang, “Towards

comprehending the non-functional requirements through developers’

eyes: An exploration of stack overflow using topic analysis,” Inf. Softw.

Technol., vol. 84, pp. 19–32, 2017.

[50] I. Gorton, “Software quality attributes,” Essent. Softw. Archit., pp. 23–

39, 2006.

[51] D. Bermbach and E. Wittern, “Benchmarking web api quality,” in Web

Engineering: 16th International Conference, ICWE 2016, Lugano,

Switzerland, June 6-9, 2016. Proceedings 16, Springer, 2016, pp. 188–

206.

[52] M. R. M. Assis and L. F. Bittencourt, “A survey on cloud federation

architectures: Identifying functional and non-functional properties,” J.

Netw. Comput. Appl., vol. 72, pp. 51–71, 2016.

[53] A. Mahmoud, “An information theoretic approach for extracting and

tracing non-functional requirements,” in 2015 IEEE 23rd International

Requirements Engineering Conference (RE), IEEE, 2015, pp. 36–45.

[54] B. De, “Api architecture trends in 2023,” in API Management: An

Architect’s Guide to Developing and Managing APIs for Your

Organization, Springer, 2023, pp. 385–411.

[55] L. Viviani, E. Guerra, J. Melegati, and X. Wang, “An empirical study

about the instability and uncertainty of non-functional requirements,” in

International Conference on Agile Software Development, Springer

Nature Switzerland Cham, 2023, pp. 77–93.

[56] S. Das, N. Deb, N. Chaki, and A. Cortesi, “Minimising conflicts among

run‐time non‐functional requirements within DevOps,” Syst. Eng.,

vol. 27, no. 1, pp. 177–198, 2024.

[57] S. Santos, T. Pimentel, F. G. Rocha, and M. Soares, “Using Behavior-

Driven Development (BDD) for Non-functional Requirements,” 2024.

[58] A. Muhammad, A. Siddique, M. Mubasher, A. Aldweesh, and Q. N.

Naveed, “Prioritizing non-functional requirements in agile process using

multi criteria decision making analysis,” IEEE Access, vol. 11, pp.

24631–24654, 2023.

[59] S. Rahy and J. M. Bass, “Managing non‐functional requirements in

agile software development,” IET Softw., vol. 16, no. 1, pp. 60 –72,

2022.

[60] H. M. A. El Sameaa, N. A. abd el Azim, and N. Ramadan, “Challenges of

Non-functional Requirements Extraction in Agile Software Development

using Machine Learning,” Int. J. Comput. Appl., vol. 183, no. 43, pp. 23–

26, 2021.

[61] M. Mathijssen, M. Overeem, and S. Jansen, “Identification of practices

and capabilities in API management: a systematic literature review,”

arXiv Prepr. arXiv2006.10481, 2020.

[62] G. G. Martinez, Á. F. Del Carpio, and L. N. Gómez, “A model for

detecting conflicts and dependencies in non-functional requirements

using scenarios and use cases,” in 2019 XLV Latin American Computing

Conference (CLEI), IEEE, 2019, pp. 1–8.

[63] C. F. Castro et al., “Towards a conceptual framework for decomposing

non-functional requirements of business process into quality of service

attributes,” in ICEIS 2019-Proceedings of the 21st International

Conference on Enterprise Information Systems, SciTePress, 2019, pp.

481–492.

[64] E. Sherif, W. Helmy, and G. H. Galal-Edeen, “Proposed framework to

manage non-functional requirements in agile,” IEEE access, vol. 11, pp.

53995–54005, 2023.

[65] S. Pargaonkar, “A comprehensive review of performance testing

methodologies and best practices: software quality engineering,” Int. J.

Sci. Res., vol. 12, no. 8, pp. 2008–2014, 2023.

[66] R. Koçi, X. Franch, P. Jovanovic, and A. Abelló, “Web api evolution

patterns: A usage-driven approach,” J. Syst. Softw., vol. 198, p. 111609,

2023.

[67] M. Lamothe, Y.-G. Guéhéneuc, and W. Shang, “A systematic review of

API evolution literature,” ACM Comput. Surv., vol. 54, no. 8, pp. 1–36,

2021.

[68] I. Rauf, E. Troubitsyna, and I. Porres, “A systematic mapping study of

API usability evaluation methods,” Comput. Sci. Rev., vol. 33, pp. 49–

68, 2019.

[69] J. Scheibmeir and Y. Malaiya, “An API development model for digital

twins,” in 2019 IEEE 19th International Conference on Software Quality,

Reliability and Security Companion (QRS-C), IEEE, 2019, pp. 518–519.

[70] Y. Liu, A. Hamou-Lhadj, J. Li, and Q. Lu, “Observability and

Explainability for Software Systems Decision Making,” IEEE Softw., vol.

41, no. 1, pp. 45–49, 2023.

[71] M. Saunders, P. Lewis, and A. Thornhill, Research methods for business

students. Pearson education, 2009.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

361 | P a g e
www.ijacsa.thesai.org

[72] W. G. Zikmund, B. J. Babin, J. C. Carr, and M. Griffin, “Business

Research Method 8th ed,” 2010, Cengage Learning.

[73] D. F. Polit and C. T. Beck, “The content validity index: are you sure you

know what’s being reported? Critique and recommendations,” Res. Nurs.

Health, vol. 29, no. 5, pp. 489–497, 2006.

[74] M. Khan, M. A. Akbar, and J. Kasurinen, “Integrating Large Language

Models in Software Engineering Education: A Pilot Study through

GitHub Repositories Mining,” arXiv Prepr. arXiv2509.04877, 2025.

[75] M. A. Hertzog, “Considerations in determining sample size for pilot

studies,” Res. Nurs. Health, vol. 31, no. 2, pp. 180–191, 2008.

[76] M. Tavakol and R. Dennick, “Making sense of Cronbach’s alpha,” Int. J.

Med. Educ., vol. 2, p. 53, 2011.

[77] F. J. Fowler Jr, Survey research methods. Sage publications, 2013.

[78] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.

Wesslén, Experimentation in software engineering, vol. 236. Springer,

2012.

[79] M. Kasunic, “Designing an effective survey,” 2005, Citeseer.

[80] M. R. Lynn, “Determination and quantification of content validity,” Nurs.

Res., vol. 35, no. 6, pp. 382–386, 1986.

[81] A. A. S. Almohanna, K. T. Win, S. Meedya, and E. Vlahu-Gjorgievska,

“Design and content validation of an instrument measuring user

perception of the persuasive design principles in a breastfeeding mHealth

app: A modified Delphi study,” Int. J. Med. Inform., vol. 164, p. 104789,

2022.

[82] K. C. Pentapati, D. Chenna, V. S. Kumar, and N. Kumar, “Reliability

generalization meta -analysis of Cronbach’s alpha of the oral impacts on

daily performance (OIDP) questionnaire,” BMC Oral Health, vol. 25, no.

1, p. 220, 2025.

[83] H. N. Boone Jr and D. A. Boone, “Analyzing likert data,” J. Ext., vol. 50,

no. 2, p. 48, 2012.

[84] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling metrics

for predicting maintainability in service-oriented designs,” in 2007

Australian Software Engineering Conference (ASWEC’07), IEEE, 2007,

pp. 329–340.

[85] E. dos Santos and S. Casas, “An API Management Software Quality

Metamodel based on Square and GQM,” Eng. e soluç oes Ciência e

Tecnol. para o Desenvolv. Hum., pp. 249–266, 2025.

[86] N. Dragoni et al., “Microservices: yesterday, today, and tomorrow,”

Present ulterior Softw. Eng., pp. 195–216, 2017.

