
(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 9, 2025 

371 | P a g e  
www.ijacsa.thesai.org 

An Analytical Review of Environmental and Machine 

Learning Approaches in Dengue Prediction

Orlando Iparraguirre-Villanueva*, Juan Chavez-Perez, Eddier Flores-Idrugo, Luis Chauca-Huete 

Facultad de Ingeniería, Universidad Tecnológica del Perú, Lima 15306, Perú  
 
 

Abstract—In recent years, dengue has gained prominence as a 

priority public health challenge due to increasing incidences of 

spread. The main objective of this systematic literature review 

(SLR) is to explore the use of environmental factors and machine 

learning (ML) techniques to combat dengue, based on studies 

published between 2020 and 2024. For this purpose, 56 studies 

were selected from a balanced distribution of PubMed, Web of 

Science, Scopus and Springer Link, under the Preferred 

Reporting Items for Systematic Reviews and meta-analyses 

(PRISMA) method. The results obtained made it possible to 

determine that the climatological variables, such as temperature 

difference, humidity concentration and rainfall volume, are 

conditioning factors in the spread of the dengue virus. As for ML 

models, Random Forest and Support Vector Machines proved to 

be more accurate than traditional methods in detecting risk 

areas. The highest scientific production corresponded to the year 

2024, with 25% of the studies, while India, with 14.29%, and the 

United States, with 12.50%, stood out as the countries with the 

highest contribution. In conclusion, ML techniques have 

enormous potential for strengthening early detection systems and 

optimizing resources in high-risk areas, but further research is 

needed in this field due to the lack of data availability and 

replicability of models. 
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I. INTRODUCTION 

In recent decades, dengue, a viral disease transmitted by 
bites from mosquitoes, such as Aedes albopictus and Aedes 
aegypti, has gained prominence as a major public health threat, 
affecting both tropical and subtropical regions. The increasing 
prevalence of the disease, together with the challenges 
associated with its control in areas of high population density, 
underscores the need to address this problem on a global scale, 
a concern supported by the United Nations (UN), which has 
pointed out the effects of climate change on the geographical 
spread of dengue [1]. In this regard, the World Health 
Organization (WHO) has identified dengue as a global priority, 
promoting various strategies and policies for its control and 
prevention in endemic areas [2]. The scenario is conditioned by 
various factors that create conditions conducive to spread in the 
environment. 

The proliferation of mosquito vectors is directly linked to 
climate, especially variations in temperature, rainfall and 
humidity, which facilitate the spread of dengue [3]. Abnormal 
climatic factors and rainfall create favorable conditions for the 
transmission of the virus, which increases the risk in both 
urban and rural areas, raising the incidence of the disease [4], 
[5]. Climate change has altered the natural habitats of these 
mosquitoes, favoring their expansion into new regions. In 
Spain, the presence of Aedes albopictus since 2014 has raised 
the risk of autochthonous transmission in Mediterranean areas 
[6]. In February 2023, two cases of dengue were reported in 
Ibiza, Spain, related to the presence of the transmitting 
mosquito, detected in the region since 2014. This fact 
highlights the importance of monitoring non-endemic areas 
where the vector has been introduced [7]. In 2018, an outbreak 
of dengue hemorrhagic fever in Vietnam underlined the 
importance of early detection by real-time reverse transcription 
(RT-PCR), a technique that made it possible to identify the 
serotypes responsible and prevent new outbreaks [8]. 
Pharmacological investigations have identified compounds 
such as CHEMBL376820, which exhibit inhibitory properties 
against dengue serotype 2, representing a significant advance 
in treatment strategies [9]. The use of ML artificial intelligence 
technique has shown a significant impact on the optimization 
of dengue prevention and control strategies, allowing 
foreseeing outbreaks and improving interventions in at-risk 
areas. In Espírito Santo, Brazil, Aedes albopictus was 
identified as a transmitter of DENV-1 and ZIKV, complicating 
control efforts in both urban and rural areas [3]. Regarding 
diagnostic techniques, triplex polymerase chain reaction with 
reverse transcription and real-time quantification (Triplex RT-
qPCR) has been widely recognized for its high sensitivity and 
specificity in detecting serotypes in endemic areas [10]. ML-
based predictive models, such as Gradient Boosting Machines 
(GBM) and Artificial Neural Networks (ANN), achieved an 
accuracy of 80.6% in identifying key factors, which improves 
dengue control decisions [11]. Furthermore, ANNs, within 
these models, have demonstrated high performance, with 
receiver operating characteristics of 0.8324 and an accuracy of 
0.7523. The main risk factors identified include age, 
antigenemia on-structural protein 1 of the dengue virus (NS1) 
and the coexistence of Immunoglobulin M (IgM) and 
Immunoglobulin G (IgG). This approach could facilitate rapid 
prognoses during outbreaks, interpreting immunological 
dynamics and contributing to vaccine development [12]. 

*Corresponding author. 
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In terms of immunization, the Dengvaxia vaccine has been 
shown to be effective in children between 9 and 16 years of 
age who have previously experienced the disease, significantly 
reducing the number of severe cases and patients requiring 
hospitalization. However, before administering the vaccine, it 
is essential to perform blood tests to determine whether the 
individual has previously contracted dengue, as there is an 
increased risk of serious complications if the disease has not 
been experienced [13]. Similarly, the tetravalent mRNA 
vaccine has demonstrated promising immune responses, 
positioning itself as a viable alternative in the prevention of 
dengue virus [14]. 

The present study is justified by the growing global concern 
about the impact of dengue on public health, particularly in 
those regions where environmental factors facilitate its spread. 
Despite advances in control, the disease continues to represent 
a global challenge. This paper aims to review the literature to 
identify the main environmental factors that contribute to 
dengue transmission and to evaluate the potential of ML 
techniques to improve outbreak prediction, prevention and 
control strategies, to contribute to the implementation of more 
effective interventions. 

II. LITERATURE REVIEW 

Previous research on dengue has highlighted technological 
advances that have contributed to improved diagnostic 
accuracy and accessibility. The study [15] developed a 
microfluidic device (Cygnus) used for rapid detection and 
serotyping of NS1 protein in plasma samples using multiplex 
immunoassays, resulting in 82% sensitivity and 86% 
specificity, with potential for epidemiological surveillance. 
Similarly, the study [16] identified immunoreactive peptides 
corresponding to E and NS1 proteins to discover dengue-
specific IgM and IgG antibodies, using peptide synthesis tests 
and ELISA, obtaining results with sensitivity levels of (73.33-
96.66%) and specificity levels of (82.14-100%), offering an 
economically cost-effective solution for diagnosis by serology. 

The work of [17] implemented a machine learning model to 
predict Aedes albopictus suitability on a global scale based on 
climatic and environmental data, which revealed that suitable 
habitats will expand markedly in the northern hemisphere, 
exposing an additional billion people by the mid-21st century. 
On the other hand, research by [18] examined the prevalence of 
DENV-1 and DENV-2 serotypes in Karachi, Pakistan, using 
immunochromatographic and PCR detection techniques, 
identifying that 80% of cases corresponded to DENV-2, 
associating its spread to favorable climatic conditions and 
disorganized urbanization. Finally, the analysis of [19] 
explored the impact of climate change on the distribution of 
Aedes albopictus in China, using data observed between 1970 
and 2021 along with classification tree models, which allowed 
projecting that the risk of dengue will cover almost all of China 
by 2050 and 2080, affecting 1.2 billion people, with winter 
temperatures and summer precipitation as key factors in its 
spread. 

The study by [20] developed and validated a triplex RT-
qPCR protocol to detect chikungunya, dengue and zika viruses 
in mosquitoes simultaneously, employing specific primers and 
probes, demonstrating low detection thresholds (1.32x10⁰ for 
CHIKV, 3.79x10⁰ for DENV1-4 and 2.06x10⁰ for ZIKV), so 
there was no cross-reactivity with homogenates of Aedes 
aegypti mosquitoes, evidencing its suitability for vector 
surveillance in endemic areas. In turn, the research of [21] 
evaluated the VECTRACK system, which combines optical 
sensors and machine learning, for automatic counting and 
classification of Aedes albopictus and Culex pipiens in field 
conditions. The results showed a high correlation between 
visual and automatic identification (Spearman: 0.97 for 
females and 0.89 for males), with an efficiency comparable to 
conventional traps, which supported its potential for 
continuous monitoring with minimal human intervention. 

In [22], they addressed the prediction of dengue outbreaks 
in Bangladesh by means of climate data analysis and the 
application of machine learning algorithms, such as Support 
Vector Machine (SVM), Decision Tree and Random Forest, 
achieving an accuracy of 96.73% with the SVM model, 
confirming that temperature, humidity and rainfall are 
fundamental predictive factors. In the research by [23], they 
developed a methodology to predict dengue incidences in 20 
Brazilian cities, integrating climatological data, Internet 
searches and autoregressive terms, where the Random Forest 
and LASSO regression models proved to be robust, with global 
search data as strong predictors. In addition, the study by [24] 
applied ensemble machine learning techniques to identify 
factors associated with dengue transmission, analyzing 
variables such as vapor pressure and precipitation, which 
improved the accuracy of the predictive models and 
highlighted the usefulness of ML in mosquito-borne disease 
surveillance. 

It should be noted that numerous studies on the subject 
highlight the importance of adopting modeling and 
computational engineering techniques for the analysis of this 
type of disease. For example, the study [25] made use of ML 
practices known as logistic regression, ANN and bagging 
assembly, aimed at predicting the inherent risk of shock in 
patients carrying dengue virus, using clinical and physiological 
data collected at a university-level medical facility, 
highlighting that the bagging assembly method achieved a 
14.5% increase in accuracy compared to other approaches, 
identifying hemoglobin as a key indicator for predicting severe 
complications. Also, in [26], they proposed a fractional 
mathematical derivation to analyze the dynamics of Zika and 
dengue co-infection, validating the model with epidemiological 
data from Brazil and sensitivity analysis. The results showed 
that the rate of human transmission of Zika and vector 
mortality are determining factors in controlling both diseases. 
Table I presents a summary of the main findings and 
limitations of the literature review. 
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TABLE I.  SYNTHESIS OF FINDINGS AND LIMITATIONS IN DENGUE LITERATURE 

References Main Resulted Limitations 

[15] Cygnus device detects NS1 with 82% sensitivity in 40 minutes in multiplex. 
Requires enhancement of antibodies to DENV-1. Do not 

test in rural areas. 

[16] E/NS1 protein peptides identify IgM/IgG (73.33-96.66%) in sensitivity. 
Cross-reactivity with other Flaviviruses. Cost not 

evaluated. 

[17] ML model predicts global expansion of A. albopictus in the northern hemisphere. Omits vector control policies in projections. 

[18] 
DENV-2 predominant (80%) in Karachi, associated with disorganized 

urbanization. 

Limited to one Pakistani city. Does not analyze future 

climate. 

[19] 
Winter temperature key to A. albopictus distribution in China between 93.0% to 

98.8% accuracy. 
Does not validate with socioeconomic data. 

[20] 
Trip lex RT-qPCR detects CHIKV/DENV/ZIKV in mosquitoes, with no cross-

reactivity. 
Detection thresholds are not compared to other methods. 

[21] 
VECTRACK system identifies Aedes/Culex with 97% correlation in females and 

89% correlation in males with visual-ML. 
Only tested in Italy. Does not evaluate cost-effectiveness. 

[22] 
SVM predicts dengue outbreaks with 96.73% accuracy in temperature and rainfall 

climates. 
Data limited to Bangladesh. 

[23] Random Forest and LASSO predict incidence in 20 Brazilian cities. Requires real-time internet search data. 

[24] 
Ensemble models improve accuracy in dengue prediction with vapor pressure and 

precipitation. 
Does not specify omitted climatic variables. 

[25] 
Bagging algorithm predicts dengue shock with 14.5% more accuracy than 

hemoglobin indication. 
Data from a single medical center. 

[26] Fractional mathematical model validates Zika -Dengue co-dynamics in Brazil. Does not include public health interventions. 
 

III. METHODOLOGY 

This section will describe the procedures used to carry out 
the systematic study on models of ML and environmental 
variability applicable to the prediction of dengue outbreaks, in 
accordance with PRISMA 2020 regulations. 

A. Purpose and Research Questions 

The study comprehensively analyzed scientific literature on 
the integration of environmental variables such as climatic, 
ecological and urban variables with ML models for dengue 
outbreak forecasting. By means of the PRISMA 2020 method, 
the latest trends, challenges and opportunities for improvement 
in predictive models were identified, with the purpose of 
guiding future research towards solutions of greater precision 
and relevance in the field of public health. In this sense, the 
following central question arises as the main objective of the 
analysis: 

Question 1: What are the advances and limitations 
identified in the scientific literature on the use of 
environmental factors and ML techniques in dengue 
prediction? 

B. Sources of Information and Search Strategy 

The methodical search for the studies was carried out on 
February 7, 2025; for this purpose, four renowned databases in 
the field of health sciences and cutting-edge technologies were 
consulted: PubMed, Web of Science, Scopus, and Springer 
Link. The criteria for selecting these sources were their 
capacity for exhaustive indexing of peer-reviewed literature, as 
well as their editorial impact factor and their thematic 
relevance according to the objectives of the study. 

In the development of the search strategy, standardized 
descriptors combined with Boolean operators were used. The 
unified conceptual structure was as follows: (“Public Health 
Analytics” OR “Health Data Analysis”) AND (“Machine 
Learning Models” OR “Deep Learning Algorithms”) AND 

(“Disease Prediction” OR “Epidemic Forecasting”) AND 
(“Environmental Risk Factors” OR “Climatic Determinants” 
OR “Urban Health Indicators”) AND (“Dengue Surveillance” 
OR “Arbovirus Monitoring”). 

The search code was adapted to the syntactic and functional 
characteristics of each database. Despite the structural 
adaptations, the integrity of the search was preserved in all 
cases. 

In addition, temporal filters were performed to restrict the 
search exclusively to documents published between 2020 and 
2024, as well as language filters, so that only documents 
written entirely in English were included. Furthermore, using 
databases that allowed this, including PubMed, an additional 
restriction was introduced to limit the availability of text 
(abstract, full text) and species (human). 

As a result of the systematic search process, a total of 1593 
documents were obtained. Fig. 1 shows their distribution by 
database source and provides a quantitative view of the 
coverage and retrieval efficiency. 

C. Inclusion and Exclusion Criteria 

Research was selected by prioritizing climatic conditions, 
epidemiological patterns and predictive approaches. Inclusion 
and exclusion criteria applicable in this review of the scientific 
literature are detailed below. 

1) Inclusion criteria 

a) Research was published between 2020 and 2024, to 

ensure that the evidence collected reflects the most recent 

advances in the field. 

b) Studies that provide primary data on the use of ML 

techniques or the impact of environmental factors on dengue 

prediction and control. 

c) Documentation available in English only, to maintain 

consistency and facilitate interpretation of results. 
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d) Papers that explore aspects such as predictive 
models, climatic variables, vector ecology or dengue 
transmission dynamics related to the focus of study relevant to 

the research question 

2) Exclusion criteria 

a) Publications outside the 2020–2024-time range, since 

they would not reflect the current state of knowledge. 

b) Articles that do not provide empirical evidence, such 
as reviews, meta-analyses, commentaries or theoretical studies 

without original data. 

c) Papers in languages other than English, to avoid 

inconsistencies in interpretation and analysis. 

d) Research that is not directly related to dengue, its 

environmental factors or ML-based prediction methods. 

 
Fig. 1. Distribution of studies by database.

D. Study and Data Selection Process 

The records were managed using the Mendeley® reference 
manager, where specific collections were created for each 
database. Subsequently, the records were exported and 
imported in “.RIS” format to Rayyan®, a tool specialized in 
systematic reviews, allowing efficient detection and 
categorization of duplicates. 

After the screening phase, the system automatically 
detected and eliminated 222 duplicate papers. In addition, 32 
other secondary literature articles, including systematic reviews 
and meta-analyses, were excluded according to pre-established 
eligibility criteria. 

The completeness of the selection process was carried out 
jointly by three reviewers who worked in consensus from the 
beginning in rigorous analysis procedures to minimize bias in 
each case; however, if difficulties or disagreements arose 
regarding the inclusion of certain literary studies, a fourth 
reviewer, a specialist in methodology, intervened to resolve 
those discrepancies to ensure methodological consistency. In 
this way, we were able to select only the studies most relevant 
to the focus of the study, guaranteeing the rigor and 
transparency of the review. Table II shows the number of 
duplicates and systematic reviews eliminated by database 
source. 

After the selection phase in the Rayyan environment, we 
proceeded to work with the eligible studies to organize them in 
a data matrix established in Microsoft Excel spreadsheets 
designed specifically for the systematized analysis. The matrix 
included previously defined categorization fields to 
disaggregate the information, such as the database of origin, 

the title of the article, the year of publication, the type of 
publication, the country of origin, the methodological approach 
(qualitative, quantitative or mixed), and the results directly 
related to the research objective. 

TABLE II.  DISTRIBUTION OF DUPLICATES AND SYSTEMATIC REVIEWS BY 

DATABASE 

Database Duplicates Systematic Reviews 

PubMed 16 13 

Web of Science 123 0 

Scopus 3 2 

Springer Link 80 17 

Total 222 32 

The import of data grouped by bibliographic source of 
origin was carried out by two reviewers of the team, who 
worked closely together to ensure accuracy and completeness. 
A third member of the team inspected and verified the 
existence of inconsistencies or possible misinterpretations 
within the data. At this stage, it was not necessary to contact 
the original authors of the studies, since the information 
contained in the articles allowed the analysis to be carried out. 

The work methodology, characterized by its structure and 
collaborative access developed by the group, made it possible 
to identify thematic patterns and methodological trends, 
particularly in the integration of environmental variables in 
dengue transmission prediction models. Fig. 2 shows the 
distribution of the documents, showing the number of items 
collected, discarded and finally selected using the PRISMA 
2020 Shiny tool. 
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Fig. 2. PRISMA method.

E. Type of Study 

The PRISMA methodology was implemented in this study 
according to the guidelines up to version 2020, to ensure 
systematic rigor [27]. Regarding the elaboration of the 
PRISMA flowchart, an R package with the specific application 
Shiny was used, which enhanced transparency through the 
graphical representation of the selection phases [28]. A strict 
application of eligibility criteria and detailed documentation 
contributed to strengthening validity and replicability. 

F. Risk of Bias Assessment 

This review did not use standardized instruments to assess 
the risk of bias in the primary studies. This decision responds 
to the descriptive and exploratory nature of the analysis, which 
did not include quantitative syntheses or meta-analyses that 
required weighing individual methodological quality. 
However, as an alternative measure of rigor, we applied 
rigorous inclusion criteria that excluded secondary literature, 
duplicate studies, and publications without direct empirical 
evidence. This ensured that only primary research relevant to 
the qualitative analysis was incorporated into the discussion, 
while critically examining the methodological limitations of 

the studies included in the review. PRISMA checklist 2020 is 
given in Appendix (Table IX). 

IV. RESULTS 

The results of this SLR were structured under the 
methodological standard defined by PRISMA. Initially, a total 
of 1593 articles were identified from the PubMed, Web of 
Science, Scopus and Springer Link databases. Achieving this 
initial compilation was the result of using the predefined 
keywords and their combinations in search strings in a rigorous 
manner. Table III details the distribution of the articles 
collected in this phase, including the number and percentage 
corresponding to each database. 

TABLE III.  DISTRIBUTION OF STUDIES INITIALLY 

Database Quantity Percentage 

PubMed 329 20.65%

Web of Science 578 36.28%

Scopus 57 3.58%

Springer Link 629 39.49%
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After numerically counting, the collected documents, a 
preliminary analysis was performed, which led to the creation 
and application of initial filters in Rayyan, including the 
elimination of duplicates and the exclusion of non-relevant 
documents. This process was critical, as it allowed the 
exclusion of non-primary documents, which ensured the 
quality of the documents. The Rayyan system detected 
duplicates, and after manually evaluating the articles placed 
under observation, 254 articles were excluded (222 duplicates 
and 32 systematic reviews), thus reducing the set of studies to 
1339. This distribution by origin, quantity, and percentage 
value is shown in Table IV. 

TABLE IV.  DISTRIBUTION OF STUDIES IN PHASE 1 

Database Quantity Percentage

PubMed 300 22.40%

Web of Science 455 33.98%

Scopus 52 3.88%

Springer Link 532 39.73%
 

Subsequently, in "Phase 1", relevant filters were applied to 
visually analyze the titles and specific keywords related to 
dengue and its vectors, such as Aedes albopictus, Aedes 
aegypti, Dengue virus and Mosquito Vectors. Performing this 
filtering allowed discarding 689 studies, since they were not 
aligned with what the research seeks, due to that the set was 
reduced to 650 studies. Table V shows the distribution of the 
studies selected in this phase, evidencing the rigorous 
application of the thematic relevance criteria. 

TABLE V.  DISTRIBUTION OF ITEMS IN PHASE 1 

Database Quantity Percentage

PubMed 183 28.15%

Web of Science 209 32.15%

Scopus 27 4.15%

Springer 231 35.54%
 

In Phase 2, a hybrid process combining automated filters 
and manual review of the abstracts of the remaining 650 
articles was carried out. This approach made it possible to 
assess the relevance of each study in terms of its objective, 
methodology and results, applying predefined inclusion and 
exclusion criteria. For the process, we used words more 
focused on what we sought to analyze in the abstracts of each 
study, the inclusion words used were "Aedes albopictus", 
"Dengue virus", "Public Health Analytics", "Disease 

Prediction", "Machine Learning Models" and "Environmental 
Risk Factors". Likewise, we sought to exclude studies that 
included topics such as "cells", "prevalence", "in vitro", 
"animal models" and "mice", since they were not aligned with 
the objectives of the review. A total of 519 studies were 
excluded, and the selection set was reduced to 131, as shown in 
Table VI. 

TABLE VI.  DISTRIBUTION OF ARTICLES IN PHASE 2 AFTER REVIEW OF 

ABSTRACTS 

Database Quantity Percentage

PubMed 41 31.30%

Web of Science 22 16.79%

Scopus 12 9.16%

Springer Link 56 42.75%  

Finally, for the last process called "Phase 3", the 131 
studies selected up to the previous phase were reviewed in full 
text. This process involved the exhaustive and detailed 
evaluation of each study to determine whether its content 
information responded to the research question and met the 
established quality and relevance criteria. As a result, 75 
additional articles were excluded, resulting in a final set of "56" 
studies of which 55 corresponded to journal articles and 1 to 
conference proceedings. Table VII presents the final 
distribution of the included studies that fully complied with the 
SLR requirements, showing their origin, quantity and 
percentage value of the total. 

TABLE VII.  FINAL DISTRIBUTION OF ITEMS IN PHASE 3 

Database Quantity Percentage

PubMed 10 17.86%

Web of Science 16 28.57%

Scopus 10 17.86%

Springer Link 20 35.71%  

As mentioned above, the completeness of the study 
selection process, from the initial count to the final phase 3, 
was carried out entirely in Rayyan software, supported by data 
in Microsoft Excel, guaranteeing transparency and 
thoroughness at each stage. Fig. 3 shows the final distribution 
of the 56 selected studies, classified according to the databases 
used for this SLR, while the length is reflected in the bar graph 
corresponding to the exact number of studies included by each 
source, highlighting the contribution of each one to the final 
set. 

 
Fig. 3. Distribution of studies by databases.
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The analysis of the temporal distribution by number of 
studies pertaining to the years between 2020 and 2024 reveals 
significant concentrations of impact. The year 2024 stood out 
as the year with the highest production, representing 25% of 
the total number of publications, with 14 documents. This was 
followed by the year 2021, which contributed 13 with a value 
of 23.21%, while 2020 contributed 12 documents at 21.43%. 

For their part, 2023 and 2022 presented a lower contribution, 
with 11 in 19.64% and 6 in 10.71%, respectively. The trend 
suggests that the topic has been addressed by researchers over 
time, highlighting the increase in ML techniques, which in turn 
consider environmental factors to be important in combating 
dengue in recent years. Fig. 4 illustrates this temporal 
distribution, highlighting the relevance of the studies published 
in the most recent period. 

 

Fig. 4. Number of studies by year of publication.

When the origin of the studies was broken down according 
to the databases and their annual distribution, interesting 
patterns were observed. In 2020, most studies came from Web 
of Science with a value of 7, followed by Springer Link with 3 
and Scopus at 2, while PubMed recorded no contributions. 
Regarding 2021, contributions were more evenly distributed, 
where Scopus, Springer Link and Web of Science had several 4 
each respectively, and only PubMed had 1. For 2022, Web of 
Science again stood out with 3, while PubMed contributed 2 

and Scopus 1, with no contributions from Springer Link. In 
2023, Springer Link registered the highest contribution with 5 
articles, followed by PubMed with 4 and Scopus with 2, with 
no studies coming from Web of Science. Finally, in 2024, 
Springer Link led again with 8 studies being the one with the 
highest impact by contribution, followed by PubMed with 3, 
Scopus with 1 and Web of Science with 2. Fig. 5 visually 
presents evolutionary distribution, highlighting the periods 
analyzed.

 
Fig. 5. Number of studies per year and databases.
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The geographical distribution of the 56 studies included 
reflects the participation of several countries among which the 
most relevant belong to the continental regions of Asia and 
North America. In this sense, India was the main contributor, 
with 8 articles worth 14.29% of the total, followed by China 
with 6 articles worth 10.71% and the United States with 7 
articles worth 12.50%. On the other hand, in Europe, Italy 
stood out with 4 studies at 7.14%, while countries such as 
France, Spain and Switzerland made more modest 
contributions. In other regions, Malaysia with 5 at 8.93% and 
Bangladesh with 4 at 7.14% also showed significant 

participation. On the other hand, countries such as Ghana, 
Pakistan, Tanzania and Mexico, among others, contributed 1 to 
3 studies each, representing smaller percentages. This 
geographical distribution is evidence of the globalization of 
research on the subject, although with a notable concentration 
in countries with greater scientific and technological 
development. It should be noted that all the papers were 
published in English, which reinforces its role as the 
predominant language in global scientific dissemination. Fig. 6 
presents this geographical distribution on a global scale in 
detail. 

 
Fig. 6. Geographical distribution of publications.

The studies included were classified according to their type 
of methodological approach, obtaining results where the 
quantitative approach was the most representative with a value 
of 98.21%, while it was identified that there was only one 
study with the mixed approach that composed a qualitative and 
quantitative analysis and therefore obtained its mixed label in 
1.79%.  Regarding the membership of Springer Link databases, 
it contributed the most quantitative studies represented in 19 
with 33.93%, followed by Web of Science in 16 with 28.57%, 
Scopus and PubMed with 10 in 17.86% respectively. The only 
study with a mixed approach came from Springer Link. This 
methodological distribution reflects the preference for 
quantitative approaches in dengue-related research, possibly 
due to the nature of the data and the ML techniques applied. 

As for the type of research, all 56 included studies 
correspond to completely different distributions due to the 
quantities, where there are original articles with 98.21% and 
conference proceedings with 1.79%. The predominance of 
original articles highlights the relevance of this format in the 
generation of knowledge on the application of ML techniques 
and environmental factors in dengue control. 

To deepen the thematic analysis of the selected studies, the 
VOSviewer tool was used to construct a network of co-
occurrences of keywords. It was possible to observe how 
research on dengue and its vectors is organized into thematic 

clusters clearly differentiated by color. The classification by 
clusters allows an understanding of the direct relationships 
between keywords, establishing specific themes, where the red 
cluster represents the attraction and repellency of mosquitoes 
by certain stimuli colored odors or CO2, whose definition is 
associated with terms such as "Aedes aegypti", "repellent" and 
"carbon-dioxide". On the other hand, the green cluster, 
constituted by connections such as "larvicidal", "Culicidae" 
and "plant-extracts", exposes the strategies of larval control 
and the understanding of their interaction with ecology. In the 
blue cluster, such as "prevalence", "dengue fever" and "optimal 
control" for efforts to understand how the disease spreads and 
how to control it effectively. Meanwhile, the purple cluster in 
"public health" and "citizen science", which emphasizes the 
importance of community involvement and public health 
policies in preventing outbreaks. 

Finally, it is highlighted that the strongest connections in 
the co-occurrence network is that between "Aedes albopictus" 
belonging to the pink cluster and "dengue" to the purple 
cluster, visually it can be seen that both words have a 
considerable size with respect to the others, since their size 
represents the highest number of mentions in research, 
confirming the relevance of this mosquito in the transmission 
of the disease. Fig. 7 visually illustrates these relationships, 
offering a clear and proportional overview of the most 
researched topics and their connections. 
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Fig. 7. Bibliometric scan of literature.

V. DISCUSSION 

A. What are the Advances and Limitations Identified in the 

Scientific Literature on the Use of Environmental Factors 

and ML Techniques in Dengue Prediction? 

The possibilities of predicting the occurrence of dengue 
through environmental factors and ML techniques constitute a 
field of opportunities to address public health challenges. 
Recent studies in scientific literature highlight the disruptive 
potential of technology to achieve substantial progress in short 
periods of time. In this line, the application of ANNs stands out 
because they provide a high degree of accuracy when 
analyzing climatological variables such as temperature, 
humidity and precipitation. The combination of these 
techniques with the Mosquito Oviposition Index makes it 
possible to identify areas at risk with greater accuracy. 
However, there are limitations such as accessibility to 
historical data and overfitting of local value sets, which 
compromises the effectiveness of the predictions. 

The work done by [22] used machine learning algorithms, 
such as SVM, Decision Tree and Random Forest, from which 
climate parameters observed in Bangladesh were analyzed, 
achieving an accuracy of 96.73%. This method scientifically 
demonstrated that climatic variables are a decisive indicator of 
the occurrence of epidemic outbreaks. On the other hand, in 
[23] a methodological framework was devised to forecast the 
occurrence of dengue cases in 20 Brazilian cities, by 
integrating climatic data, Internet queries and autoregressive 
terms. The robustness of the Random Forest and LASSO 
regression models was demonstrated, highlighting the potential 
of Internet browsing data as powerful predictive indicators. 

In the domain of environmental factors, the study of [17] 
implemented machine learning models with the objective of 

predicting the global-scale suitability of natural habitats for 
Aedes albopictus as a direct function of climate and 
environmental data, showing results that indicate that 
mosquito-friendly habitats will expand markedly in the 
northern hemisphere, exposing a billion people by the middle 
of the 21st century. Similarly, research [19] analyzed the 
impact of global warming on the distribution region of Aedes 
albopictus in China, using data observed during the period 
from 1970 to 2021 combined with classification tree models, 
the result of which projected that the risk of dengue would 
cover China in its entirety in future years between 2050 and 
2080, reaching 1.2 billion people affected, due to winter 
temperatures and summer precipitation as the main factors in 
its propagation. 

In [25], they developed a ML-based predictive model for 
the statistical calculation of the risk of shock in patients with 
dengue, using clinical and physiological data collected in a 
university medical center, being combined models such as 
logistic regression and ANN, achieving that the bag assembly 
method obtained a 14.5% increase in accuracy compared to 
other approaches, identifying hemoglobin as a fundamental 
predictor of the severity of complications. In this regard, the 
study [26] provided a fractional derivative mathematical model 
for the analysis of Zika and dengue codynamics. The model 
was subjected to validation tests based on epidemiological data 
from Brazil and sensitization analyses, the results of which 
showed that the speed of human transmission and vector 
mortality are conditioning factors for the control of both 
diseases, suggesting strategies aimed at attenuating human-to-
human transmission. 

Among the limitations identified, overfitting to local data, 
noted in [22], reduces the ability of the models to generalize to 
other regions. In addition, the lack of complete historical 
climate data, mentioned in [17], limits the accuracy of 
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predictions based on environmental factors. Furthermore, 
another considerable challenge is the high cost of 
implementing advanced technologies, such as the VECTRACK 
system evaluated in [21], whose effectiveness requires 

considerable investments in infrastructure and training. 
Progress in this area is presented in Table VIII, where the 
advances and limitations found in literature are grouped as 
follows.

TABLE VIII.  ADVANCES AND LIMITATIONS IN DENGUE PREDICTION WITH ENVIRONMENTAL FACTORS AND ML 

# Advances Limitations Quantity References 

1 
Outbreak prediction using temperature and 

Mosquito Oviposition Index (MOI) 

Incomplete climate data; low spatial and temporal 

resolution 
6 [29], [30], [31], [32], [33], [34] 

2 ANN to predict incidence 
Overfitting local data; limited generalizability; low 

interpretability 
8 

[35], [36], [37], [38], [39], [40], 

[41], [42] 

3 Satellite data for mapping risk zones 
High cost; coverage and cloudiness issues; high  

computational demand 
5 [43], [44], [45], [46], [47] 

4 Vertical transmission in mosquitoes Poor generalization; limited epidemiological evidence 4 [48], [49], [50], [51] 

5 
Identification of antivirals with molecular 

docking 

Limited experimental validation; absence of clinical 

trials 
3 [52], [53], [54] 

6 Network analysis to identify vectors 
Dependence on quality data; risk of bias in  incomplete 

data  
4 [55], [56], [57], [58] 

7 One Health" approach to surveillance 
Complexity in interdisciplinary coordination; 

insufficient infrastructure 
3 [59], [60], [61] 

8 
Vaccine development with  immunogenic 

peptides 

Low stability; limited immunogenicity; production 

barriers 
4 [62], [63], [64], [65] 

9 Vector control with Wolbachia  
Difficulty of large-scale implementation; uncertainty 

regarding social acceptance 
3 [66], [67], [68] 

10 Prediction with socioeconomic factors 
Incomplete socioeconomic data; regional 

heterogeneity 
4 [69], [70], [71], [72] 

11 
Autoregressive Integrated Moving Average 

(ARIMA) models for time series 

Limitations in long-term forecasts; low robustness to 

abrupt changes 
3 [73], [74], [75] 

12 Human mobility analysis Restricted access to data; representativeness biases 3 [76], [77], [78] 

13 Vector susceptibility by serotype 
High variability between species and serotypes; lack of 

longitudinal data  
4 [79], [80], [81], [82] 

14 Deep Learning (DL) for outbreak prediction 
Requires large volumes of data; risk of overfitting; low 

interpretability 
2 [83], [84] 

 

The results presented in Table VII show the various 
advances and limitations that exist in the development of 
environmental factors and ML techniques for dengue 
prediction. In this regard, the use of satellite data for mapping 
risk zones is relevant, allowing the delimitation of vulnerable 
areas with high precision. On the other hand, the focus on 
vertical transmission in mosquitoes offers valuable knowledge 
on the conservation of the vector in different populations. 
Regarding antiviral identification initiatives, certain 
techniques, such as molecular docking, show promising results, 
while network analysis has emerged as an innovative way to 
detect transmission patterns of the disease and its vectors. In 
terms of integrated surveillance systems for dengue viruses, the 
"One Health" approach brings together human health, animal 
health and the environment. 

Despite these advances, many limitations remain. Among 
them, the high cost of implementing technologies such as 
satellite data and Wolbachia vector control makes them 
difficult to adopt in resource-poor regions. In addition, the 
limited experimental validation of antiviral compounds and the 
reliance on quality data in network analysis represent major 
challenges. At the same time, the complexity of 
interdisciplinary coordination of the "One Health" approach 
and limitations in large-scale production of peptide-based 
immunogenic vaccines highlight the need for improved 
cooperation and more infrastructure. Finally, the lack of 
accurate socioeconomic data and the difficulties in obtaining 

data on human mobility diminish the effectiveness of 
predictive models. 

Likewise, a critical aspect identified in this review is the 
validation of ML models. Although it is true that several 
studies report significant metrics, it is important to exercise 
caution. 

For example, the problem of overfitting in ANN and DL 
models can be observed, where local patterns are adjusted 
excessively. This limits their ability to generalize in contexts 
where geography is changing. Similarly, the problem of data 
leakage can also be observed, which occurs when the 
validation set is leaked into the training, and this can artificially 
inflate performance indicators. 

Another important and well-known challenge is class 
imbalance. In many contexts, dengue outbreaks are a small 
fraction of the data compared to non-outbreak periods. 

Consequently, it is recommended that future work address 
the following issues: 

• Cross-validation that captures the sequential nature of 
outbreaks. 

• Strategies to mitigate class imbalance. 

• External generalization evaluations, testing models on 
data from different regions. 
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VI. CONCLUSIONS 

This study addressed the relationship between 
environmental factors and the application of ML techniques in 
the prediction and control of dengue spread. For this purpose, 
an SLR was performed that analyzed 56 studies selected from 
various databases such as Springer Link which contributed 
35.71% of the studies, followed by Web of Science with 
28.57%, PubMed with 17.86% and Scopus with 17.86%, 
reflecting a representative and balanced distribution of the 
available scientific knowledge related to the subject during the 
period between 2020 and 2024. 

Thanks to this research, it has been possible to discover 
essential trends linked to environmental factors that affect the 
spread of dengue, specifically the variation in temperature, 
humidity rate and precipitation regime. The effectiveness of 
various ML applications was also tested, highlighting the 
superiority of models based on supervised learning, such as 
Random Forest and SVM, for the classification and estimation 
of outbreaks compared to traditional approaches. On the other 
hand, it was found that the integration of geospatial and 
epidemiological data in the analyzed models is becoming more 
and more frequent, thus contributing to strengthening the 
accuracy in the identification of risk areas and planning of 
interventions. 

This work will make a major contribution to public health 
research expertise by laying a strong foundation for the 
development of more potent anti-dengue measures. In 
particular, the findings emphasize the potential of forecasting 
methods to optimize early warning systems and focus 
resources on high-risk sectors. But there are also considerable 
limitations, such as the heterogeneity in the quality of the 
available data, which affects the comparability of the studies; 
the non-standardization of methodological approaches, which 
hinders the replicability of the models. These limitations are an 
opportunity for future research to optimize the integration of 
environmental data, improve the robustness of predictive 
models in real scenarios and explore innovative approaches, 
such as the use of unsupervised learning techniques to identify 
incipient patterns in the spread of dengue. In this way, it will be 
feasible to progress towards approaches that are more 
functional, durable and oriented to the specific needs of the 
territorial entities concerned by the disease. 
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