
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

385 | P a g e
www.ijacsa.thesai.org

Assessing the Effectiveness of MCR-KSM for

Waiting Waste Reduction: An Empirical Study

Nargis Fatima1, Sumaira Nazir2, Suriayati Chuprat3

Department of Software Engineering-Faculty of Engineering and Computing, National University of Modern Languages
(NUML), Islamabad, Pakistan1, 2

Faculty of Artificial Intelligence, University Technology Malaysia (UTM), Kuala Lumpur, Malaysia3

Abstract—Modern Code Review (MCR) is a well-known and

widely adopted quality assurance activity to develop quality

software. Although it is a core activity for improving code

quality, it generates various types of waste, including waiting

waste, defect waste, and composite solution waste. Besides all

other wastes, the waiting waste is the most critical one, leading to

mental distress, delayed code merges, and project delays.

Researchers have made efforts to reduce the production of

waiting waste by providing various automated code review tools,

techniques and models, one of them is the MCR Knowledge

Sharing Model (MCR-KSM). The model claims that it supports

sustainable software engineering by minimizing waiting waste

reduction during MCR activities. This study aims to evaluate the

effectiveness of MCR-KSM with respect to the reduction of

waiting waste produced during MCR activities. The experiment

methodology is employed for this purpose. This paper presents

the experimental investigation approach along with the results.

The experiment was conducted in dual sessions with 28 graduate

students having similar educational and industrial experience.

The tools and techniques, such as SPSS paired t-test and value

stream mapping, are used for experimental data management

and analysis. The study results revealed that the model

significantly helps in the reduction of waiting waste production.

The conducted study has implications for investigators to extend

the research with different parameters and settings.

Keywords—Modern code review; wastes; waiting waste;

software quality; automated code review; sustainable software

engineering

I. INTRODUCTION

Recent software development practices depend on the
human aspects of software engineering. For instance, code
reviewing [1] that needs verification of code by developers not
write it [2]. Code Reviews are the core activity of software
development [3]. Besides the quality assurance, the code
review is a well-adopted platform for knowledge sharing that
can be apparent from pull request discussions on GitHub [4],
[5], [6], [7], [8]. Modern Code Review (MCR) is a process
where code is submitted, reviewed, discussed and modified
before a decision is made on whether to merge it into the main
repository or discard the submitted code [1], [9]. Fig. 1 shows
the activities involved in the MCR process [10].

As the code review heavily involves the humanoid aspect,
specifically for human-to-code and human-to-human
interaction for reading, understanding, and providing feedback
to modify the code [11], [12]. This interaction and
collaboration can result the code review waste production and

become inefficient [13] [14]. Waste refers to “Activities that
absorb resources and increase cost without adding value”. It
refers to “Everything that does not make it to the release” The
various insights regarding wastes are presented by [15]. The
numerous types of waste generated during code review are
specifically reported by [13]. The code review wastes can be
cognitive load, needless composite solutions, waiting, negative
emotions, poor review, poor or delayed feedback, etc. [8],
[14], [16], [17].

It is conveyed that the waiting waste is critical and one of
the biggest wastes [18], [19], [20]. In code reviews, waiting
wastes generated when the author, after submitting the code,
waits for reviewers’ feedback [21]. In a survey conducted by
[22], a survey participant reported, “Usually you write up
some code and then you send it out for review, and then about
a day later you ping them to remind them ... and then about
half a day later you go to their office and knock on their door”.

It is also reported that during code review, when the author
submits the code, he/she must wait for timely feedback. After
waiting for a long time, the request is rejected. Regarding
waiting, they conveyed that it is a typical form of disregard and
is interactional unfairness. One of the authors in their research
discussing the waiting waste reported that “Contributions are
ignored unless I beg for attention. I might have time to
contribute a minor improvement. I never have time to beg for
attention. If you don’t want my help, I got the message loud
and clear” [23].

Researchers have contributed towards facilitating such
review engagement and waiting waste reduction with the aim
of improving the feedback process, overall collaboration and
effective knowledge sharing [6], [9], [24]. The author of this
research study has developed the Modern Code Review-
Knowledge Sharing Model (MCR-KSM) to reduce the waiting
waste generation. The details regarding the development of
MCR-KSM are presented in our previous research work [3],
[15]. In our previous work, the MCR-KSM was developed.
This study is an extension of our previous work. To develop
the MCR-KSM, the included research methodologies were
Systematic Literature Review (SLR), along with Expert
Review and Delphi Survey. The results of previous work are
available at [3], [15]. This study aims to conduct the
experimental evaluation of the developed MCR-KSM. The
objective of this study is “To evaluate the effectiveness of the
Modern Code Review Knowledge Sharing Model to reduce
software engineering waiting waste (waiting time)” .

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

386 | P a g e
www.ijacsa.thesai.org

The rest of the paper is planned as follows: Section II
deliberates the research background and literature review. The
experiment design details, including objective, environment,
hypothesis, variable, subject selection, instrument and validity
evaluation, are given in Section III. The details regarding
experiment execution are covered in Section IV. Section V
provides the details about the data collection. Section VI
highlights the results analysis and discussion. Sections VII-X
highlight the conclusion, study limitations, future work
suggestions and contribution.

II. BACKGROUND

Software engineering is a methodical process that aims to
create high-quality software within a specified budget and
schedule [25]. It involves various underneath systematic
activities to achieve its aims. The underneath activities
included [26] requirement identification and management,
modeling, development, dynamic testing, Static testing
(inspection and code reviews). These activities produced
numerous wastes [27]. The generated wastes may lead to
numerous other issues such as psychological distress, delay in
projects, overspending and software malfunctions. When
Toyota revolutionized the industry with lean manufacturing, in
the 1980’s the idea of waste was first presented by [28], [29].
Later in 2000, the lean paradigm was shifted from lean
manufacturing to lean software development [20]. Moreover,
it is also contended that managing waste generation ensures
green and sustainable software development [30]. Various
researches were conducted with the aim to identify waste and
procedures, tools and methodologies and a model to reduce the
waste [18].

In the context of software engineering numerous wastes
have been recognized, for instance, “rework”, “defects”,
complexity, cognitive load, and waiting, etc. [18], [28]. As
discussed previously, there are multiple underneath activities
involved for successful software engineering; each activity
produces waste [27]. Code review is an important activity that
contributes towards code quality improvement and quality
software development [4], [31], [12].

In code review, the reviewer evaluates the source code
before uploading it to the version control repository. Code
review is supported with the aid of numerous AI-based review
tools, such as Quodo merge, Greptle, CodeRabbit, Gerrit,
Corbit, Deepsource, PullApprove, for instance, Code flow,
such as Gerrit, Review board, Phabricator, etc. [4], [22], [32],
[33], [34],[35]. Fig. 1 represents the MCR process workflow.

The code review activity becomes challenging when the
team members must confront various types of waste. For
instance, Waiting waste, cognitive load, code duplication, poor
feedback, negative emotions, poor review comments, Biases,
lack of knowledge, poor code understanding, code complexity,
ineffective code review tools, poor communication, confusion,
lack of motivation to share knowledge, code inconsistency, etc.
[13], [36], [37], [38], [39], [40], [41], [42], [43]. It is also
reported that waiting waste is the critical waste, and it is
conveyed that the waiting waste must be the organization’s
primary priority if it is to reduce any waste [19], [20].

Fig. 1. Workflow of the MCR process [32].

The MCR process allows the freedom for reviewers to
accept or reject review requests. This is a critical practice that
makes the MCR Process challenging and generates waiting
waste. It is reported that as the author submits the code for
review, generally the authors wait for the reviewers’ response.
Numerous research have been performed to highlight the
reported issue. A study conducted using dataset of 182 GitHub
projects included 55K pull request and 466K code change
request comments, and poor clarity of code comments
significantly contribute to the delay response [37]. Likewise,
poor prioritization of code change requests can contribute to
delays and an inefficient review process [14]. A study reported
that “Reviewers find only shallow defects and it is hard to give
insightful and actionable feedback in timely manner”[44].

Moreover, it is reported that when the author submits the
code and request reviewer for review, they have to wait for
long time. It became more impertinence when the request is
rejected or unnoticed [23]. Likewise, it is conveyed that 16%
to 66% of code submitted for review have at least one invited
reviewer who let the author in waiting condition [45]. It was
argued that regardless of the ease of the MCR process, waiting
for feedback is a challenge for authors. It is claimed that
multiple human factors such as reviewers’ workload, reviewer
experience, and familiarity with the requested review can cause
poor knowledge sharing and waiting waste [45]. Similarly, it is
stated that waiting is the highest reported challenge. In their
study a survey participant stated that “Usually you write up
some code and then you send it out for review, and then about
a day later you ping them to remind them. and then about half a
day later you go to their office and knock on their door.” [22].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

387 | P a g e
www.ijacsa.thesai.org

Moreover, It is reported that developers with less experience
have to wait for the feedback [32], [46]. Similarly, it is stated
that the broadcast or unicast review technology can have a
noteworthy effect on delay in response. It is conveyed that
broadcast technology has a short response delay as compared
to unicast technology [47]. It is stated that there is a need to
have guidelines for source code submission to avoid waiting
waste [48]. Correspondingly, it is also reported that to get
insightful feedback in timely manner is crucial, but the authors
often suffer from the non-responsiveness of reviewers and
must wait for feedback. The conveyed developer statement is
“The value of the feedback is in the proportion to the cost in
terms of delay and time spent” [49]. It is argued that
developers’ reputation, code size are the reason can have
impact on timely feedback [50], [51].

Moreover, it is also argued that even in the presence of AI-
based code review tools, the wastes are generated during code
review [11]. The generated waste can be waiting, rework,
defect, needless composite solutions, task switching, code
complexity, etc. [28], [43]. It is conveyed that code creation is
easy and fast “just prompt LLM to generate desired code” ,
however it is difficult to employ AI-based code review tools to
evaluate the code issues. It is reported that expert developers
are more valuable than machines and are not replaceable by
LLMs [11], [52], [53]. There must be documentation or
guidelines to manage the waiting waste and thus project delays
[11], [54].

Recent research conveyed that developers’ domain
knowledge, effective communication and knowledge sharing
can reduce waiting waste and project delays [22], [27], [33],
[38], [55], [56], [57], [58]. In our previous research work, we
have developed the MCR-KSM to reduce waiting waste. In this
study, we have presented an experimental study that was
performed to validate the designed model with respect to the
reduction in waiting waste generation. The upcoming section
covers the detailed experiment design, data collection and
results analysis.

III. RESEARCH METHODOLOGY

An experiment in a control environment has been
conducted to validate the Modern Code Review Knowledge
Sharing Model (MCR-KSM). The aim is to investigate whether
the MCR-KSM helps to reduce waiting waste production. The
guidelines provided by [59], [60] were utilized for the
conduction of the experiment. Grounded on the research work
of [61], the experiment was performed with the students of
software engineering graduate level having same software
development experience and educational background. To
conduct the experiment the preparation regarding experiment
objectives, selection of environment, hypothesis design,
variables, and validity assessment must be completed. This
section delivers the particulars regarding planning for the
experiment. The experiment execution details are provided in
result analysis section. The activities included in the
experiment planning are given in sub-sections.

A. Objective of Experiment Conduction

The objective to conduct the experiment was to confirm
whether the MCR-KSM help to reduce the waiting waste

generation in real environment. The waiting waste production
evaluated firstly without using the MCR-KSM, then the
waiting waste production was assessed while using the MCR-
KSM, assisted by electronic reference guideline of MCR-
KSM.

B. Experiment Environment

The experiment environment discusses the context in which
the experiment is executed [59]. The experiment was executed
in the laboratory of computer science at Comwave Institute of
Science and Information Technology, Islamabad, Pakistan. The
systems having Windows operating system and C++ editor
were utilized to conduct the experiment. The MCR-KSM was
also accessible during the experiment.

C. Hypothesis Construction

The experimental statistical analysis is founded on
hypothesis testing. A hypothesis is evaluated based on the
analysis of dependent variables of the experiment. The
guidelines given by [59] were utilized to construct the
hypothesis. For experiment pre-test and post-test, the null and
alternative hypothesis was constructed. The null hypothesis,
H0 refers that there are no real underlying patterns in the
experiment situation, the only reasons for differences in
observations are coincidental. However, the alternate
hypothesis, H1 is in support of which the null hypothesis is
rejected.

1) Hypothesis for pre-test: For the pre-test Null and

Alternate hypothesis were constructed and are presented in

Table I.

TABLE I HYPOTHESIS FOR PRE-TEST

Hypothesis

Types

Hypothesis

Representation
Hypothesis

Null

Hypothesis
H0

There is no noteworthy difference in

waiting waste production for both the

groups without using MCR-KSM.

Alternate

Hypothesis
H1

There is a noteworthy difference in

waiting waste production for both the

groups without using MCR-KSM.

2) Hypothesis for post-test: For the post-test, hypotheses

Null (H0), Alternate (H1, and H2) were constructed. If the H0

was rejected, it refers to dual situations. The first one was that

the waiting waste production in the modern code review

process using the MCR-KSM was less than the waiting waste

production without using the MCR-KSM. The second

situation was that the waiting waste production in the modern

code review process using MCR-KSM was greater than the

waiting waste production without using MCR-KSM.

Therefore, two alternative hypotheses were constructed

supporting each situation. Post-test hypothesis are given in

Table II.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

388 | P a g e
www.ijacsa.thesai.org

TABLE II HYPOTHESIS FOR POST-TEST

Hypothesis

Types

Hypothesis

Representa

tion

Hypothesis

Null

Hypothesis
H0

There is no significant difference in the

waiting waste production in the modern code

review process with or without using MCR-

KSM.

Alternate

Hypothesis

H1

The waiting waste production in modern

code review process using MCR-KSM is

lesser than without using MCR-KSM

H2

The waiting waste generation in modern code

review process using MCR-KSM is greater

than without using MCR-KSM.

D. Experiment Variables

According to the guidelines provided by [59], independent
and dependent variables can be defined for an experiment. In
this study, one independent variable was “modern code review
process”. The process was manipulated with and without the
support of MCR-KSM, and the dependent variables were
assessed. The dependent variable was the “Waiting Waste”.
The waiting waste was measured using Value Stream Mapping
(VSM) from three aspects, i.e. author waiting time, reviewer
waiting time, and total waiting time during MCR activities.

The VSM is utilized by various researchers to calculate the
waiting time in various situations. For instance, [29] utilized
VSM to measure waiting waste by calculating the customer
waiting time, development team waiting time, and total waiting
time in the software customization process. Likewise, [20]
utilized VSM to measure waiting waste in traditional and agile
processes.

In this study, the waiting waste was analysed based on
aspects such as “Author Waiting Time (AWT)”, that is, waiting
time observed by the author while executing MCR activities.
“Reviewer Waiting Time (RWT)”, that is, the waiting time
observed by the reviewer while executing MCR activities and
“Total Waiting Time (TWT)”, that is, the waiting time
observed by the author and reviewers during MCR.

E. Experiment Subject Selection

In this study, 28 students of software engineering were
designated as test subjects according to the guidelines given by
[62]. The subjects have equal experience. They were grouped
as “Group I” and “Group II”. Each group contained 14
subjects. Out of 14 subjects in both groups, 7 subjects were
designated as “Author” and “Reviewer”. The subjects were
chosen depending on their industry experience and
programming subjects studied during graduation.

F. Experiment Instrument

Formerly, in the experiment implementation, the
instruments must be developed. It can be guidelines, objects,
and measurement instruments for the measurement [59]. In this
experimental study, the included instruments were problem
statements that were used by the subjects to write the code,
Modern Code Review Knowledge Sharing Model (MCR-
KSM), along with an electronic reference guideline, and a
document explaining the MCR activities. The details about

experiment objective, problem and activities were specified to
all the subjects. The subjects “Author” had to write the code,
whereas the subjects “Reviewers” had to evaluate the code
written by the authors of their group. The subjects of “Group
II” were prearranged with the MCR-KSM, supported with its
electronic reference guideline. The experiment data were
collected via forms as per the directions of [59]. The waiting
time experienced by subjects’ “Author” and “Reviewers” was
measured through the data collected during the experiment.
The experiment moderator was given the task of managing the
record of the start and end time of each MCR activity.

G. Validity Assessment

It strengthens the rationality of the experimental results. It
involves recognition of validity threats, “factors that can
influence the dependent variables that are not included as
independent variables”. The internal and external validity
threats were considered as per the guidelines given by [59].
The internal validity threats influence the dependent variable
deprived of the researcher’s information [59]. The following
internal validity threats were discussed for the experiment.

1) Selection effect: It is because of the usual dissimilarity

in human recital. Each human can have a different

understanding of the English language [59]. It was managed

by the selection of subjects with a common educational

background. Additionally, they were given similar details

about the experiment.

2) Learning effect: It is because of the subjects’ behaviour

during the experiment activities. It was controlled by common

training of the subjects about activities, problems, MCR and

MCR-KSM.

3) Instrumentation effect: It is because of the artifacts,

such as data collection forms, documents that need to be

reviewed, or problems [59]. This hazard was overcome since

every subject was given the same task to code, as [59]

explained.

4) Information exchange: It is reported that the exchange

of information while performing an experiment influences the

outcome [59]. It was controlled by strictly observing the

subjects during the experiment.

External validity is the external conditions which limit the
ability to generalize the experimental results to industrial
practice [59]. The two external validity threats, generalizability
of subjects and Experiment Scale, were managed. The details
about external validity threats are given in sub-sections.

5) Generalizability of subject: It occurs when the

population is not taken from the industry [59]. In this study,

the selected subjects have industry experience. Thus, this

threat was managed as per [59] guideline.

6) Experimental scale: It occurs when the experimental

situation or the materials are not illustrative of industrial

practice. It was overcome by delivering the subject with real

industry problems.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

389 | P a g e
www.ijacsa.thesai.org

IV. EXPERIMENT EXECUTION

The experiment was conducted in compliance with the
experiment planning discussed in the previous section, and the
actual data was collected and analysed. The experiment was
performed in dual sessions. In “Session 1”, “Group I” and
“Group II” performed MCR activities given in Fig. 1 without
the Modern Code Review Knowledge Sharing Model (MCR-
KSM). In “Session 2”, “Group II” was provided with MCR-
KSM with its electronic reference guideline, while “Group I”
was not given the model.

Prior to the experiment execution, 28 subjects were
distributed into “Group I” and “Group II” as discussed in the
design section. The subjects were also provided unique IDs.
The “Group I” subjects were provided IDs as “A1 to A7” and
“R1 to R7” for the author and the reviewer roles, respectively.
Similarly, the “Group II” subjects were given IDs as “A8 to
A14” and “R8 to R14”. The subjects of both groups with the
author role were given a problem statement in both experiment
sessions for code writing, whereas the subjects’ reviewer role,
both groups were given the job to review the code written by
the authors of their respective group. The subjects were given 1
hour of training regarding experiment objectives, experiment
process, data collection forms, activities, and MCR process.
The subjects of “Group II” were described in the electronic
guide of the MCR-KSM. In “Session I” of the experiment, no
group was given access to MCR-KSM. The “Authors” from
“Group I” and “Group II” were requested to write the code in
parallel. After finishing the coding activity, they were directed
to submit the code to the moderator. After gathering the code
from the first subject, “Author”, the moderator gave the code to
the subject “Reviewer” with the first ID of the same group to
review the code. Like this, the “Author-Reviewer” sub-group
was established. The “Reviewers” were then asked to review
the allocated code and give feedback to the respective
“Author”. The subject “Author”, after receiving the feedback
from the subject “Reviewer”, was requested to make
corrections as suggested by the reviewer. At that moment, the
“Author” and “Reviewer” can exchange comments for
clarification purposes. The “Author” resubmitted the code to
the respective reviewer after addressing the issues. This cycle
continues till the chosen reviewer accepts the code. If the
reviewer is satisfied with the code, then the code is signed off

and formally accepted by the reviewer. During experiment
execution, the moderator recorded the waiting time faced by
the “Author” or “Reviewer”. The data collection details are
given in Section V.

V. DATA COLLECTION

Based on the experiment design deliberated in Section III,
the data were collected. In Session I of the experiment,
“Author” from “Group I” and “Group II” were requested to
write the code without using MCR-KSM. Similarly, the
“Reviewer” from “Group I” and “Group II” were asked to
review the code and provide feedback without using MCR-
KSM.

During Session II, the subjects “Author” of “Group I” were
asked to write the code without using MCR-KSM, and subjects
“Authors” of “Group II” were asked to write the code using the
MCR-KSM. Likewise, the subjects “Reviewer” of “Group I”
were asked to review the code and provide feedback without
using MCR-KSM and the subjects “Reviewer” of “Group II”
were asked to review the code and provide feedback using
MCR-KSM. For both sessions, the waiting time experienced
by authors and the reviewers was recorded, and the total
waiting time was computed. The collective waiting times for
both sessions are given in Tables III and IV. The waiting time
is given in Table III, calculated in the experiment session I for
the “Groups I” and “Group II” when they executed MCR
activities without using MCR-KSM. The waiting time
presented in Table IV was computed in the experiment session
II when “Group I” performed MCR activities without using the
MCR-KSM and ‘Group II’ performed MCR activities using the
MCR-KSM.

Tables III and IV have dual main columns, “Group I” &
“Group II”. Each main column has four sub-columns. The
“Test Subject Sub-group ID” column shows the sub-group ID,
the “Group Members” column shows the group members,
“Author Waiting Time” column shows the waiting time faced
by the author. The “Reviewer Waiting Time” column shows
the waiting time faced by the reviewer. “Total Waiting Time”
is the collective waiting time faced by the author and reviewer.
The result analysis based on the data collected is discussed in
Section VI.

TABLE III SESSION I EVALUATION OF WAITING WASTE WITHOUT USING MCR-KSM (PRE-TEST)

Group I Group II

T
e
st

 S
u

b
je

c
ts

 S
u

b
-

g
ro

u
p

 (
sg

)
ID

G
ro

u
p

 M
e
m

b
e
rs

A
u

th
o

r
W

a
it

in
g

 t
im

e

R
e
v

ie
w

e
r

W
a
it

in
g

 t
im

e

T
o

ta
l

W
a
it

in
g

 T
im

e

(m
in

)

T
e
st

 S
u

b
je

c
ts

 S
u

b
-

g
ro

u
p

 (
sg

)
ID

G
ro

u
p

 M
e
m

b
e
rs

A
u

th
o

r
W

a
it

in
g

 t
im

e

R
e
v

ie
w

e
r

W
a
it

in
g

 t
im

e

T
o

ta
l

W
a
it

in
g

 T
im

e

(m
in

)

TSG-I-sg1 A3, R1 40 25.00 60 TSG-II-sg1 A8, R9 42 20 62

TSG-I-sg2 A4, R2 45 35.00 80 TSG-II-sg2 A10, R12 45 45 89

TSG-I-sg3… A2, R3 40 35.00 75 TSG-II-sg3 A9, R10 45 35 90

TSG-I-sg4 A5, R4 55 23.00 78 TSG-II-sg4 A13, R13 45 20 65

TSG-I-sg5 A1, R5 42 32.00 69 TSG-II-sg5 A12, R14 33 43 66

TSG-I-sg6 A6, R6 40 21.00 60 TSG-II-sg6 A1, R11 37 22 59

TSG-I-sg7 A7, R7 39 40.00 79 TSG-II-sg7 A11, R18 40 35 75

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

390 | P a g e
www.ijacsa.thesai.org

VI. RESULTS AND DISCUSSION

This section provides the details about the result analysis
performed based on the data collected and presented in
Section V. The waiting waste, i.e. waiting time was calculated
utilizing value stream mapping technique based on variables,
i.e. “Author Waiting Time (AWT)”, “Reviewer Waiting Time
(RWT)”, and “Total Waiting Time (TWT)”. The collected data
is given in Tables III and IV. The experiment data was
recorded in SPSS for data analysis. To measure the waiting
waste generation in “Pre-test” paired sampled t-test was used
[59]. Waiting waste was calculated with three perspectives, i.e.
waiting time faced by subject “Authors”, subject “Reviewers”,
and “Total Waiting Time”. The mean differences between the
dependent variables for examining the waiting waste
generation were analyzed. The result analysis of the dependent
variables is provided in sub-sections.

1) Pre-test result analysis: By using “paired t-test” the

waiting waste production in Pre-test for “Group I” and

“Group II was analysed. The subjects were provided with a

pre-test where none of the group were given MCR-KSM.

Table V shows the stats of the paired t-test for both the

groups. The result analysis of the paired t-test shows that there

was no considerable difference amongst Group I and Group II

who completed experimental activities in pre-test.

The mean values for “Author Waiting Time (Group I,
mean=43.00, standard deviation =5.66 Group II, mean =41.00,

standard deviation=4.65), Reviewer Waiting Time (Group I,
mean=30.1429, standard deviation=7.17469 Group II, mean
=31.4286, standard deviation=10.75263) and Total Waiting
Time (Group I, mean=71.5, standard deviation=8.695 Group II,
mean =72.2, standard deviation=12.75035)” shows that there is
no considerable difference in waiting waste production (Author
Waiting Time, Reviewer Waiting Time, and Total Waiting
Time) for both the groups. The p-value (sig, (2-tailed)) was
(p>0.05) for author waiting time (p=0.386), reviewer waiting
time (p=0.630), and total waiting time (p=0.843). If p>0.05 it
infers that the null hypothesis was accepted as there was no
substantial difference between author waiting time, reviewer
waiting time, and total waiting time of “Group I” and
“Group II” in Pre-test. It was analyzed from the paired t-test
results with variables author waiting time, reviewer waiting
time, and total waiting time that there was no significant
difference in waiting waste generation when both the group
were not provided with Modern Code Review Knowledge
Sharing Model. The author waiting time of both groups was
almost the same (“Group I”, mean=43, “Group II”, mean=41).
The measure of 2-tailed t-test found this difference not to be
significant, t (7) = 0.935, p>0.386. Hence, it was determined
that

TABLE IV SESSION II EVALUATION OF WAITING WASTE WITHOUT AND WITH USING MCR-KSM (POST-TEST)

Group I (Without (WOT) using modern code review knowledge

sharing model)
Group II (With (WT) using modern code review knowledge sharing model)

T
e
st

 S
u

b
je

c
ts

 S
u

b
-

g
ro

u
p

 (
sg

)
ID

G
ro

u
p

 M
e
m

b
e
rs

A
u

th
o

r
W

a
it

in
g

 t
im

e

R
e
v

ie
w

e
r

W
a
it

in
g

ti
m

e

T
o

ta
l

W
a
it

in
g

 T
im

e

(m
in

)

P
a
rt

ic
ip

a
n

ts
 S

u
b

-

g
ro

u
p

 (
sg

)
ID

G
ro

u
p

 M
e
m

b
e
rs

A
u

th
o

r
W

a
it

in
g

 t
im

e

R
e
v

ie
w

e
r

W
a
it

in
g

ti
m

e

T
o

ta
l

W
a
it

in
g

 T
im

e

(m
in

)

TSG-I-sg1 A3, R1 37 19 56 TSG-II-sg1 A11, R8 25 15 40

TSG-I-sg2 A4, R2 45 35 80 TSG-II-sg2 A10, R9 20 13 33

TSG-I-sg3 A2, R3 40 35 75 TSG-II-sg3 A9, R10 25 15 40

TSG-I-sg4 A5, R4 55 25 80 TSG-II-sg4 A8, R11 32 16 48

TSG-I-sg5 A1, R5 40 26 66 TSG-II-sg5 A14, R12 30 14 44

TSG-I-sg6 A6, R6 39 20 59 TSG-II-sg6 A12, R13 20 17 37

TSG-I-sg7 A7, R7 36 35 71 TSG-II-sg7 A13, R14 20 10 30

TABLE V WAITING WASTE ANALYSIS PRE-TEST – EXPERIMENT SESSION I

Variables Mean N t Sig. (2-tailed)

Author Waiting Time (AWT)
43.00 7

0.935 0.386
41.00 7

Reviewer Waiting Time (RWT)
30.14 7

-.508 0.630
31.4286 7

Total Waiting Time (TWT)

71.5 7
-.207 0.843

72.2 7

“The author waiting time was almost same when
both the groups were not provided with modern code
review knowledge sharing model”.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

391 | P a g e
www.ijacsa.thesai.org

Similarly, the reviewer waiting time of both the groups was
almost the same (“Group I”, mean=30.14, “Group II”,
mean=31.4). The measure of 2-tailed t-test found this
difference not to be noteworthy, t (7) = -0.508, p>0.630.
Hence, it was concluded that

Likewise, the total waiting time of both the groups was
almost the same (“Group I”, mean=71.5, “Group II”,
mean=72.2). The measure of 2-tailed t-test found this
difference not to be momentous, t (7) = -0.207, p>0.843.
Hence, it was concluded that

Based on the independent results of dependent variable
“author waiting time”, “reviewer waiting time”, and total
waiting time it was concluded that there was no noteworthy
difference in the waiting waste generation when both the
groups were not provided with the Modern Code Review
Knowledge Sharing Model, therefore the null hypothesis, H0,
i.e. “There is no noteworthy difference in waiting waste
generation for both the groups without using modern code
review” was accepted. The paired sample t-test results rejected
the alternate hypothesis, H2, i.e. “There is a noteworthy
difference in waiting waste generation for both the groups
without using modern code review.” It was analysed from the
results analysis of Group 1 and Group II pre-test that the
variance between “Group I” and Group II” was not noteworthy
that signifies both the groups were equal regarding their
programming capability.

2) Post-test result analysis: The paired t-test was

performed to analyze the waiting waste generation for “Group

I” and “Group II” in the post-test. The subjects were provided

the post-test in which “Group I” was not offered with MCR-

KSM and “Group II” was provided with MCR-KSM.

Table VI shows the stats of the paired t-test for “Group I” and

“Group II” for variables “Author Waiting Time”, “Reviewer

Waiting Time”, and “Total Waiting time”.

The stats of paired t-test exhibited that there was a
noteworthy variance between “Group I” and “Group II”. The
mean values for Author Waiting Time “Group I, mean =
41.7143, standard deviation = 6.52468. Group II, mean =
24.5714, standard deviation = 4.96176”. Reviewer Waiting
Time “Group I, mean = 27.0571, standard deviation = 7.12808
Group II, mean = 14.2857, standard deviation = 2.28869” and
Total Waiting Time “Group I, mean = 69.5714, standard
deviation = 9.64118 Group II, mean = 38.8571, standard
deviation = 6.17599” exhibited a noteworthy difference in
waiting waste generation for both the groups.

TABLE VI WAITING WASTE ANALYSIS POST-TEST – EXPERIMENT

SESSION II

Group

ID
Variables Mean N t

Sig. (2-

tailed)

Group I
Author Waiting Time

(AWT)

41.714

3
7

8.21

6
0.000

Group

II

24.571

4
7

Group I
Reviewer Waiting Time

(RWT)

27.057

1
7

4.05

8
0.007

Group

II

14.285

7
7

Group I
Total Waiting Time (TWT)

69.571

4
7

7.22

3
0.000

Group

II
38.85 7

Therefore, it was analysed that there was a noteworthy
difference regarding waiting waste generation “Author Waiting
Time, Reviewer Waiting Time, and Total Waiting Time”
amongst “Group I” and “Group II”. The p-value (sig, (2-
tailed)) was (p<0.05) for author waiting time (p=0.00),
reviewer waiting time (p=0.007), and total waiting time
(p=0.000). The p value i.e. p<0.05 it infers that the null
hypothesis “There is no difference in the waiting waste
generation in the modern code review process with or without
using Modern Code Review Knowledge Sharing Model” was
rejected and there was a noteworthy difference between author
waiting time, reviewer waiting time, and total waiting time of
“Group I” and “Group II”. The positives t values for Author
Waiting Time (t=8.216), Reviewer Waiting Time (t=4.058),
and Total Waiting Time (t=7.223) indicate that the Modern
Code Review Knowledge Sharing Model (MCR-KSM)
reduces the author waiting time, reviewer waiting time, and
total waiting time. From the paired t-test results it was obvious
that that there was a noteworthy decrease in waiting waste
generation when participants considered the MCR-KSM.

The waiting time of the “Group II” author was less when
they performed MCR activities while using MCR-KSM (mean
= 24.5714, standard deviation = 4.96176) as compared to
“Group I” author who did not use MCR-KSM (mean =
41.7143, standard deviation = 6.52468). Measure of 2-tailed t-
test found this difference to be noteworthy, t (7) = 8.216,
p<0.05. Hence, it was determined that

Fig. 2 shows the comparative view of Author Waiting Time
with and without using MCR-KSM during Post-test session. It
clearly shows that when code review was performed using
MCR-KSM the average Authors Waiting Time (AWT) was
significantly less, i.e. 24.5 (min) as compared to code review
activities when performed without using MCR-KSM where
average AWT was 41.7 (min).

Likewise, waiting time of the “Group II” reviewer was less
when they performed MCR activities while using MCR-KSM
(mean = 27.0571, standard deviation = 7.12808) as compared
to “Group I” who did not MCR-KSM (mean = 14.2857,
standard deviation = 2.28869). The measure of 2-tailed t-test

“The author waiting time was reduced with the use of

modern code review knowledge sharing model”.

“The total waiting time was almost same when both
the groups were not provided with modern code

review knowledge sharing model”.

“The reviewer waiting time was almost same when
both the groups were not provided with modern code

review knowledge sharing model”

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

392 | P a g e
www.ijacsa.thesai.org

found this difference to be significant, t (7) = 4.058, p<0.05.
Hence, it was determined that

Fig. 3 shows the comparative view of Reviewer Waiting
Time with and without using MCR-KSM during Post-test
session. It evidently shows that when code review was
performed using MCR-KSM the average Reviewer Waiting
Time (RWT) was significantly less, i.e. 14.2 (min) as
compared to code review activities when performed without
using MCR-KSM where average RWT was 27.0 (min).

Fig. 2. Comparative view of author waiting time (AWT)-post-test.

Fig. 3. Comparative view of reviewer waiting time (RWT)-post-test.

Equally, total waiting time was less for “Group II” when
the subjects performed MCR activities while using MCR-KSM
(mean = 38.8571, standard deviation = 6.17599) as compared
“Group I” to when they did not use the MCR-KSM (mean =
69.5714, standard deviation = 9.64118). The measure of 2-
tailed t-test found this difference to be noteworthy, t (7) =
7.223, p<0.05. Therefore, it was determined that

Fig. 4 shows the comparative view of Total Waiting Time
with and without using MCR-KSM during Post-test session. It

clearly shows that when code review was performed using
MCR-KSM the average Total Waiting Time (TWT) was
significantly less i.e.38.8 (min) as compared to code review
activities when performed without using MCR-KSM where
average TWT was 69.5 (min).

Based on the independent results of dependent variable
“Author Waiting Time”, “Reviewer Waiting Time”, and “Total
Waiting Time”, it was determined that there was a noteworthy
variance in the waiting waste generation with and without the
support of the MCR-KSM, so the null hypothesis, H0, i.e.
“There is no difference in the waiting waste generation in the
modern code review process with or without using Modern
Code Review Knowledge Sharing Model” was rejected. The
paired sample t-test results supported the alternate hypothesis,
H1, i.e.

The alternate hypothesis H2 given in Table II was not
supported by the paired sample t-test.

Fig. 4. Comparative view of waiting waste generation-post-test.

VII. CONCLUSION

MCR is a quality assurance activity, though it is supported
with AI and LLM, but it generates various wastes such as
rework, defect waste, composite solution waste and waiting
waste, etc. Waiting waste is the critical one that causes mental
distress. Reducing waiting waste is crucial for sustainable
software engineering. The Knowledge exchange has a
profound role in the reduction of waiting waste production
during code reviews. To reduce waiting waste, our previous
study introduced the Modern Code Review Knowledge
Sharing Model (MCR-KSM). This study presented empirical
results to evaluate the effectiveness of MCR-KSM for the
reduction in waste generation during the MCR process. The
waiting waste was calculated based on variables, i.e. “Author
Waiting Time” and “Reviewer Waiting Time”. The study
results show that there was a significant reduction in the
authors, reviewers and total waiting time when they considered
the Modern Code Review Knowledge Sharing Model.

“The waiting waste generation in MCR using MCR-KSM

is lower than without using MCR-KSM.”.

“the total waiting time was reduced with the use of

modern code review knowledge sharing model”.

“The reviewer waiting time was reduced with the use of
modern code review knowledge sharing model”.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

393 | P a g e
www.ijacsa.thesai.org

VIII. LIMITATIONS

To conduct the study, it was hard to gather dedicated
respondents. Twenty-eight graduate students with software
engineering experience and knowledge of MCR, software
engineering wastes, took part in the experiment. The results
might be more confident if more students contributed to the
experiment. Nevertheless, despite the limitations, we believe
that the results have educational and practical implications.

IX. FUTURE WORK OPPORTUNITIES

The experiment can be augmented in future with varying
settings. In future, it is planned to evaluate the significance of
MCR-KSM in the actual industry environment. Likewise, more
experiments can be conducted to check whether the developed
model can reduce other waste, such as defect waste and motion
waste, negative emotion waste, etc. and emotional intelligence.
Moreover, innovation in AI, machine learning, and LLM-based
code review is evolving, and it is understood that developers’
domain knowledge is essential and cannot be ignored.
Therefore, solutions combined with AI, machine learning and
developers’ domain knowledge can be beneficial for the
reduction of various types of code review wastes. Moreover,
other software engineering activities or computing domains can
be explored for waste identification and reduction.

X. CONTRIBUTION

The research conducted has created the foundation for
green and sustainable computing by developing and evaluating
the MCR knowledge sharing model to reduce waste. The study
contributed to three aspects. Firstly, it confirms that the MCR-
KSM supports in reduction of waiting waste production.
Secondly, the research article provided a detailed experiment
design and conduct procedure that can be beneficial for young
researchers to experiment with their respective research field.
Thirdly, the research highlighted future research venues that
can be beneficial for practitioners and researchers.

REFERENCES

[1] S. Nazir, N. Fatima, and S. Chuprat, “Modern code review benefits-

primary findings of a systematic literature review,” in ACM

International Conference Proceeding Series, 2020, pp. 210–215.

[2] T. Maikantis, I. Natsiou, A. Ampatzoglou, A. Chatzigeorgiou, S.

Xinogalos, and N. Mittas, “What you See is What you Get: Exploring

the Relation between Code Aesthetics and Code Quality,” in

Proceedings - 2024 ACM/IEEE International Conference on Technical

Debt, TechDebt 2024, 2024, pp. 1–10.

[3] N. Fatima, S. Nazir, and S. Chuprat, “Knowledge sharing factors for

modern code review to minimize software engineering waste,” Int. J.

Adv. Comput. Sci. Appl., vol. 11, no. 1, pp. 490–497, 2020.

[4] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of

modern code review,” in Proc. International Conference on Software

Engineering, 2013, pp. 712–721.

[5] M. Caulo, B. Lin, G. Bavota, G. Scanniello, and M. Lanza, “Knowledge

transfer in modern code review,” in IEEE International Conference on

Program Comprehension, 2020, pp. 230–240.

[6] A. Bouraffa, Y. D. Pham, and W. Maalej, “How do Developers Use

Code Suggestions in Pull Request Reviews?,” 2025, pp. 227–238.

[7] M. T. Rahman, R. Singh, and M. Y. Su ltan, “Automating Patch Set

Generation from Code Reviews Using Large Language Models,” in

Proceedings - 2024 IEEE/ACM 3rd International Conference on AI

Engineering - Software Engineering for AI, CAIN 2024, 2024, pp. 273–

274.

[8] S. Ahmed and N. U. Eisty, “Exploring the Advances in Identifying

Useful Code Review Comments,” in International Symposium on

Empirical Software Engineering and Measurement, 2023.

[9] T. Jetzen, X. Devroey, N. Matton, and B. Vanderose, “Towards

Debiasing Code Review Support,” 2025, pp. 143–148.

[10] N. Davila, J. Melegati, and I. Wiese, “Tales From the Trenches:

Expectations and Challenges From Practice for Code Review in the

Generative AI Era,” IEEE Softw., vol. 41, no. 6, pp. 38–45, 2024.

[11] F. Kazemi, M. Lamothe, and S. Mcintosh, “Interrogative Comments

Posed by Review Comment Generators: An Empirical Study of Gerrit,”

in International Symposium on Empirical Software Engineering and

Measurement (ESEM 2025), 2025.

[12] S. Nazir, N. Fatima, and S. Chuprat, “Situational factors for modern

code review to support software engineers’ sustainability,” Int. J. Adv.

Comput. Sci. Appl., vol. 11, no. 1, pp. 498–504, 2020.

[13] C. S. Fatima, Nargis, Nazir, Su imaira, “Software Engineering Wastes –

A Perspective of Modern Code Review,” in The 3rd International

Conference on Software Engineering and Information Management

(ICSIM), 2020.

[14] L. Yang et al., “Prioritizing code review requests to improve review

efficiency: a simulation study,” Empir. Softw. Eng., vol. 30, no. 1, 2025.

[15] N. Fatima, S. Nazir, and S. Chuprat, “Knowledge sharing framework for

modern code review to diminish software engineering waste,” Int. J.

Adv. Comput. Sci. Appl., vol. 11, no. 6, pp. 442–450, 2020.

[16] M. S. Rahman, Z. Codabux, and C. K. Roy, “Investigating the

Understandability of Review Comments on Code Change Requests,”

2025 IEEE/ACM 22nd Int. Conf. Min. Softw. Repos., pp. 539–551,

2025.

[17] Z. Yang et al., “A Survey on Modern Code Review: Progresses,

Challenges and Opportunities,” vol. 1, no. 1, pp. 1–62, 2024.

[18] H. Alahyari, T. Gorschek, and R. Berntsson, “An exploratory study of

waste in software development organizations using agile or lean

approaches: A multiple case study at 14 organizations,” Inf. Softw.

Technol., vol. 105, no. 7, pp. 78–94, 2019.

[19] J. Urrego, R. Munoz, M. Mercado, and D. Correal, “Arch inotes: A

global agile architecture design approach,” Lect. Notes Bus. Inf.

Process., vol. 179 LNBIP, pp. 302–311, 2014.

[20] M. Poppendieck and T. Poppendieck, Lean software development: An

agile toolkit. 2003.

[21] N. Davila, J. Melegati, and I. Wiese, “Tales from the Trenches:

Expectations and Challenges from Practice for Code Review in the

Generative AI Era,” IEEE Softw., vol. PP, pp. 1–8, 2024.

[22] L. MacLeod, M. Greiler, M. A. Storey, C. Bird, and J. Czerwonka,

“Code reviewing in the trenches: Challenges and best practices,” IEEE

Softw., vol. 35, no. 4, pp. 34–42, 2018.

[23] D. M. German, U. Rey, and J. Carlos, “‘ Was my contribution fairly

reviewed ?’ A Framework to Study the Perception of Fairness in Modern

Code Reviews,” in Proc. ACM/IEEE 40th International Conference on

Software Engineering Synthesizing, 2018, no. 2, pp. 523–534.

[24] C. Adapa, S. S. Avulamanda, A. R. K. Anjana, and A. Victor, “AI -

Powered Code Review Assistant for Streamlining Pull Request

Merging,” in Proceedings of ICWITE 2024: IEEE International

Conference for Women in Innovation, Technology and

Entrepreneurship, 2024, pp. 323–327.

[25] P. Bourque and R. E. Fairley, Guide to the software engineering - Body

of knowledge. 2014.

[26] S. Nazir, N. Fatima, and S. Chuprat, “Individual Sustainability Barriers

and Mitigation Strategies: Systematic Literature Review Protocol,” in

2019 IEEE Conference on Open System, ICOS 2019, 2019, pp. 1–5.

[27] T. Sedano and P. Ralph, “Software Development Waste,” in Proc.

IEEE/ACM 39th International Conference on Software Engineering,

2017.

[28] N. Fatima, S. Nazir, and S. Chuprat, “Software engineering wastes-A

perspective of modern code review,” ACM Int. Conf. Proceeding Ser.,

pp. 93–99, 2020.

[29] S. Mujtaba, R. Feldt, and K. Petersen, “Waste and lead time reduction in

a software product customization process with value stream maps,”

Proc. Aust. Softw. Eng. Conf. ASWEC, pp. 139–148, 2010.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

394 | P a g e
www.ijacsa.thesai.org

[30] S. R. Ahmad Ibrahim, J. Yahaya, and H. Sallehudin, “Green Software

Process Factors: A Qualitative Study,” Sustain., vol. 14, no. 18, 2022.

[31] N. Fatima, S. Nazir, and S. Chuprat, “Individual, Social and Personnel

Factors Influencing Modern Code Review Process,” 2019 IEEE Conf.

Open Syst. ICOS 2019, pp. 40–45, 2019.

[32] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Process

aspects and social dynamics of contemporary code review: Insights from

open source development and industrial practice at Microsoft,” IEEE

Trans. Softw. Eng., vol. 43, no. 1, pp. 56–75, 2017.

[33] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,

“Modern code review: : A case study at google,” in Proc. ACM/IEEE

40th International Conference on Software Engineering: Software

Engineering in Practice, 2018, pp. 181–190.

[34] N. Fatima, S. Chuprat, and S. Nazir, “Challenges and Benefits of

Modern Code Review-Systematic Literature Review Protocol,” in Proc.

International Conference on Smart Computing and Electronic

Enterprise, 2018, pp. 1–5.

[35] P. J. S. Xuan and Y. Lee, “Automated Code Review and Bug

Detection,” in 19th International Joint Symposium on Art ificial

Intelligence and Natural Language Processing, iSAI-NLP 2024, 2024.

[36] Z. Zhang and T. Saber, “Machine Learning Approaches to Code

Similarity Measurement: A Systematic Review,” IEEE Access, vol. 13.

Institute of Electrical and Electronics Engineers Inc., pp. 51729–51764,

2025.

[37] M. S. Rahman, Z. Codabux, and C. K. Roy, “Investigating the

Understandability of Review Comments on Code Change Requests,”

2025, pp. 539–551.

[38] S. Zamir, A. Rehman, H. Mohsin, E. Zamir, A. Abbas, and F. A. M. Al-

Yarimi, “Integrating Pull Request Comment Analysis and Developer

Profiles for Expertise-Based Recommendations in Global Software

Development,” IEEE Access, vol. 13, pp. 16637–16648, 2025.

[39] M. S. S. Chowdhury, M. N. U. R. Chowdhury, F. F. Neha, and A.

Haque, “AI-Powered Code Reviews: Leveraging Large Language

Models,” in IEEE International Conference on Signal Processing and

Advance Research in Computing, SPARC 2024, 2024.

[40] G. Rong et al., “Code Comment Inconsistency Detection and

Rectification Using a Large Language Model,” 2025, pp. 1832–1843.

[41] O. Ben Sghaier, M. Weyssow, and H. Sahraoui, “Harnessing Large

Language Models for Curated Code Reviews,” 2025, pp. 187–198.

[42] C. Adapa, S. S. Avulamanda, A. R. K. Anjana , and A. Victor, “AI-

Powered Code Review Assistant for Streamlining Pull Request

Merging,” Proc. ICWITE 2024 IEEE Int. Conf. Women Innov. Technol.

Entrep., no. Icwite, pp. 323–327, 2024.

[43] S. Kansab, M. Sayagh, F. Bordeleau, and A. Tizghadam, “An Empirical

Study on the Amount of Changes Required for Merge Request

Acceptance,” 2025.

[44] L. Dong et al., “Survey on Pains and Best Practices of Code Review,” in

Proceedings - Asia-Pacific Software Engineering Conference, APSEC,

2021, vol. 2021-December, pp. 482–491.

[45] S. Ruangwan, P. Thongtanunam, A. Ihara, and K. Matsumoto, “The

impact of human factors on the participation decision of reviewers in

modern code review,” Empir. Softw. Eng. Manuscr., pp. 1–43, 2018.

[46] A. Lee and J. C. Carver, “Are One-Time Contributors Different? A

Comparison to Core and Periphery Developers in FLOSS Repositories,”

Int. Symp. Empir. Softw. Eng. Meas., vol. 2017-Novem, pp. 1–10, 2017.

[47] F. Armstrong, F. Khomh, and B. Adams, “Broadcast vs. unicast review

technology: Does it matter?,” in in Proc. 10th IEEE International

Conference on Software Testing, Verification and Validation, 2017, pp.

219–229.

[48] A. Lee, J. C. Carver, and A. Bosu, “Understanding the impressions,

motivations, and barriers of one t ime code contributors to FLOSS

projects: A survey,” in in Proce. IEEE/ACM 39th International

Conference on Software Engineering, 2017, pp. 187–197.

[49] O. Kononenko, O. Baysal, and M. W. Godfrey, “Code review quality:

How developers see it,” in Proc. International Conference on Software

Engineering, 2016, pp. 1028–1038.

[50] A. Bosu and J. C. Carver, “Impact of developer reputation on code

review outcomes in OSS projects,” Proc. 8th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement. pp.

1–10, 2014.

[51] A. Bosu, “Modeling modern code review practices in open source

software development organizations,” in Proc. IDoESE ’13 Baltimore,

2013.

[52] G. Foster, “Why AI will never replace human code review,” Graphite,

2025. .

[53] M. Vijayvergiya et al., “AI-Assisted Assessment of Coding Practices in

Modern Code Review,” AIware 2024 - Proc. 1st ACM Int. Conf. AI-

Powered Software, Co-located with ESEC/FSE 2024, pp. 85–93, 2024.

[54] Y. B. Alebachew, M. Ko, and C. Brown, “Are We on the Same Page?

Examining Developer Perception Alignment in Open Source Code

Reviews,” Ease’25, 2025.

[55] T. Sedano, “Removing Software Development Waste to Improve

Productivity,” in Rethinking Productivity in Software Engineering,

Apress, 2019, pp. 221–240.

[56] I. Vlachos, E. Siachou, and E. Langwallner, “A perspective on

knowledge sharing and lean management: an empirical investigation,”

Knowl. Manag. Res. Pract., vol. 00, no. 00, pp. 1–16, 2019.

[57] M. Caulo, B. Lin, G. Bavota, G. Scanniello, and M. Lanza, “Knowledge

transfer in modern code review,” IEEE Int. Conf. Progr. Compr., pp.

230–240, 2020.

[58] A. Serebrenik and A. Bacchelli, “Competencies for Code Review,” vol.

7, no. April, pp. 1–33, 2023.

[59] C. Wohlin, P. Runeson, M. Ohlsson C., B. Regnell, and A. Wesslen,

Experimentation in software engineering. Springer, 2000.

[60] Kitchenham, S. L. Pfleeger, D. C. Jones, P.W.Hoaglin, K. El Emam, and

J. B.A.Rosenberg, “Preliminary guidelines for empirical research in

software engineering,” 2002.

[61] M. Host, B. Regnell, and C. Wohlin, “Using students as subjects — A

comparative study of students and professionals in lead-time impact

assessment,” Empir. Softw. Eng., vol. 5, pp. 201–214, 2000.

[62] J. C. F. de Winter, “Using the student’s t-test with extremely small

sample sizes,” Pract. Assessment, Res. Eval., vol. 18, no. 10, pp. 1–12,

2013.

