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Abstract—Modern Code Review (MCR) is a well-known and 

widely adopted quality assurance activity to develop quality 

software. Although it is a core activity for improving code 

quality, it generates various types of waste, including waiting 

waste, defect waste, and composite solution waste. Besides all 

other wastes, the waiting waste is the most critical one, leading to 

mental distress, delayed code merges, and project delays. 

Researchers have made efforts to reduce the production of 

waiting waste by providing various automated code review tools, 

techniques and models, one of them is the MCR Knowledge 

Sharing Model (MCR-KSM). The model claims that it supports 

sustainable software engineering by minimizing waiting waste 

reduction during MCR activities. This study aims to evaluate the 

effectiveness of MCR-KSM with respect to the reduction of 

waiting waste produced during MCR activities. The experiment 

methodology is employed for this purpose. This paper presents 

the experimental investigation approach along with the results. 

The experiment was conducted in dual sessions with 28 graduate 

students having similar educational and industrial experience. 

The tools and techniques, such as SPSS paired t-test and value 

stream mapping, are used for experimental data management 

and analysis. The study results revealed that the model 

significantly helps in the reduction of waiting waste production. 

The conducted study has implications for investigators to extend 

the research with different parameters and settings. 

Keywords—Modern code review; wastes; waiting waste; 

software quality; automated code review; sustainable software 

engineering 

I. INTRODUCTION 

Recent software development practices depend on the 
human aspects of software engineering. For instance, code 
reviewing  [1] that needs verification of code by developers not 
write it [2]. Code Reviews are the core activity of software 
development [3]. Besides the quality assurance, the code 
review is a well-adopted platform for knowledge sharing that 
can be apparent from pull request discussions on GitHub [4], 
[5], [6], [7], [8]. Modern Code Review (MCR) is a process 
where code is submitted, reviewed, discussed and modified 
before a decision is made on whether to merge it into the main 
repository or discard the submitted code [1], [9]. Fig. 1 shows 
the activities involved in the MCR process [10]. 

As the code review heavily involves the humanoid aspect, 
specifically for human-to-code and human-to-human 
interaction for reading, understanding, and providing feedback 
to modify the code [11], [12].  This interaction and 
collaboration can result the code review waste production and 

become inefficient [13] [14]. Waste refers to “Activities that 
absorb resources and increase cost without adding value”. It 
refers to “Everything that does not make it to the release” The 
various insights regarding wastes are presented by [15]. The 
numerous types of waste generated during code review are 
specifically reported by [13]. The code review wastes can be 
cognitive load, needless composite solutions, waiting, negative 
emotions, poor review, poor or delayed feedback, etc.  [8], 
[14], [16], [17]. 

It is conveyed that the waiting waste is critical and one of 
the biggest wastes [18], [19], [20]. In code reviews, waiting 
wastes generated when the author, after submitting the code, 
waits for reviewers’ feedback [21]. In a survey conducted by 
[22], a survey participant reported,  “Usually you write up 
some code and then you send it out for review, and then about 
a day later you ping them to remind them ... and then about 
half a day later you go to their office and knock on their door”. 

It is also reported that during code review, when the author 
submits the code, he/she must wait for timely feedback. After 
waiting for a long time, the request is rejected. Regarding 
waiting, they conveyed that it is a typical form of disregard and 
is interactional unfairness. One of the authors in their research 
discussing the waiting waste reported that “Contributions are 
ignored unless I beg for attention. I might have time to 
contribute a minor improvement. I never have time to beg for 
attention. If you don’t want my help, I got the message loud 
and clear” [23]. 

Researchers have contributed towards facilitating such 
review engagement and waiting waste reduction with the aim 
of improving the feedback process, overall collaboration and 
effective knowledge sharing [6], [9], [24]. The author of this 
research study has developed the Modern Code Review-
Knowledge Sharing Model (MCR-KSM) to reduce the waiting 
waste generation. The details regarding the development of 
MCR-KSM are presented in our previous research work [3], 
[15]. In our previous work, the MCR-KSM was developed. 
This study is an extension of our previous work. To develop 
the MCR-KSM, the included research methodologies were 
Systematic Literature Review (SLR), along with Expert 
Review and Delphi Survey. The results of previous work are 
available at [3], [15]. This study aims to conduct the 
experimental evaluation of the developed MCR-KSM. The 
objective of this study is “To evaluate the effectiveness of the 
Modern Code Review Knowledge Sharing Model to reduce 
software engineering waiting waste (waiting time)” . 
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The rest of the paper is planned as follows: Section II 
deliberates the research background and literature review. The 
experiment design details, including objective, environment, 
hypothesis, variable, subject selection, instrument and validity 
evaluation, are given in Section III. The details regarding 
experiment execution are covered in Section IV. Section V 
provides the details about the data collection. Section VI 
highlights the results analysis and discussion. Sections VII-X 
highlight the conclusion, study limitations, future work 
suggestions and contribution. 

II. BACKGROUND 

Software engineering is a methodical process that aims to 
create high-quality software within a specified budget and 
schedule [25]. It involves various underneath systematic 
activities to achieve its aims. The underneath activities 
included [26] requirement identification and management, 
modeling, development, dynamic testing, Static testing 
(inspection and code reviews). These activities produced 
numerous wastes [27]. The generated wastes may lead to 
numerous other issues such as psychological distress, delay in 
projects, overspending and software malfunctions. When 
Toyota revolutionized the industry with lean manufacturing, in 
the 1980’s the idea of waste was first presented by [28], [29]. 
Later in  2000, the lean paradigm was shifted from lean 
manufacturing to lean software development [20].  Moreover, 
it is also contended that managing waste generation ensures 
green and sustainable software development [30]. Various 
researches were conducted with the aim to identify waste and 
procedures, tools and methodologies and a model to reduce the 
waste [18]. 

In the context of software engineering numerous wastes 
have been recognized, for instance, “rework”, “defects”, 
complexity, cognitive load, and waiting, etc. [18], [28]. As 
discussed previously, there are multiple underneath activities 
involved for successful software engineering; each activity 
produces waste [27]. Code review is an important activity that 
contributes towards code quality improvement and quality 
software development [4], [31], [12]. 

In code review, the reviewer evaluates the source code 
before uploading it to the version control repository. Code 
review is supported with the aid of numerous AI-based review 
tools, such as Quodo merge, Greptle, CodeRabbit, Gerrit, 
Corbit, Deepsource, PullApprove, for instance, Code flow, 
such as Gerrit,  Review board, Phabricator, etc. [4], [22], [32], 
[33], [34],[35]. Fig. 1 represents the MCR process workflow. 

The code review activity becomes challenging when the 
team members must confront various types of waste. For 
instance, Waiting waste, cognitive load, code duplication, poor 
feedback, negative emotions, poor review comments, Biases, 
lack of knowledge, poor code understanding, code complexity, 
ineffective code review tools, poor communication, confusion, 
lack of motivation to share knowledge, code inconsistency, etc. 
[13], [36], [37], [38], [39], [40], [41], [42], [43]. It is also 
reported that waiting waste is the critical waste, and it is 
conveyed that the waiting waste must be the organization’s 
primary priority if it is to reduce any waste  [19], [20]. 

 

Fig. 1. Workflow of the MCR process [32]. 

The MCR process allows the freedom for reviewers to 
accept or reject review requests. This is a critical practice that 
makes the MCR Process challenging and generates waiting 
waste. It is reported that as the author submits the code for 
review, generally the authors wait for the reviewers’ response. 
Numerous research have been performed to highlight the 
reported issue. A study conducted using dataset of 182 GitHub 
projects included 55K pull request and 466K code change 
request comments, and poor clarity of code comments 
significantly contribute to the delay response [37]. Likewise, 
poor prioritization of code change requests can contribute to 
delays and an inefficient review process [14]. A study reported 
that “Reviewers find only shallow defects and it is hard to give 
insightful and actionable feedback in timely manner”[44]. 

Moreover, it is reported that when the author submits the 
code and request reviewer for review, they have to wait for 
long time. It became more impertinence when the request is 
rejected or unnoticed [23]. Likewise, it is  conveyed that 16% 
to 66% of code submitted for review have at least one invited 
reviewer who let the author in waiting condition [45]. It was 
argued that regardless of the ease of the MCR process, waiting 
for feedback is a challenge for authors. It is claimed that 
multiple human factors such as reviewers’ workload, reviewer 
experience, and familiarity with the requested review can cause 
poor knowledge sharing and waiting waste [45]. Similarly, it is 
stated that waiting is the highest reported challenge. In their 
study a survey participant stated that “Usually you write up 
some code and then you send it out for review, and then about 
a day later you ping them to remind them. and then about half a 
day later you go to their office and knock on their door.” [22]. 
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Moreover, It is reported that developers with less experience 
have to wait for the feedback [32], [46]. Similarly, it is stated 
that the broadcast or unicast review technology can have a 
noteworthy effect on delay in response. It is conveyed that 
broadcast technology has a short response delay as compared 
to unicast technology [47]. It is stated that there is a need to 
have guidelines for source code submission to avoid waiting 
waste [48]. Correspondingly, it is also reported that to get 
insightful feedback in timely manner is crucial, but the authors 
often suffer from the non-responsiveness of reviewers and 
must wait for feedback. The conveyed developer statement is 
“The value of the feedback is in the proportion to the cost in 
terms of delay and time spent” [49]. It is argued that 
developers’ reputation, code size are the reason can have 
impact on timely feedback [50], [51]. 

Moreover, it is also argued that even in the presence of AI-
based code review tools, the wastes are generated during code 
review [11]. The generated waste can be waiting, rework, 
defect, needless composite solutions, task switching, code 
complexity, etc. [28], [43]. It is conveyed that code creation is 
easy and fast “just prompt LLM to generate desired code” , 
however it is difficult to employ AI-based code review tools to 
evaluate the code issues. It is reported that expert developers 
are more valuable than machines and are not replaceable by 
LLMs [11], [52], [53]. There must be documentation or 
guidelines to manage the waiting waste and thus project delays 
[11], [54]. 

Recent research conveyed that developers’ domain 
knowledge, effective communication and knowledge sharing 
can reduce waiting waste and project delays [22], [27], [33], 
[38], [55], [56], [57], [58]. In our previous research work, we 
have developed the MCR-KSM to reduce waiting waste. In this 
study, we have presented an experimental study that was 
performed to validate the designed model with respect to the 
reduction in waiting waste generation. The upcoming section 
covers the detailed experiment design, data collection and 
results analysis. 

III. RESEARCH METHODOLOGY 

An experiment in a control environment has been 
conducted to validate the Modern Code Review Knowledge 
Sharing Model (MCR-KSM). The aim is to investigate whether 
the MCR-KSM helps to reduce waiting waste production. The 
guidelines provided by [59], [60] were utilized for the 
conduction of the experiment. Grounded on the research work 
of [61], the experiment was performed with the students of 
software engineering graduate level having same  software 
development experience and educational background. To 
conduct the experiment the preparation regarding experiment 
objectives, selection of environment, hypothesis design, 
variables, and validity assessment must be completed. This 
section delivers the particulars regarding planning for the 
experiment. The experiment execution details are provided in 
result analysis section. The activities included in the 
experiment planning are given in sub-sections. 

A. Objective of Experiment Conduction 

The objective to conduct the experiment was to confirm 
whether the MCR-KSM help to reduce the waiting waste 

generation in real environment. The waiting waste production 
evaluated firstly without using the MCR-KSM, then the 
waiting waste production was assessed while using the MCR-
KSM, assisted by electronic reference guideline of MCR-
KSM. 

B. Experiment Environment 

The experiment environment discusses the context in which 
the experiment is executed [59]. The experiment was executed 
in the laboratory of computer science at Comwave Institute of 
Science and Information Technology, Islamabad, Pakistan. The 
systems having Windows operating system and C++ editor 
were utilized to conduct the experiment. The MCR-KSM was 
also accessible during the experiment. 

C. Hypothesis Construction 

The experimental statistical analysis is founded on 
hypothesis testing. A hypothesis is evaluated based on the 
analysis of dependent variables of the experiment. The 
guidelines given by [59] were utilized to construct the 
hypothesis. For experiment pre-test and post-test, the null and 
alternative hypothesis was constructed. The null hypothesis, 
H0 refers that there are no real underlying patterns in the 
experiment situation, the only reasons for differences in 
observations are coincidental. However, the alternate 
hypothesis, H1 is in support of which the null hypothesis is 
rejected. 

1) Hypothesis for pre-test: For the pre-test Null and 

Alternate hypothesis were constructed and are presented in 

Table I. 

TABLE I  HYPOTHESIS FOR PRE-TEST 

Hypothesis 

Types 

Hypothesis 

Representation 
Hypothesis 

Null 

Hypothesis 
H0 

There is no noteworthy difference in 

waiting waste production for both the 

groups without using MCR-KSM. 

Alternate 

Hypothesis 
H1 

There is a noteworthy difference in 

waiting waste production for both the 

groups without using MCR-KSM. 

2) Hypothesis for post-test: For the post-test, hypotheses 

Null (H0), Alternate (H1, and H2) were constructed. If the H0 

was rejected, it refers to dual situations. The first one was that 

the waiting waste production in the modern code review 

process using the MCR-KSM was less than the waiting waste 

production without using the MCR-KSM. The second 

situation was that the waiting waste production in the modern 

code review process using MCR-KSM was greater than the 

waiting waste production without using MCR-KSM. 

Therefore, two alternative hypotheses were constructed 

supporting each situation. Post-test hypothesis are given in 

Table II. 
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TABLE II HYPOTHESIS FOR POST-TEST 

Hypothesis 

Types 

Hypothesis 

Representa

tion 

Hypothesis 

Null 

Hypothesis 
H0 

There is no significant difference in the 

waiting waste production in the modern code 

review process with or without using MCR-

KSM. 

Alternate 

Hypothesis 

H1 

The waiting waste production in modern 

code review process using MCR-KSM is 

lesser than without using MCR-KSM  

H2 

The waiting waste generation in modern code 

review process using MCR-KSM is greater 

than without using MCR-KSM. 

D. Experiment Variables 

According to the guidelines provided by [59], independent 
and dependent variables can be defined for an experiment. In 
this study, one independent variable was “modern code review 
process”. The process was manipulated with and without the 
support of MCR-KSM, and the dependent variables were 
assessed. The dependent variable was the “Waiting Waste”. 
The waiting waste was measured using Value Stream Mapping 
(VSM) from three aspects, i.e. author waiting time, reviewer 
waiting time, and total waiting time during MCR activities. 

The VSM is utilized by various researchers to calculate the 
waiting time in various situations. For instance, [29] utilized 
VSM to measure waiting waste by calculating the customer 
waiting time, development team waiting time, and total waiting 
time in the software customization process. Likewise, [20] 
utilized VSM to measure waiting waste in traditional and agile 
processes. 

In this study, the waiting waste was analysed based on 
aspects such as “Author Waiting Time (AWT)”, that is, waiting 
time observed by the author while executing MCR activities. 
“Reviewer Waiting Time (RWT)”, that is, the waiting time 
observed by the reviewer while executing MCR activities and 
“Total Waiting Time (TWT)”, that is, the waiting time 
observed by the author and reviewers during MCR. 

E. Experiment Subject Selection 

In this study, 28 students of software engineering were 
designated as test subjects according to the guidelines given by 
[62]. The subjects have equal experience. They were grouped 
as “Group I” and “Group II”. Each group contained 14 
subjects. Out of 14 subjects in both groups, 7 subjects were 
designated as “Author” and “Reviewer”. The subjects were 
chosen depending on their industry experience and 
programming subjects studied during graduation. 

F. Experiment Instrument 

Formerly, in the experiment implementation, the 
instruments must be developed. It can be guidelines, objects, 
and measurement instruments for the measurement [59]. In this 
experimental study, the included instruments were problem 
statements that were used by the subjects to write the code, 
Modern Code Review Knowledge Sharing Model (MCR-
KSM), along with an electronic reference guideline, and a 
document explaining the MCR activities. The details about 

experiment objective, problem and activities were specified to 
all the subjects. The subjects “Author” had to write the code, 
whereas the subjects “Reviewers” had to evaluate the code 
written by the authors of their group. The subjects of “Group 
II” were prearranged with the MCR-KSM, supported with its 
electronic reference guideline. The experiment data were 
collected via forms as per the directions of [59]. The waiting 
time experienced by subjects’ “Author” and “Reviewers” was 
measured through the data collected during the experiment. 
The experiment moderator was given the task of managing the 
record of the start and end time of each MCR activity. 

G. Validity Assessment 

It strengthens the rationality of the experimental results. It 
involves recognition of validity threats, “factors that can 
influence the dependent variables that are not included as 
independent variables”. The internal and external validity 
threats were considered as per the guidelines given by [59]. 
The internal validity threats influence the dependent variable 
deprived of the researcher’s information [59]. The following 
internal validity threats were discussed for the experiment. 

1) Selection effect: It is because of the usual dissimilarity 

in human recital. Each human can have a different 

understanding of the English language [59]. It was managed 

by the selection of subjects with a common educational 

background. Additionally, they were given similar details 

about the experiment. 

2) Learning effect: It is because of the subjects’ behaviour 

during the experiment activities. It was controlled by common 

training of the subjects about activities, problems, MCR and 

MCR-KSM. 

3) Instrumentation effect: It is because of the artifacts, 

such as data collection forms, documents that need to be 

reviewed, or problems [59]. This hazard was overcome since 

every subject was given the same task to code, as [59] 

explained. 

4) Information exchange: It is reported that the exchange 

of information while performing an experiment influences the 

outcome [59]. It was controlled by strictly observing the 

subjects during the experiment. 

External validity is the external conditions which limit the 
ability to generalize the experimental results to industrial 
practice [59]. The two external validity threats, generalizability 
of subjects and Experiment Scale, were managed. The details 
about external validity threats are given in sub-sections. 

5) Generalizability of subject: It occurs when the 

population is not taken from the industry [59]. In this study, 

the selected subjects have industry experience. Thus, this 

threat was managed as per [59] guideline. 

6) Experimental scale: It occurs when the experimental 

situation or the materials are not illustrative of industrial 

practice. It was overcome by delivering the subject with real 

industry problems. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 9, 2025 

389 | P a g e  
www.ijacsa.thesai.org 

IV. EXPERIMENT EXECUTION 

The experiment was conducted in compliance with the 
experiment planning discussed in the previous section, and the 
actual data was collected and analysed. The experiment was 
performed in dual sessions. In “Session 1”, “Group I” and 
“Group II” performed MCR activities given in Fig. 1 without 
the Modern Code Review Knowledge Sharing Model (MCR-
KSM). In “Session 2”, “Group II” was provided with MCR-
KSM with its electronic reference guideline, while “Group I” 
was not given the model. 

Prior to the experiment execution, 28 subjects were 
distributed into “Group I” and “Group II” as discussed in the 
design section. The subjects were also provided unique IDs. 
The “Group I” subjects were provided IDs as “A1 to A7” and 
“R1 to R7” for the author and the reviewer roles, respectively. 
Similarly, the “Group II” subjects were given IDs as “A8 to 
A14” and “R8 to R14”. The subjects of both groups with the 
author role were given a problem statement in both experiment 
sessions for code writing, whereas the subjects’ reviewer role, 
both groups were given the job to review the code written by 
the authors of their respective group. The subjects were given 1 
hour of training regarding experiment objectives, experiment 
process, data collection forms, activities, and MCR process. 
The subjects of “Group II” were described in the electronic 
guide of the MCR-KSM. In “Session I” of the experiment, no 
group was given access to MCR-KSM. The “Authors” from 
“Group I” and “Group II” were requested to write the code in 
parallel. After finishing the coding activity, they were directed 
to submit the code to the moderator. After gathering the code 
from the first subject, “Author”, the moderator gave the code to 
the subject “Reviewer” with the first ID of the same group to 
review the code.  Like this, the “Author-Reviewer” sub-group 
was established. The “Reviewers” were then asked to review 
the allocated code and give feedback to the respective 
“Author”. The subject “Author”, after receiving the feedback 
from the subject “Reviewer”, was requested to make 
corrections as suggested by the reviewer. At that moment, the 
“Author” and “Reviewer” can exchange comments for 
clarification purposes. The “Author” resubmitted the code to 
the respective reviewer after addressing the issues. This cycle 
continues till the chosen reviewer accepts the code. If the 
reviewer is satisfied with the code, then the code is signed off 

and formally accepted by the reviewer. During experiment 
execution, the moderator recorded the waiting time faced by 
the “Author” or “Reviewer”. The data collection details are 
given in Section V. 

V. DATA COLLECTION 

Based on the experiment design deliberated in Section III, 
the data were collected. In Session I of the experiment, 
“Author” from “Group I” and “Group II” were requested to 
write the code without using MCR-KSM. Similarly, the 
“Reviewer” from “Group I” and “Group II” were asked to 
review the code and provide feedback without using MCR-
KSM. 

During Session II, the subjects “Author” of “Group I” were 
asked to write the code without using MCR-KSM, and subjects 
“Authors” of “Group II” were asked to write the code using the 
MCR-KSM. Likewise, the subjects “Reviewer” of “Group I” 
were asked to review the code and provide feedback without 
using MCR-KSM and the subjects “Reviewer” of “Group II” 
were asked to review the code and provide feedback using 
MCR-KSM. For both sessions, the waiting time experienced 
by authors and the reviewers was recorded, and the total 
waiting time was computed. The collective waiting times for 
both sessions are given in Tables III and IV. The waiting time 
is given in Table III, calculated in the experiment session I for 
the “Groups I” and “Group II” when they executed MCR 
activities without using MCR-KSM. The waiting time 
presented in Table IV was computed in the experiment session 
II when “Group I” performed MCR activities without using the 
MCR-KSM and ‘Group II’ performed MCR activities using the 
MCR-KSM. 

Tables III and IV have dual main columns, “Group I” & 
“Group II”. Each main column has four sub-columns. The 
“Test Subject Sub-group ID” column shows the sub-group ID, 
the “Group Members” column shows the group members, 
“Author Waiting Time” column shows the waiting time faced 
by the author. The “Reviewer Waiting Time” column shows 
the waiting time faced by the reviewer. “Total Waiting Time” 
is the collective waiting time faced by the author and reviewer. 
The result analysis based on the data collected is discussed in 
Section VI. 

TABLE III SESSION I EVALUATION OF WAITING WASTE WITHOUT USING MCR-KSM (PRE-TEST) 
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TSG-I-sg1 A3, R1 40 25.00 60 TSG-II-sg1 A8, R9 42 20 62 

TSG-I-sg2 A4, R2 45 35.00 80 TSG-II-sg2 A10, R12 45 45 89 

TSG-I-sg3… A2, R3 40 35.00 75 TSG-II-sg3 A9, R10 45 35 90 

TSG-I-sg4 A5, R4 55 23.00 78 TSG-II-sg4 A13, R13 45 20 65 

TSG-I-sg5 A1, R5 42 32.00 69 TSG-II-sg5 A12, R14 33 43 66 

TSG-I-sg6 A6, R6 40 21.00 60 TSG-II-sg6 A1, R11 37 22 59 

TSG-I-sg7 A7, R7 39 40.00 79 TSG-II-sg7 A11, R18 40 35 75 
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VI. RESULTS AND DISCUSSION 

This section provides the details about the result analysis 
performed based on the data collected and presented in 
Section V. The waiting waste, i.e. waiting time was calculated 
utilizing value stream mapping technique based on variables, 
i.e. “Author Waiting Time (AWT)”, “Reviewer Waiting Time 
(RWT)”, and “Total Waiting Time (TWT)”. The collected data 
is given in Tables III and IV. The experiment data was 
recorded in SPSS for data analysis. To measure the waiting 
waste generation in “Pre-test” paired sampled t-test was  used 
[59]. Waiting waste was calculated with three perspectives, i.e. 
waiting time faced by subject “Authors”, subject “Reviewers”, 
and “Total Waiting Time”. The mean differences between the 
dependent variables for examining the waiting waste 
generation were analyzed.  The result analysis of the dependent 
variables is provided in sub-sections. 

1) Pre-test result analysis: By using “paired t-test” the 

waiting waste production in Pre-test for “Group I” and 

“Group II was analysed. The subjects were provided with a 

pre-test where none of the group were given MCR-KSM. 

Table V shows the stats of the paired t-test for both the 

groups. The result analysis of the paired t-test shows that there 

was no considerable difference amongst Group I and Group II 

who completed experimental activities in pre-test. 

The mean values for “Author Waiting Time (Group I, 
mean=43.00, standard deviation =5.66 Group II, mean =41.00, 

standard deviation=4.65), Reviewer Waiting Time (Group I, 
mean=30.1429, standard deviation=7.17469 Group II, mean 
=31.4286, standard deviation=10.75263) and Total Waiting 
Time (Group I, mean=71.5, standard deviation=8.695 Group II, 
mean =72.2, standard deviation=12.75035)” shows that there is 
no considerable difference in waiting waste production (Author 
Waiting Time, Reviewer Waiting Time, and Total Waiting 
Time)  for both the groups. The p-value (sig, (2-tailed)) was 
(p>0.05) for author waiting time (p=0.386), reviewer waiting 
time (p=0.630), and total waiting time (p=0.843). If p>0.05 it 
infers that the null hypothesis was accepted as there was no 
substantial difference between author waiting time, reviewer 
waiting time, and total waiting time of “Group I” and 
“Group II” in Pre-test. It was analyzed from the paired t-test 
results with variables author waiting time, reviewer waiting 
time, and total waiting time that there was no significant 
difference in waiting waste generation when both the group 
were not provided with Modern Code Review Knowledge 
Sharing Model. The author waiting time of both groups was 
almost the same (“Group I”, mean=43, “Group II”, mean=41). 
The measure of 2-tailed t-test found this difference not to be 
significant, t (7) = 0.935, p>0.386.  Hence, it was determined 
that 

 

TABLE IV SESSION II EVALUATION OF WAITING WASTE WITHOUT AND WITH USING MCR-KSM (POST-TEST) 

Group I (Without (WOT) using modern code review knowledge 

sharing model) 
Group II (With (WT) using modern code review knowledge sharing model) 
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TSG-I-sg1 A3, R1 37 19 56 TSG-II-sg1 A11, R8 25 15 40 

TSG-I-sg2 A4, R2 45 35 80 TSG-II-sg2 A10, R9 20 13 33 

TSG-I-sg3 A2, R3 40 35 75 TSG-II-sg3 A9, R10 25 15 40 

TSG-I-sg4 A5, R4 55 25 80 TSG-II-sg4 A8, R11 32 16 48 

TSG-I-sg5 A1, R5 40 26 66 TSG-II-sg5 A14, R12 30 14 44 

TSG-I-sg6 A6, R6 39 20 59 TSG-II-sg6 A12, R13 20 17 37 

TSG-I-sg7 A7, R7 36 35 71 TSG-II-sg7 A13, R14 20 10 30 

TABLE V WAITING WASTE ANALYSIS PRE-TEST – EXPERIMENT SESSION I 

Variables Mean N t Sig. (2-tailed) 

Author Waiting Time (AWT) 
43.00 7 

0.935 0.386 
41.00 7 

Reviewer Waiting Time (RWT) 
30.14 7 

-.508 0.630 
31.4286 7 

Total Waiting Time (TWT) 

  

71.5 7 
-.207 0.843 

72.2 7 

“The author waiting time was almost same when 
both the groups were not provided with modern code 
review knowledge sharing model”.   
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Similarly, the reviewer waiting time of both the groups was 
almost the same (“Group I”, mean=30.14, “Group II”, 
mean=31.4). The measure of 2-tailed t-test found this 
difference not to be noteworthy, t (7) = -0.508, p>0.630.  
Hence, it was concluded that 

 

Likewise, the total waiting time of both the groups was 
almost the same (“Group I”, mean=71.5, “Group II”, 
mean=72.2). The measure of 2-tailed t-test found this 
difference not to be momentous, t (7) = -0.207, p>0.843.  
Hence, it was concluded that 

 

Based on the independent results of dependent variable 
“author waiting time”, “reviewer waiting time”, and total 
waiting time it was concluded that there was no noteworthy 
difference in the waiting waste generation when both the 
groups were not provided with the Modern Code Review 
Knowledge Sharing Model, therefore the null hypothesis, H0, 
i.e. “There is no noteworthy difference in waiting waste 
generation for both the groups without using modern code 
review” was accepted. The paired sample t-test results rejected 
the alternate hypothesis, H2, i.e. “There is a noteworthy 
difference in waiting waste generation for both the groups 
without using modern code review.” It was analysed from the 
results analysis of Group 1 and Group II pre-test that the 
variance between “Group I” and Group II” was not noteworthy 
that signifies both the groups were equal regarding their 
programming capability. 

2) Post-test result analysis: The paired t-test was 

performed to analyze the waiting waste generation for “Group 

I” and “Group II” in the post-test. The subjects were provided 

the post-test in which “Group I” was not offered with MCR-

KSM and “Group II” was provided with MCR-KSM.  

Table VI shows the stats of the paired t-test for “Group I” and 

“Group II” for variables “Author Waiting Time”, “Reviewer 

Waiting Time”, and “Total Waiting time”. 

The stats of paired t-test exhibited that there was a 
noteworthy variance between “Group I” and “Group II”. The 
mean values for Author Waiting Time “Group I, mean = 
41.7143, standard deviation = 6.52468. Group II, mean = 
24.5714, standard deviation = 4.96176”. Reviewer Waiting 
Time “Group I, mean = 27.0571, standard deviation = 7.12808 
Group II, mean = 14.2857, standard deviation = 2.28869” and 
Total Waiting Time “Group I, mean = 69.5714, standard 
deviation = 9.64118 Group II, mean = 38.8571, standard 
deviation = 6.17599” exhibited a noteworthy difference in 
waiting waste generation for both the groups. 

TABLE VI WAITING WASTE ANALYSIS POST-TEST – EXPERIMENT 

SESSION II 

Group 

ID 
Variables Mean N t 

Sig. (2-

tailed) 

Group I 
Author Waiting Time 

(AWT) 

41.714

3 
7 

8.21

6 
0.000 

Group 

II 

24.571

4 
7 

Group I 
Reviewer Waiting Time 

(RWT) 

27.057

1 
7 

4.05

8 
0.007 

Group 

II 

14.285

7 
7 

Group I 
Total Waiting Time (TWT) 

  

69.571

4 
7 

7.22

3 
0.000 

Group 

II 
38.85 7 

Therefore, it was analysed that there was a noteworthy 
difference regarding waiting waste generation “Author Waiting 
Time, Reviewer Waiting Time, and Total Waiting Time” 
amongst “Group I” and “Group II”. The p-value (sig, (2-
tailed)) was (p<0.05) for author waiting time (p=0.00), 
reviewer waiting time (p=0.007), and total waiting time 
(p=0.000). The p value i.e. p<0.05 it infers that the null 
hypothesis “There is no difference in the waiting waste 
generation in the modern code review process with or without 
using Modern Code Review Knowledge Sharing Model” was 
rejected and there was a noteworthy difference between author 
waiting time, reviewer waiting time, and total waiting time of 
“Group I” and “Group II”. The positives t values for Author 
Waiting Time (t=8.216), Reviewer Waiting Time (t=4.058), 
and Total Waiting Time (t=7.223) indicate that the Modern 
Code Review Knowledge Sharing Model (MCR-KSM) 
reduces the author waiting time, reviewer waiting time, and 
total waiting time. From the paired t-test results it was obvious 
that that there was a noteworthy decrease in waiting waste 
generation when participants considered the MCR-KSM. 

The waiting time of the “Group II” author was less when 
they performed MCR activities while using MCR-KSM (mean 
= 24.5714, standard deviation = 4.96176) as compared to 
“Group I” author who did not use MCR-KSM (mean = 
41.7143, standard deviation = 6.52468). Measure of 2-tailed t-
test found this difference to be noteworthy, t (7) = 8.216, 
p<0.05.  Hence, it was determined that 

 

Fig. 2 shows the comparative view of Author Waiting Time 
with and without using MCR-KSM during Post-test session. It 
clearly shows that when code review was performed using 
MCR-KSM the average Authors Waiting Time (AWT) was 
significantly less, i.e. 24.5 (min) as compared to code review 
activities when performed without using MCR-KSM where 
average AWT was 41.7 (min). 

Likewise, waiting time of the “Group II” reviewer was less 
when they performed MCR activities while using MCR-KSM 
(mean = 27.0571, standard deviation = 7.12808) as compared 
to “Group I” who did not MCR-KSM (mean = 14.2857, 
standard deviation  = 2.28869). The measure of 2-tailed t-test 

“The author waiting time was reduced with the use of 

modern code review knowledge sharing model”.  

“The total waiting time was almost same when both 
the groups were not provided with modern code 

review knowledge sharing model”. 

“The reviewer waiting time was almost same when 
both the groups were not provided with modern code 

review knowledge sharing model” 
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found this difference to be significant, t (7) = 4.058, p<0.05.  
Hence, it was determined that 

 

Fig. 3 shows the comparative view of Reviewer Waiting 
Time with and without using MCR-KSM during Post-test 
session. It evidently shows that when code review was 
performed using MCR-KSM the average Reviewer Waiting 
Time (RWT) was significantly less, i.e. 14.2 (min) as 
compared to code review activities when performed without 
using MCR-KSM where average RWT was 27.0 (min). 

 

Fig. 2. Comparative view of author waiting time (AWT)-post-test. 

 

Fig. 3. Comparative view of reviewer waiting time (RWT)-post-test. 

Equally, total waiting time was less for “Group II” when 
the subjects performed MCR activities while using MCR-KSM 
(mean = 38.8571, standard deviation  = 6.17599) as compared 
“Group I” to when they did not use the MCR-KSM (mean = 
69.5714, standard deviation  = 9.64118). The measure of 2-
tailed t-test found this difference to be noteworthy, t (7) = 
7.223, p<0.05.  Therefore, it was determined that 

 

Fig. 4 shows the comparative view of Total Waiting Time 
with and without using MCR-KSM during Post-test session. It 

clearly shows that when code review was performed using 
MCR-KSM the average Total Waiting Time (TWT) was 
significantly less i.e.38.8 (min) as compared to code review 
activities when performed without using MCR-KSM where 
average TWT was 69.5 (min). 

Based on the independent results of dependent variable 
“Author Waiting Time”, “Reviewer Waiting Time”, and “Total 
Waiting Time”, it was determined that there was a noteworthy 
variance in the waiting waste generation with and without the 
support of the MCR-KSM, so the null hypothesis, H0, i.e. 
“There is no difference in the waiting waste generation in the 
modern code review process with or without using Modern 
Code Review Knowledge Sharing Model” was rejected. The 
paired sample t-test results supported the alternate hypothesis, 
H1, i.e. 

 

The alternate hypothesis H2 given in Table II was not 
supported by the paired sample t-test. 

 

Fig. 4. Comparative view of waiting waste generation-post-test. 

VII. CONCLUSION 

MCR is a quality assurance activity, though it is supported 
with AI and LLM, but it generates various wastes such as 
rework, defect waste, composite solution waste and waiting 
waste, etc. Waiting waste is the critical one that causes mental 
distress. Reducing waiting waste is crucial for sustainable 
software engineering. The Knowledge exchange has a 
profound role in the reduction of waiting waste production 
during code reviews. To reduce waiting waste, our previous 
study introduced the Modern Code Review Knowledge 
Sharing Model (MCR-KSM). This study presented empirical 
results to evaluate the effectiveness of MCR-KSM for the 
reduction in waste generation during the MCR process. The 
waiting waste was calculated based on variables, i.e. “Author 
Waiting Time” and “Reviewer Waiting Time”. The study 
results show that there was a significant reduction in the 
authors, reviewers and total waiting time when they considered 
the Modern Code Review Knowledge Sharing Model. 

“The waiting waste generation in MCR using MCR-KSM 

is lower than without using MCR-KSM.”. 

“the total waiting time was reduced with the use of 

modern code review knowledge sharing model”.   

“The reviewer waiting time was reduced with the use of 
modern code review knowledge sharing model”.  
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VIII. LIMITATIONS 

To conduct the study, it was hard to gather dedicated 
respondents. Twenty-eight graduate students with software 
engineering experience and knowledge of MCR, software 
engineering wastes, took part in the experiment. The results 
might be more confident if more students contributed to the 
experiment.  Nevertheless, despite the limitations, we believe 
that the results have educational and practical implications. 

IX. FUTURE WORK OPPORTUNITIES 

The experiment can be augmented in future with varying 
settings. In future, it is planned to evaluate the significance of 
MCR-KSM in the actual industry environment. Likewise, more 
experiments can be conducted to check whether the developed 
model can reduce other waste, such as defect waste and motion 
waste, negative emotion waste, etc. and emotional intelligence. 
Moreover, innovation in AI, machine learning, and LLM-based 
code review is evolving, and it is understood that developers’ 
domain knowledge is essential and cannot be ignored. 
Therefore, solutions combined with AI, machine learning and 
developers’ domain knowledge can be beneficial for the 
reduction of various types of code review wastes. Moreover, 
other software engineering activities or computing domains can 
be explored for waste identification and reduction. 

X. CONTRIBUTION 

The research conducted has created the foundation for 
green and sustainable computing by developing and evaluating 
the MCR knowledge sharing model to reduce waste. The study 
contributed to three aspects. Firstly, it confirms that the MCR-
KSM supports in reduction of waiting waste production. 
Secondly, the research article provided a detailed experiment 
design and conduct procedure that can be beneficial for young 
researchers to experiment with their respective research field. 
Thirdly, the research highlighted future research venues that 
can be beneficial for practitioners and researchers. 
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