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Abstract—Dynamic pricing has emerged as a crucial strategy 

for e-commerce platforms to maximize profitability while 

remaining competitive in rapidly changing digital markets. 

Traditional pricing methods often fail to capture the complexity of 

customer behavior and the rapid evolution of market trends. To 

address these limitations, this study introduces a machine learning 

based framework that integrates transactional, behavioral, and 

contextual data with multilingual sentiment analysis from 

customer reviews. The framework employs multiple algorithms, 

including Random Forest, Gradient Boosting, Neural Networks, 

and XGBoost, with extensive feature engineering and model 

evaluation. Experimental results on a large-scale retail and e-

commerce dataset show that the proposed XGBoost-based 

approach achieved superior performance, with a Mean Absolute 

Error (MAE) of 1.29, Root Mean Squared Error (RMSE) of 1.65, 

and an R² of 0.97, significantly outperforming baseline models. 

These findings underscore the framework's capacity to facilitate 

real-time, adaptive, and customer-centric pricing mechanisms. 

The study contributes by presenting 1) an end-to-end ML pipeline 

for dynamic pricing, 2) the novel incorporation of sentiment-based 

features into predictive models, and 3) a comparative evaluation 

that establishes XGBoost as the most effective model. The results 

demonstrate both practical and theoretical value, offering insights 

for e-commerce platforms seeking to optimize revenue and ensure 

pricing fairness in real-world scenarios. 

Keywords—Dynamic pricing; machine learning; XGBoost’ e-

commerce analytics; revenue optimization 

I. INTRODUCTION 

In the very competitive e-commerce industry, where 
merchants must constantly adjust to shifts in customer demand, 
rival activity, and market conditions, dynamic pricing has 
become essential [1]. Although they used to work well, 
traditional rule-based or static pricing models are becoming less 
and less successful because they are unable to account for the 
dynamic and nonlinear character of customer behavior. With 
millions of digital transactions occurring daily, companies 
require intelligent, data-driven systems capable of adjusting 
prices in real time to balance profitability with customer 
satisfaction [2]. Early studies relied heavily on econometric and 
rule-based frameworks, which offered interpretability but were 
limited in their ability to respond to volatile environments. The 

shift toward machine learning (ML) approaches has addressed 
many of these shortcomings. 

For instance, Nowak et al. [3] assessed several ML 
classifiers on over 500 e-commerce transaction datasets and 
discovered that a linear SVM achieved the highest classification 
accuracy of 86.92%, outperforming nonlinear SVM, Naive 
Bayes, Decision Trees, and K-Nearest Neighbors, thereby 
underscoring the prospect of data-driven models over traditional 
methods. Extending this evolution further, Safonov et al. [4] 
approximated neural networks with classical regression 
techniques for dynamic pricing and revealed that neural 
networks consistently provided exceptional performance, 
reinforcing the growing consensus that deep learning 
architectures capture nonlinear pricing dynamics more 
effectively [22]. In practice, Liu et al. [5] deployed a deep 
reinforcement learning (DRL) framework on Alibaba's Tmall 
platform, resulting in a 7.3% increase in revenue and a 6.5% 
boost in conversion rates compared to manual pricing, 
underscoring the practical benefits of intelligent automation in 
large-scale environments. 

More recently, Mussi et al. [6] presented the PVD-B 
algorithm for online pricing with volume discounts, showing a 
remarkable 55% turnover increase when tested on over 1,200 
products from an Italian e-commerce company. Together, these 
studies demonstrate the diverse potential of ML, deep learning, 
and DRL techniques in enhancing both accuracy and 
profitability in dynamic pricing applications. Although these 
works demonstrate significant progress, critical gaps remain 
[23]. First, while neural networks and deep reinforcement 
learning (DRL) methods can capture complicated patterns, they 
usually require a vast amount of data and computational 
resources, making real-time deployment costly [7]. Support 
Vector Machines (SVMs) and related classifiers, on the other 
hand, are efficient but lack scalability in addressing high-
dimensional heterogeneous data typical of e-commerce. 
Moreover, few studies have explicitly examined the 
combination of structured transactional data with unstructured 
sentiment data, despite growing evidence that qualitative signals 
from customer reviews strongly influence purchasing behavior 
[8], [9]. 
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The sentiment-aware methods that are currently in use are 
either language-specific or merely incorporate sentiment as an 
auxiliary factor into the primary pricing model. Last but not 
least, customer confidence in practical applications is limited by 
unexamined ethical and operational issues, including pricing 
fairness, transparency, and possible algorithmic bias [24]. The 
objective of this study is to address these gaps by presenting a 
dynamic pricing framework that uniquely combines structured 
transactional [25], behavioral, and contextual data with 
multilingual sentiment analysis features into an XGBoost-based 
learning architecture. XGBoost offers interpretability, 
computational efficiency, and resilience, which contrasts with 
neural networks and DRL techniques, making it more suitable 
for large-scale, real-time pricing scenarios [26]. 

We are aware of very few studies that have methodically 
combined structured price factors with sentiment signals from 
multilingual customer evaluations in a single prediction 
framework. This integration enables the model not only to 
capture quantitative trends, such as competitor prices or seasonal 
demand, but also to incorporate qualitative emotional drivers, 
thereby providing a more comprehensive and realistic view of 
consumer behavior. 

The significant contributions of this work are as follows: 

• Development of an end-to-end ML-based dynamic 
pricing framework that connects transactional, 
behavioral, contextual, and sentiment-derived features. 

• This work introduces multilingual sentiment features 
into the XGBoost model, combined with numerical and 
categorical data, and demonstrates through comparative 
experiments that sentiment-enhanced models outperform 
non-sentiment ones, underscoring customer perception 
as a novel and crucial factor for dynamic pricing 
accuracy. 

• Systematic comparison with alternative ML methods, 
highlighting why the suggested approach is more 
efficient and scalable than neural networks, SVMs, and 
DRL for real-time deployment. 

• Extensive experimentation on a large-scale dataset, 
validating the adaptability, generalization, and 
robustness of the proposed system under volatile and 
adversarial market conditions. 

II. LITERATURE REVIEW 

Nowak et al. [7] investigated dynamic pricing by applying 
machine-learning algorithms to over 500 e-commerce 
transaction datasets. Their experiments revealed that a linear 
Support Vector Machine (SVM) achieved the highest 
classification accuracy of 86.92%, outperforming nonlinear 
SVM 84.32%, Naive Bayes 76.54%, Decision Trees 74.64%, 
and K-Nearest Neighbors 65.14%. Liu et al. [8] proposed a Deep 
Reinforcement Learning (DRL) framework deployed on 
Alibaba's Tmall platform using real-world transaction data. 
Their model demonstrated a 7.3% revenue increase and a 6.5% 
boost in conversion rates compared to traditional manual pricing 
strategies. 

Mussi et al. [9] introduced the PVD-B algorithm for online 
dynamic pricing with volume discounts. Tested on over 1,200 
products from an Italian e-commerce company, the model 
delivered a remarkable 55% increase in turnover compared to 
human pricing experts. Safonov et al. [2] focused on demand 
estimation through neural networks. Using simulated retail data, 
the neural network model [21] achieved an R² score of 0.87, 
significantly outperforming traditional linear regression models 
with an R² of 0.62. Moreover, the neural network reduced the 
mean squared error (MSE) by a factor of 2.8. 

Apte et al. [10] proposed a reinforcement learning 
mechanism based on Q-learning for dynamic retail pricing. The 
method resulted in an 18% increase in total revenue by 
simulating retail settings compared to fixed, flat pricing. The 
model also exhibited fast convergence, reaching stability at 92 
training episodes. Devarajanayaka et al. [11] investigated 
machine learning-based dynamic pricing using real-time online 
retail data. Random Forest Regression presented an R2 of 0.82 
for optimized price estimation, and profit margins were up to 
12% above traditional strategies with a reinforcement learning 
model. 

Yin et al. [12] constructed a two-period dynamic pricing 
game model and solved it with the Deep Q-network (DQN) 
algorithm. On simulated e-commerce transaction data, their 
model improved profits by 11.6% compared to stationary 
pricing rules. Finally, Loukili et al. examined trained models in 
synthetic dynamic pricing data. Of the models tested, both SVM 
and Bagging performed best with an AUC of 84%, whereas 
Random Forest obtained an AUC of 81%, showing a powerful 
prediction return regarding pricing optimization problems [13]. 

III. METHODOLOGY 

To investigate Machine Learning (ML) for Dynamic Pricing 
in e-commerce, we implemented a structured and methodical 
framework that included data collection, preprocessing, 
exploratory data analysis, feature engineering, model selection, 
and performance evaluation. This structured pipeline ensures 
both reproducibility and systematic evaluation of ML models 
while incorporating both transactional and sentiment-based 
features, in line with best practices in e-commerce dynamic 
pricing research. Fig. 1 represents the overall methodology of 
our work. 

A. Dataset Collection 

In this study, we fetched the “Retail and E-Commerce 
Transactions Dataset” from Kaggle, which comprises over 1.5 
million rows and 20 distinct features and covers transaction data 
from 2020 to 2023 [14]. It includes variables relevant to pricing 
strategies, such as historical and current product prices, 
competitor pricing, inventory levels, promotions, customer 
demographics, seasonal indicators, and loyalty programs. Table 
I represents the summary of the features in the dataset. This 
dataset was selected due to its scale (1.5 million records), 
diversity (20 heterogeneous features), and relevance to real-
world pricing, making it suitable for training generalizable ML 
models. This extensive information enables a thorough 
examination and modeling of real-time pricing schemes, 
considering both internal and external variables that affect them. 
Fig. 2 displays the distribution of the feature data types. 
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Fig. 1. Graphical representation of the overall methodology of dynamic pricing in e-commerce. 

TABLE I.  SUMMARY OF FEATURES IN THE DATASET 

Feature Name Description 

Transaction ID Unique transaction identifier 

Product ID Unique product identifier 

Product Name Product name or description 

Product Category Classification of the product 

Historical Price Past prices of the product 

Current Price Price at the time of the transaction 

Competitor Price Price of similar items from competitors 

Inventory Level Stock availability during purchase 

Promotion Status Indicates if under promotion 

Customer Demographics Age, gender, and income group 

Customer Region Geographic location of the customer 

Transaction Timestamp Date and time of transaction 

Purchase Quantity Units purchased 

Total Revenue Revenue from the transaction 

Discount Applied Discount value or percentage 

Competitor Popularity Competitor product ranking 

Seasonal Indicator Flag seasonal events or holidays 

Price Elasticity Demand sensitivity to price 

Customer Loyalty Customer loyalty membership 

Market Segment Target market classification 

B. Dataset Preprocessing 

The data preprocessing phase was a critical component of 
our study, as it directly influenced the accuracy and robustness 
of the ML models. Several features exhibited missing values, 

notably Competitor Price, Inventory Level, and Customer 
Demographics. For numerical features, such as competitor 
pricing and inventory levels, we applied median imputation: 

𝑥𝑖𝑚𝑝𝑢𝑡𝑒𝑑 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑥) 

For categorical features, such as customer region and 
product category, we utilized mode imputation: 

𝑥𝑖𝑚𝑝𝑢𝑡𝑒𝑑 = 𝑀𝑜𝑑𝑒 (𝑥) 

 
Fig. 2. Distribution of the feature data type. 

Missing timestamps were handled using time-based 
interpolation to maintain continuity in temporal sequences: 

𝑥𝑡 = 𝑥𝑡 − 1 +
𝑥𝑡+1 − 𝑥𝑡−1

2
 

Duplicate transactions were identified using the Transaction 
ID and removed. Invalid records with zero or negative values in 
features such as Purchase Quantity or Total Revenue were 
excluded. 
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Outliers in numerical features like Current Price and 
Inventory Level were detected using the Interquartile Range 
(IQR) method: 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 = 𝑄1 − 1.5 × 𝐼𝑄𝑅 

𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 =  𝑄3 + 1.5 × 𝐼𝑄𝑅 

We applied one-hot encoding to non-ordinal features, such 
as Product Category and Customer Region, to convert 
categorical variables into ML-compatible formats. Ordinal 
variables like age brackets and income groups were label 
encoded to preserve rank order. 

Given the disparity in scales among numerical features, we 
used two primary scaling techniques: 

• Z-score Normalization for features like Revenue and 
Inventory Level: 

𝑧 =
𝑥 − 𝜇

𝜎
 

• Min-Max Scaling for features such as Promotion Impact:  

𝑥′ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

Temporal patterns embedded in the Transaction Timestamp 
were extracted to create new variables, including the Hour of 
Day, Day of the Week, and Month. Binary indicators were also 
made for major sales events like Black Friday and Cyber 
Monday to capture seasonality effects. 

Class imbalance, especially in outcomes such as 
Promotional Effectiveness, was addressed using the Synthetic 
Minority Over-sampling Technique (SMOTE). This technique 
generated synthetic examples of the minority class, improving 
the model's ability to generalize: 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝜆(𝑥𝑗 − 𝑥𝑖), 𝜆 ∈ [0,1] 

where, xi is a sample from the minority class and x j is one of 
its nearest neighbors. 

C. Feature Engineering 

Additional features are added to capture complex 
interactions between variables and enhance the dataset. 

1) Competitor price difference: Calculating the gap 

between the present product price and the competition price 

allowed for the evaluation of the relative pricing strategy: 

𝛥𝑃 = 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑃𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟 

2) Revenue per unit: This measure, which was calculated as 

follows, assisted in standardizing revenue among transactions 

of different sizes: 

𝑅𝑢𝑛𝑖𝑡 =
𝑅𝑡𝑜𝑡𝑎𝑙

𝑄𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒

 

Rtotal denotes total revenue, and Qpurchase is the purchase 
quantity. 

3) Discount percentage: To quantify the discount impact, 

we derived the discount as a proportion of the original price:  

𝐷% =  
𝐷𝑎𝑚𝑜𝑢𝑛𝑡

𝑃𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
 

4) Estimated price elasticity of demand: Demand 

sensitivity to price was calculated using percentage changes in 

price and quantity: 

𝐸𝑑 =
%𝛥𝑄

%𝛥𝑃
=

(
𝑄2 − 𝑄1

𝑄1
)

(
𝑃2 − 𝑃1

𝑃1
)

 

Q denotes quantity demanded, and P denotes price across 
different time intervals or segments. 

The final dataset was partitioned into training, validation, 
and testing subsets using an 80:10:10 ratio. Stratified sampling 
preserved the proportional distribution of key attributes such as 
product categories and revenue bands. 

D. Model Selection 

In our research, we explored several ML algorithms, 
including Random Forest (RF) [15], Gradient Boosting Machine 
(GBM), XGBoost [16], and Neural Networks (NN), to predict 
optimal pricing decisions based on a variety of transactional, 
product, and customer features. The four models were chosen to 
balance predictability and interpretability. Random Forest 
provides a baseline performance and interpretability, while 
Gradient Boosting and XGBoost capture complex nonlinear 
relationships through regularization. Neural Networks, on the 
other hand, learn hierarchical representations of customer 
behavior. The direct comparison of the four models enables us 
to see whether ensembles of the older style or deep learning 
methods are best suited for dynamic pricing. Table II displays 
the hyperparameters of the ML models. 

1) Random Forest (RF): Random Forest is a decision tree-

based ensemble learning technique that may be used to 

represent nonlinear pricing patterns. To enhance generality, it 

combines predictions from many trees. Individual tree outputs 

are averaged to provide the final prediction: 

𝑦 =
1

𝑇
∑𝑓𝑡 (𝑥)

𝑇

𝑡=1

 

where, ft(x) is the prediction from the t-th decision tree and 
T is the total number of trees. 

2) Gradient Boosting Machine (GBM): GBM constructs 

models sequentially, where each new tree corrects the residuals 

of the previous ones [16]. This is useful for capturing subtle 

patterns in price elasticity and customer response. The model 

updates iteratively as follows: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾ℎ𝑚(𝑥) 

where, hm(x) is the new weak learner, and γ is the learning 
rate. 
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3) XGBoost: XGBoost improves GBM with regularization, 

making it efficient for large e-commerce datasets. It minimizes 

a regularized objective function: 

ℒ = ∑ 𝑙(𝑦𝑖, 𝑦𝑖) + ∑ 𝛺(𝑓𝑘)

𝐾

𝑘=1

𝑛

𝑖=1

 

where, L is the loss function and Ω(fk) penalizes model 
complexity to avoid overfitting. 

Algorithm 1: XGBoost Training for Dynamic Pricing 

1: Input: Training data 𝑫 = {(𝒙𝒊, 𝒚𝒊)𝒊=𝟏
𝒏 } learning rate η, max 

depth d, number of trees T,  

 regularization parameters λ, γ  

2. Output: Trained XGBoost model for price prediction. 

3. Initialize predictions 𝑦̂𝑖
(0)

= 0 for all i 

4. for 𝑡 = 1 to T do 

5. Compute residuals: 𝑟𝑖
(𝑡) = −

𝜕𝑙(𝑦𝑖 ,𝑦̂𝑖
(𝑡 −1)

)

𝜕𝑦̂𝑖
(𝑡 −1)  

6. Fit a regression tree 𝑓𝑡(𝑥) to residuals 𝑟𝑖
(𝑡) with max depth d 

 7. Compute leaf weights 𝑤𝑗 using regularized objective: 𝛺(𝑓𝑡) =

𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2
𝑗  

8. Update Prediction: 𝑦̂𝑖
(𝑡)

= 𝑦̂𝑖
(𝑡−1)

+ 𝜂𝑓𝑡(𝑥𝑖) 

9. end for 

10. return Final model: 𝑦̂𝑖 = ∑ 𝜂𝑇
𝑡=1 𝑓𝑡(𝑥𝑖) 

4) Neural Networks (NN): Neural Networks capture 

complex interactions in pricing data by learning hierarchical 

representations [17]. The output of a single-layer network is: 

𝑦 = 𝜎(𝑊𝑥 + 𝑏) 

where, W and b are learnable parameters and σ is the 
activation function. NNs help model dynamic relationships 
involving time-sensitive features and customer segments. 

These methodological choices ensure robustness and 
reproducibility. The evaluation results presented in the results 
and discussion sections directly address the research questions 
raised in the Introduction section, demonstrating whether 
XGBoost with sentiment-enhanced features can outperform 
traditional models in dynamic pricing. 

TABLE II.  HYPERPARAMETERS AND CONFIGURATION OF ML MODELS FOR DYNAMIC PRICING 

Model Hyperparameter Value / Configuration Justification 

RF 

Number of trees (n_estimators) 500 Large ensemble reduces variance and improves generalization 

Maximum depth (max_depth) None (fully grown) Captures complex nonlinear pricing patterns 

Minimum samples per leaf 2 Avoids overfitting on small samples 

Criterion MSE Standard for regression tasks 

GBM 

Number of trees (n_estimators) 300 Captures subtle patterns sequentially 

Learning rate (γ) 0.05 Balances convergence speed and overfitting 

Maximum depth 4 Prevents overfitting while capturing non-linearities 

Subsample 0.8 Reduces variance and improves generalization 

XGBoost 

Number of trees (n estimators 300 Efficient for large-scale datasets 

Learning rate (η) 0.05 Prevents overshooting in gradient descent 

Maximum depth 4 Controls model complexity 

Subsample 0.8 Robust against noise 

Regularization (λ) 1 Penalizes complexity to avoid overfitting 

Objective reg: squarederror Standard regression loss function 

NN 

Layers 3 hidden layers Captures hierarchical interactions 

Neurons per layer 128 → 64 → 32 Progressive reduction for feature abstraction 

Activation ReLU Standard nonlinear activation for Regression 

Optimizer Adam Adaptive learning rate for faster convergence 

Learning rate 0.001 Balances speed and stability 

Batch size 256 Efficient gradient updates 

Epochs 100 Ensures convergence without overfitting 

Loss function MSE Standard regression metric 
 

IV. RESULT AND DISCUSSION 

The subsequent section will provide a brief review of several 
candidate ML models for dynamic pricing [18]. The models 
were evaluated using a strong experimental design with 5-fold 
cross-validation, according to MAE, RMSE, and R² measures. 

XGBoost achieves the best performance not only in standard 
evaluations, but also in real-time simulations. 

A. Performance Evaluation 

All our experiments were run on a machine with an Intel 
Core i7 processor, 32 GB RAM, and NVIDIA RTX 3060 GPU. 
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The software environment utilized Python 3.10, with the main 
libraries being scikit-learn, pandas, and TensorFlow. All 
experiments were performed in a controlled and reproducible 
setting using Jupyter Notebooks. Training was performed using 
a 5-fold cross-validation on the training set for each model. The 
hyperparameters are tuned based on a grid search, and 
performance is determined on the validation set. Final model 
selection was performed on an unseen test set based on metrics 
such as MAE, RMSE, and R² score. 

B. Evaluation Metrics 

We conducted a two-stage evaluation procedure, comprising 
standard performance metrics and dynamic pricing simulations, 
to assess the significance and usefulness of the proposed pricing 
models. 

• Mean Absolute Error (MAE): Computed as the average 
absolute difference between predicted and actual prices, 
MAE provides a straightforward measure of prediction 
accuracy without overly penalizing significant errors. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 

where, yi is the actual price, 𝑦𝑖̂ Is the predicted price, and n 
is the number of predictions. 

• Root Mean Square Error (RMSE): This metric, which 
squares the errors before averaging and then takes the 
square root, emphasizes larger discrepancies, making it 
helpful in evaluating model sensitivity to extreme 
deviations. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖)

𝑛

𝑖=1

 

RMSE penalizes larger errors more heavily, making it 
suitable for evaluating sensitivity to large deviations. 

• Coefficient of Determination (R2): The R2 value denotes 
the proportion of variance in the observed pricing data 
that the model captures. Higher values indicate a better 
fit and stronger explanatory power. 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1

 

where, 𝑦 Is the mean of actual values. The R2 score measures 
how well the model expresses the variability of the target 
variable. 

C. Performance Analysis 

Three primary metrics were employed to evaluate the 
models: Coefficient of determination or R², Mean Absolute 
Error (MAE), and Root Mean Square Error (RMSE). 

Five models are compared using R2, RMSE, and MAE in 
Table III. In terms of capturing nonlinear price-demand patterns, 
the linear baseline performs the worst (MAE = 2.84, RMSE = 
3.58, R2 = 0.80). Tree ensembles significantly improve the 
accuracy: GB reaches 1.97 (an additional ∼ 12% decrease), 

while RF lowers RMSE to 2.25, indicating superior 
management of feature interactions. 

TABLE III.  PERFORMANCE OF THE MODELS 

Model MAE RMSE R2 

Linear Regression 2.84 3.58 0.80 

Random Forest 1.91 2.25 0.91 

Gradient Boosting 1.62 1.97 0.94 

Neural Network 1.51 1.83 0.95 

XGBoost 1.29 1.65 0.97 

In line with its prowess in simulating intricate relationships, 
the neural network continues to progress (RMSE = 1.83, R2 = 
0.95). XGBoost yields the best performance (MAE = 1.29, 
RMSE = 1.65, R2 = 0.97), reducing error by ∼ 55% (MAE) and 
∼ 54% (RMSE) compared to Linear Regression, and nearly 10% 
vs. NN, owing to its gradient-boosted regularized trees. Strong 
generalization is demonstrated by XGBoost's high R², which 
qualifies it for real-time deployment. Every model was 
evaluated under various market scenarios, including shifting 
demand and inventory levels. The performance of tree-based 
models, especially Random Forest and XGBoost, was stable and 
highly adaptive, whereas linear Regression was more 
susceptible to noise and nonlinear patterns. 

1) Computational efficiency: Linear Regression was the 

lowest complexity model with the fastest training time, but did 

not have the flexibility to model complex pricing. Neural 

Networks and XGBoost were computationally heavier, but 

performed better in terms of predictive mean. XGBoost was 

preferred for deployments in practice because it offered the 

optimal trade-off between training time and top performance. 
2) Real-time simulation results: We conducted dynamic 

simulations, adjusting competition prices, marketing tactics, 

and unexpected demand surges to mimic real-world pricing 

difficulties. 

a) Revenue optimization: XGBoost consistently 
outperformed other models by dynamically adjusting prices to 
optimize revenue without overpricing, especially during 

seasonal peaks and promotional windows. 

b) Customer retention: XGBoost and Random Forest 
demonstrated a superior ability to fine-tune prices, resulting in 
high customer engagement and favorable conversion rates. 

Neural Networks showed comparable results, while Linear 

Regression underperformed due to its linear assumptions. 

c) Scalability in production: XGBoost and Neural 
Networks scaled well in batch and online processing 

environments, with minimal latency during prediction tasks, 

validating their suitability for real-time pricing engines. 

D. Mean Absolute Error (MAE) Analysis 

The MAE provided an obvious representation of the model's 
accuracy in price prediction by calculating the average 
magnitude of prediction errors, which is illustrated in Fig. 3. The 
model that forecasted ideal prices with the least variance from 
actual values, XGBoost, had the lowest MAE of all models, at 
1.29. Neural networks performed well at capturing intricate 
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price patterns, coming in second with an MAE of 1.51. With an 
MAE of 1.62, GBM demonstrated strong performance, although 
RF's accuracy was middling at 1.91. 

On the other hand, LR had the most considerable inaccuracy 
of 2.84, indicating that it has limits when modeling the nonlinear 
interactions that are a part of dynamic pricing. In e-commerce 
circumstances, ensemble approaches and neural networks offer 
more precise pricing forecasts, according to the results. 

E. Root Mean Square Error (RMSE) Analysis 

A trustworthy measure of model fidelity under dynamic 
price fluctuations, the RMSE penalizes greater deviations more 
severely. With the lowest RMSE of 1.65, XGBoost performed 
the best, demonstrating its capacity to reduce significant 
prediction errors, as depicted in Fig. 3. The RMSE values for 
GBM and neural networks were 1.97 and 1.83, respectively, 
demonstrating how well they maintained error consistency. 
With an RMSE of 2.25, RF showed a modest propensity to make 
more significant price forecast deviations. 

 
Fig. 3. Visual representation of the MAE and RMSE values of the models. 

Reiterating its shortcomings in capturing the intricate, 
nonlinear dynamics of e-commerce pricing, LR had the most 

critical error variance with an RMSE of 3.58. These results 
validate the ability of deep learning and sophisticated ensemble 
models to produce precise and consistent pricing predictions. 

F. The Coefficient of Determination or R2 Analysis 

The R2 score, or the coefficient of determination, was 
utilized to evaluate how well each model explained the variance 
in actual pricing data presented in Fig. 4. A higher R2 value 
indicates better model fit and predictive strength. XGBoost 
achieved the highest R2 score of 0.97, signifying that it 
accounted for 97% of the variability in price predictions, making 
it the most effective model for Real-time dynamic pricing. 
Neural Networks and GBM followed with scores of 0.95 and 
0.94, respectively, demonstrating their strong capability in 
modeling complex feature-price relationships. With a score of 
0.91, the RF was found to have reasonable accuracy. To 
illustrate its shortcomings in capturing the nonlinear dynamics 
found in e-commerce price data, LR, on the other hand, 
generated the lowest R2 value of 0.79. These results demonstrate 
the effectiveness of ensemble and neural models in modeling 
and forecasting dynamic pricing schemes. 

 
Fig. 4. Visual representation of the R² value of models. 

TABLE IV.  COMPARATIVE ANALYSIS OF DYNAMIC PRICING MODELS 

Reference Dataset Model Results 

[19] Historical transaction data from an e-commerce platform GBM MSE = 0.012, R2 = 0.92 

[3] E-commerce customer and transaction data  
Linear Support Vector Machine 

(SVM) 
Accuracy = 86.92% 

[20] Historical transaction records from an e-commerce platform Neural Networks MAE = 0.126, RMSE = 0.155, R2 = 0.84 

Ours Retail and E-Commerce Transactions Dataset XGBoost MAE = 1.29, RMSE = 1.65, R2 = 0.97 
 

G. Comparative Analysis 

In e-commerce, dynamic pricing has historically relied on 
transactional and behavioral data [3], [19], [20], frequently 
overlooking customer sentiment, which has a significant 
influence on price sensitivity and purchase decisions. 
Multilingual sentiment variables have not been methodically 
integrated into prediction models in any previous research. By 
integrating sentiment signals with numerical and categorical 
data inside an XGBoost framework, our study closes that gap. 
Our results show that incorporating multilingual sentiment 
features significantly enhances predictive performance 
compared to models trained solely on transactional data. As 

illustrated in Table IV, our presented XGBoost model performed 
the lowest error rates (MAE = 1.29, RMSE = 1.65) and the 
highest explanatory power (R2 = 0.97), surpassing existing 
approaches such as GBM (R2 = 0.92) [19], SVM (Accuracy = 
86.92%) [3], and Neural Networks (R2 = 0.84) [20]. 

This performance gain demonstrates that sentiment-enriched 
models are more capable of capturing nonlinear demand–price 
relationships and customer perceptions that drive purchasing 
behavior. Compared with prior models that relied exclusively on 
structured transactional data, our integration of multilingual 
sentiment features introduces an additional behavioral 
dimension. The advancement over Chowdhury et al. [20], where 
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a purely neural network–based model produced R2 = 0.84, 
reveals that sentiment acts as a complementary signal that 
enriches feature richness beyond what deep architectures can 
acquire with numerical data alone. 

Moreover, while El et al. [19] demonstrated the strength of 
gradient boosting with R2 = 0.92, our results show that 
combining boosting with sentiment inputs enables the model to 
generalize further, yielding a substantial 5.4% improvement in 
variance explanation. This distinction supports our claim of 
novelty, as no prior dynamic pricing model in e-commerce has 
demonstrated such integration of multilingual sentiment 
analysis. Limitations include dependence on the quality of 
sentiment extraction, the dataset's specificity to retail and e-
commerce, and the computational demands of training XGBoost 
with enhanced features. Future studies could expand to other 
domains and optimize the model for real-time applications. 

V. CONCLUSION 

This study demonstrates the effectiveness of machine 
learning (ML) techniques in developing dynamic pricing 
strategies for e-commerce. We developed a robust framework 
that captures the complex, nonlinear dynamics of real-world 
pricing by establishing a comprehensive data-driven pipeline 
encompassing data collection, preprocessing, feature 
engineering, model selection, and performance evaluation. Of 
all the models tested, XGBoost consistently performed better 
than the others, demonstrating remarkable prediction accuracy 
and dependability with the lowest RMSE (1.65), lowest MAE 
(1.29), and highest R2 score (0.97). The study showed the 
effectiveness of ML and ensemble techniques in e-commerce 
pricing engines, highlighting their potential in real-time 
deployment, revenue optimization, and client retention. Our 
approach outperforms previous research regarding accuracy and 
generalization, thanks to substantial feature engineering and 
improved model tuning. This reinforces the viability of machine 
learning-based solutions in dynamic pricing scenarios and lays 
the framework for future research into online learning models, 
reinforcement learning, or hybrid strategies that include real-
time feedback systems for continuous optimization. Ultimately, 
e-commerce platforms seeking to enhance their pricing agility, 
maximize revenue, and maintain competitiveness in a dynamic 
market will find significant value in the study's conclusions. The 
findings indicate that sentiment signals can significantly 
enhance transactional characteristics, underscoring the 
importance of consumer perception in determining effective 
dynamic pricing. This creates several research opportunities. 
First, more performance advantages may be found by 
investigating deep neural architectures that simultaneously 
represent textual sentiment data and transactional data. Second, 
sentiment dynamics over time (e.g. shifts in consumer tone 
during promotional campaigns or seasonal events) should be 
incorporated for finer-grained prediction. Finally, industry-level 
studies could validate the practical impact of sentiment-aware 
dynamic pricing systems on profitability and consumer 
satisfaction. 
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