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Abstract—This paper offers a thorough comparative 

investigation of the performance of a vehicle multi-object tracking 

system, incorporating various versions of the YOLOv8 detector 

(from ‘n’ to ‘x’) alongside the DeepSORT tracking algorithm. This 

study systematically assesses the impact of the trade-off between 

detector speed and accuracy on tracking metrics, utilising a real-

world traffic video dataset from Bali. The assessment is performed 

utilising two fundamentally distinct metric frameworks: the 

traditional CLEAR metric (which includes MOTA) and the 

contemporary Higher Order Tracking Accuracy (HOTA) metric. 

The findings indicate that although the larger YOLOv8 model 

markedly enhances detection recall, particularly for smaller and 

more difficult items like motorcycles, tracking issues persist. The 

dual metric study provides significant insights: the HOTA 

measure demonstrates that car tracking has more associative 

stability (higher AssA scores) compared to motorbike tracking, 

which frequently experiences track fragmentation. In contrast, the 

detection-biased MOTA metric produces somewhat paradoxical 

outcomes, as motorbikes receive elevated scores due to enhanced 

detection accuracy (fewer false positives), therefore obscuring 

deficiencies in tracking consistency. This study concludes that 

HOTA offers a more comprehensive evaluation by differentiating 

between detection and association performance, so demonstrating 

that detection-only metrics like MOTA can yield an imperfect 

representation of actual tracking ability. These findings 

underscore the necessity of matching detector architecture and 

evaluation criteria with specific application requirements, 

particularly in safety-critical systems where identity consistency is 

essential. 
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I. INTRODUCTION 

Intelligent Transportation Systems (ITS) have emerged as a 
fundamental component in worldwide initiatives aimed at 
enhancing the efficiency, safety, and sustainability of 
transportation infrastructure [1]. Central to these systems is the 
capacity to dynamically observe, analyse, and regulate vehicle 
movements [1]. Multiple Object Tracking (MOT) has become a 
pivotal technology facilitating these sophisticated applications 
[1], [2]. The applications of MOT in Intelligent Transportation 
Systems are varied and significant, encompassing traffic flow 
analysis for congestion management, automated traffic 
enforcement, data collection for urban planning, and accident 
detection [3], [4]. The cornerstone of all these sophisticated 

systems is the accessibility of precise, real-time data regarding 
the movement of each vehicle on the road [1], [3]. 

The predominant and effective methodology in 
contemporary Multi-Object Tracking (MOT) is the tracking-by-
detection paradigm [5]. This paradigm deconstructs the intricate 
tracking issue into two more feasible steps: initially, identifying 
all objects of interest (namely, cars) in each video frame; and 
subsequently, linking (associating) these detections across time 
to establish a coherent trajectory for each object [6]. The 
efficacy of this method is largely contingent upon the 
functionality of these two elements [7]. The integration of the 
YOLO (You Only Look Once) detector family with the SORT 
(Simple Online and Realtime Tracking) tracker family has 
gained significant popularity [8], showcasing the efficacy and 
efficiency of this paradigm across diverse real-world 
applications [8], [9]. 

Although several investigations have utilised the integration 
of YOLO and DeepSORT, most choose to employ a singular 
version of YOLO (e.g. YOLOv5) [10] and concentrate on 
enhancing the tracking algorithm itself.  A comprehensive 
comparison review of the whole range of YOLOv8 devices, 
from the lightweight nano form to the robust extra-large variant, 
is still absent, particularly with on-road vehicle tracking. 

Significantly, numerous current evaluations continue to 
depend extensively on traditional criteria like MOTA (Multiple 
Object Tracking Accuracy) [11], [12], [13], which are 
recognised for their substantial bias against detection 
performance. These measurements frequently conceal 
association failures (identification tracking) by aggregating 
them with detection mistakes [6]. The influence of detector scale 
selection on contemporary metrics like HOTA (Higher Order 
Tracking Accuracy), which distinctly differentiate between 
detection and association assessment, has not been extensively 
investigated [6]. 

This prompts a fundamental research inquiry: How does the 
compromise between detector precision and velocity (e.g. 
YOLOv8n versus YOLOv8x) affect overall tracking efficacy 
when assessed by a metric that equally prioritises detection 
accuracy and association consistency? The link between 
detection quality and tracking quality is hypothesised to be 
nonlinear. There may come a juncture where augmenting 
detector strength ceases to yield advantages or becomes 
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counterproductive, since more sensitive detectors can generate 
partial or ambiguous detections that obfuscate the tracker's 
association logic [6], [14]. 

This evaluation aims to identify specific trends in vehicle 
behaviour that may lead to accidents. Consequently, the findings 
of this research will enhance vehicle monitoring technology and 
facilitate the design of more efficient traffic safety systems. This 
research seeks to elucidate the correlation between vehicle 
trajectories and accident detection, as well as to formulate 
algorithms that are more responsive to fluctuating road 
circumstances. 

This study significantly contributes to the fields of computer 
vision and intelligent transportation systems through the 
following aspects: 

• Comprehensive Empirical Evaluation: Provides an in-
depth empirical evaluation of five YOLOv8–DeepSORT 
combinations on a challenging and contextually 
pertinent real-world vehicle monitoring dataset gathered 
from Bali, Indonesia. 

• Dual Metric Analysis: Performs a thorough performance 
evaluation utilising both the CLEAR metric and the more 
extensive HOTA metric, offering a detailed perspective 
on tracker behaviour that is unattainable by a singular 
metric alone. 

The subsequent sections of this work are structured as 
follows. Section II comprises a literature review that elucidates 
pertinent studies, emphasizing advancements in object 
identification and tracking, specifically with YOLO and 
DeepSORT. Section III delineates the proposed approach and 
the materials utilized, encompassing dataset preparation, model 
configuration, and evaluation protocol. Section IV presents the 
experimental data and offers a comparative analysis utilizing the 
HOTA and CLEAR metrics. Section V presents the conclusions 
of this article and delineates prospective avenues for further 
research. 

II. LITERATURE REVIEW 

A. Advancement of Object Detection Utilising YOLO 

Object detection is a crucial component in numerous 
computer vision applications, encompassing object tracking. 
The YOLO (You Only Look Once) architecture, introduced in 
2016 with YOLOv1, represented a substantial advancement in 
real-time object recognition with an efficient one-stage detection 
methodology [15]. The progression of YOLO persists with 
enhancements in design and training methodologies in YOLOv2 
[16], YOLOv3 [17], YOLOv4 [18], YOLOv5 [19], YOLOv6 
[20], and YOLOv7 [21]. Ultimately, YOLOv8 provides a 
flexible framework featuring an extensive array of models 
tailored for diverse computational and accuracy needs [22], [23], 
[24]. 

The progression of YOLO (You Only Look Once) from 
version 1 to 8 signifies a swift enhancement in real-time object 
identification. YOLOv1 initiated a paradigm shift by 
conceptualising detection as a singular regression task, directly 
forecasting bounding boxes and classes from the entire image in 
one iteration, hence achieving much greater speed compared to 

earlier two-stage detectors. Subsequent iterations, including 
YOLOv2 through YOLOv5, progressively enhanced this 
architecture by incorporating anchor boxes, more resilient 
backbones like CSPDarknet53 [25], and feature aggregation 
networks such as PANet to optimise the balance between 
accuracy and speed [26]. YOLOv8 achieved notable 
advancements by enhancing the backbone and neck for 
improved feature extraction and implementing a pivotal 
modification through the adoption of an anchor-free detection 
head [25]. This anchor-free methodology streamlines the 
prediction process and enhances the model's flexibility to 
objects of diverse scales and aspect ratios, distinguishing it from 
its predecessors that depended on specified anchor boxes. 

Recent advancements indicate that augmenting YOLOv8 
with supplementary modules can enhance performance in 
intricate circumstances. Abdullah N. Alhawsawi et al. 
introduced an Enhanced YOLOv8 using a Context Enrichment 
Module (CEM) to enhance crowd counting in drone imagery by 
more effectively differentiating small, dense targets[27]. This 
method enhances detection precision, while our research 
combines YOLOv8 with DeepSORT to maintain identity 
coherence in vehicle tracking. These studies demonstrate two 
alternative approaches: enhancing detector capability or 
integrating detection with robust tracking for dependable multi-
object surveillance in intelligent transportation systems. 

B. Intersection over Union (IoU) 

In contemporary object detection systems, a crucial element 
that quantifies spatial accuracy between predictions and ground 
truth annotations is Intersection over Union (IoU). Intersection 
over Union (IoU) is a crucial assessment metric in numerous 
deep learning-based object detection algorithms [28], notably 
the YOLO (You Only Look Once) model family and its most 
recent iteration, YOLOv8. In the realm of vehicle recognition 
within roadway settings, pertinent to Intelligent Transportation 
Systems (ITS) applications or traffic surveillance, elevated 
spatial precision is essential to enable the system to accurately 
identify and detect cars across diverse environmental 
circumstances. 

In the evaluation of object detection performance, 
Intersection over Union (IoU) is commonly employed as a 
metric to quantify the overlap between predicted and actual 
bounding boxes. The Intersection over Union (IoU) is 
determined by the ratio of the intersection area of the predicted 
and ground truth boxes to their total area. A high IoU value 
signifies a more precise prediction in object localisation. The 
Intersection over Union (IoU) is frequently employed as a 
criterion to ascertain whether a detection is classified as positive 
or negative in the computation of accuracy and recall metrics. 
The accuracy and precision of object detection, often assessed 
using IoU-based metrics, directly influence the efficacy of 
subsequent tracking tasks. Inaccurate detection may result in 
track fragmentation and misidentification during the tracking 
process. Intersection over Union (IoU) is the ratio of the 
overlapping area of two bounding boxes, specifically the model 
prediction and the ground truth annotation, to the total area of 
their union. The mathematical formulation of IoU is as follows: 

𝐼𝑜𝑈 =
|𝐴𝑝∩𝐴𝑔𝑡|

|𝐴𝑝∪𝐴𝑔𝑡|
                                     (1) 
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The bounding box of the model prediction results is denoted 
as 𝐴𝑝 , while the bounding box of the ground truth data is 

represented as  𝐴𝑔𝑡, The symbol ∩ signifies the overlapping 

area (intersection), and∪ denotes the total combined area of the 

two boxes (union). 

In computational implementation, if each bounding box is 
denoted by its border coordinates (𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛 ,𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥), the 
intersection area is computed as (2): 

𝐴𝑟𝑒𝑎𝑖𝑛𝑡𝑒𝑟 = 𝑚𝑎𝑥 (0, 𝑚𝑖𝑛(𝑥𝑝
𝑚𝑎𝑥, 𝑥𝑔𝑡

𝑚𝑎𝑥) − 𝑚𝑎𝑥(𝑥𝑝
𝑚𝑎𝑥 −

𝑥𝑔𝑡
𝑚𝑎𝑥)) 𝑥 𝑚𝑎𝑥 (0, 𝑚𝑖𝑛(𝑦𝑝

𝑚𝑎𝑥,𝑦𝑔𝑡
𝑚𝑎𝑥) − 𝑚𝑎𝑥(𝑦𝑝

𝑚𝑎𝑥 −

𝑦𝑔𝑡
𝑚𝑎𝑥))                                   (2) 

and the union area is computed as (3): 

𝐴𝑟𝑒𝑎𝑢𝑛𝑖𝑜𝑛 =  𝐴𝑟𝑒𝑎𝑝 + 𝐴𝑟𝑒𝑎𝑔𝑡 − 𝐴𝑟𝑒𝑎𝑖𝑛𝑡𝑒𝑟  (3) 

The IoU value spans from 0 to 1, with 1 signifying complete 
overlap and 0 denoting no overlap at all. 

C. Object Tracking with DeepSORT 

The SORT (Simple Online and Realtime Tracking) 
algorithm, developed by Bewley in 2016, provides an efficient 
solution for the multiple object tracking (MOT) task by 
employing object detection and a Kalman filter for movement 
prediction, alongside the Hungarian algorithm for associating 
detections across successive frames [8]. Nevertheless, SORT is 
significantly reliant on detection quality and is less proficient in 
managing variations in object appearance and occlusion. 
DeepSORT addresses this restriction by including appearance 
cues derived from a deep neural network designed for re-
identification tasks. The utilisation of these visual attributes 
enables DeepSORT to enhance object tracking, even amongst 
alterations in appearance or transient occlusion [29]. 

DeepSORT is constructed upon the SORT framework, 
which utilises bounding box location estimation via a Kalman 
filter and employs the Hungarian method for data association 
[10], [11]. The primary innovation of DeepSORT is the 
utilisation of appearance information derived from objects 
through a Convolutional Neural Network (CNN) [30]. These 
visual attributes offer supplementary information during the 
association process, especially in preventing misidentification 
when two items overlap or momentarily vanish from the frame. 

The tracking procedure utilising DeepSORT comprises three 
primary components. Initially, object identification is executed 
utilising detection architectures like YOLOv8, SSD, or Faster R-
CNN. Subsequently, the item's position in the subsequent frame 
is forecasted employing a Kalman Filter. Third, an association 
process is conducted between the new detection and the existing 
track, using spatial metrics and visual similarities. This enables 
DeepSORT to preserve object identity with greater precision 
and demonstrates resilience to visual noise. 

The Kalman Filter is essential for forecasting the position of 
the monitored item between successive video frames. This 
method is executed iteratively. This filter determines the object's 
position through the coordinates of the bounding box's centre 

(𝑢, 𝑣), the aspect ratio (width divided by height is γ), the height 
of the bounding box (h) and the predicted rate of change for each 

of these components (𝑢̇, 𝑣̇, 𝛾̇, ℎ̇) . Utilising this predictive 

capability, DeepSORT can adeptly forecast the object's 
movement within the video. The state representation formula is 
articulated in the subsequent (4): 

𝑥 = [𝑢, 𝑣, 𝛾, ℎ, 𝑢̇, 𝑣̇, 𝛾, ℎ̇̇ ]
𝑇

                      (4) 

The state vector x mathematically represents the state of a 
monitored object at a certain moment within the DeepSORT 
Kalman Filter. This vector comprises eight elements, each 
signifying the following: 

𝑢 ∶  The central horizontal coordinate (centre x-coordinate) 
of the object's enclosing box. This denotes the object's horizontal 
placement within the video frame. 

𝑣 ∶ The central vertical coordinate (central y-coordinate) of 
the object's enclosing box. This denotes the object's vertical 
placement within the video frame. 

γ ∶ The aspect ratio of the bounding box, determined by 
dividing its width by its height. This conveys details regarding 
the object's proportional configuration. 

ℎ ∶  The elevation of the object's bounding box. This conveys 
details regarding the object's vertical dimension. 

𝑢̇ ∶ The speed of the central horizontal coordinate. This 
assesses the velocity and direction of the horizontal movement 
of the bounding box's centre. 

𝑣 ∶̇  The speed of the central vertical coordinate. This assesses 
the velocity and direction of the vertical movement of the 
bounding box's centre. 

𝑣 ∶̇   The rate of variation in the aspect ratio. This assesses the 
temporal alterations in the object's proportionate form. 

ℎ̇ ∶ The rate of alteration in the elevation of the bounding 
box. This assesses the temporal variation in the object's vertical 
dimensions.. 

𝑇 : The notation at the vector's conclusion signifies that it 
is a transposed vector, represented in column format. 

Appearance features are derived by extracting patches from 
the identified bounding box and processing them through a CNN 
architecture, such as ResNet-50 or MobileNet. A CNN produces 
a fixed-dimensional embedding vector, usually 128 dimensions 
that encapsulates the visual attributes of the object. Each track 
maintains a record of these embeddings, utilised to assess 
appearance similarity among frames. 

In the DeepSORT algorithm, when numerous objects are 
detected in a video frame and we aim to track their identities 
across time, it is necessary to determine which object detection 
in the current frame corresponds to which object track from the 
preceding frame. The process of data matching, or association, 
is essential to prevent the misidentification of objects. 
DeepSORT employs two essential measures to facilitate precise 
association determinations: mahalanobis distance and cosine 
similarity [10]. 
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Mahalanobis distance quantifies the proximity of the current 
object detection to the predicted position of the tracked object. 
In contrast to the conventional Euclidean distance, Mahalanobis 
distance incorporates uncertainty in the projected object position 
[31]. The covariance matrix obtained from the Kalman Filter 
employed in tracking signifies this uncertainty. Conversely, 
when the tracker exhibits high confidence in its forecast (shown 
by minimal covariance), a minor positional discrepancy will 
yield a substantial Mahalanobis distance. Conversely, if the 
tracker exhibits diminished confidence (high covariance), a 
greater positional discrepancy may still be seen as proximate. 
The Mahalanobis distance formula (5) between detection 𝑑𝑗 , 
prediction 𝑦𝑖  , utilising the covariance matrix 𝑆𝑖  can be 
expressed as [32]: 

𝑑(1)(𝑖, 𝑗) = (𝑑𝑗 − 𝑦𝑖)
𝑇

𝑆𝑖
−1(𝑑𝑗 − 𝑦𝑖)         (5) 

 DeepSORT utilises both location and appearance 
information from each object. Each identified object has its 
visual characteristics retrieved via a deep neural network. These 
features are vectors that denote the object's distinctive visual 
attributes. Cosine Similarity is employed to assess the similarity 
of appearance features between the current detection and the 
appearance features of the object's trajectory recorded from prior 
frames. Cosine Similarity quantifies the angle between two 
feature vectors. When the angle is minimal (cosine value 
approaching 1), the two visual characteristics exhibit significant 
similarity, suggesting they are likely the same object. When the 
angle is substantial (cosine value approaching -1), the visual 
characteristics are markedly distinct. 

The amalgamation of these two metrics generates an 
association cost matrix, which is resolved with the Hungarian 
Algorithm. To evaluate the visual resemblance between the 
bounding box of the currently tracked object (i) and the 
bounding box of the newly detected object (j), we employ an 

equation 𝑑(2)(𝑖, 𝑗)  (6) that computes the cosine distance, which 
is the inverse of the cosine similarity, between their appearance 
feature vectors  (𝑟𝑗  𝑎𝑛𝑑 𝑟𝑖). The dot product  (𝑟𝑗

𝑇𝑟𝑖 ) yields the 

cosine similarity value, and by subtracting it from 1, we derive 
the cosine distance. A small distance signifies maximal 
similarity in visual characteristics. 

𝑑
(2)(𝑖, 𝑗) = 𝑚𝑖𝑛{1 − 𝑟𝑗

𝑇𝑟
𝑘
(𝑖)

|𝑟
𝑘
(𝑖)

𝜖𝑅𝑖}      (6) 

Upon establishing the association, the system classifies the 
track as matched, mismatched, or a novel detection. Upon a 
detection aligning with an existing track, the Kalman filter is 
revised, and the appearance features are recorded. In the absence 
of corresponding detections, the track persists for some frames 
prior to being eliminated. Conversely, novel, unassociated 
detections will generate new tracks if their confidence level is 
sufficiently high. Parameters, including maximum age, 
minimum hits, and matching threshold significantly influence 
the system's susceptibility to noise and visual disruptions. 

D. Higher Order Tracking Accuracy (HOTA) Metric 

Higher Order Tracking Accuracy (HOTA) is a principal 
evaluation statistic intended to furnish a singular, equitable 
assessment of numerous object tracking efficacy [6]. HOTA 
explicitly integrates accurate detection, proper association 

between detection and tracking, and exact localisation into a 
singular metric. A high HOTA is intuitively attained when the 
tracking system effectively identifies a significant percentage of 
target objects, persistently preserves their identities across 
frames, and accurately anticipates bounding boxes. HOTA is 
determined by the square root of the product of Detection 
Accuracy (DetA) and Association Accuracy (AssA), imposing a 
penalty for subpar performance in either dimension. 

Detection Accuracy (DetA) is a sub-metric of HOTA that 
particularly evaluates the efficacy of the tracking system in 
identifying the proper item in each frame. DetA is computed by 
comparing the quantity of accurate detections (True Positives) 
to the total count of ground truth objects and resultant detections 
(True Positives + False Negatives + False Positives). In essence, 
DetA resembles the F1 score for detection tasks, balancing 
detection precision (minimising False Positives) and detection 
recall (minimising False Negatives). A high DetA signifies that 
the system can accurately identify the majority of target objects 
while minimising false detections. 

Association Accuracy (AssA) is a sub-metric of HOTA that 
evaluates the precision with which a tracking system preserves 
the right object to identify throughout video frames. AssA 
evaluates the quality of the correlation between a detection in 
the current frame and the established track from the preceding 
frame. Calculating AssA entails contrasting the quantity of 
accurate associations with the entire number of potential 
linkages. An accurate association transpires when a detection is 
linked to the appropriate ground truth track. A high AssA 
signifies that the system can constantly monitor objects without 
frequent identity transitions or track fragmentation. 

Localisation Accuracy (LocA) is a sub-metric of HOTA that 
assesses the precision with which the tracking system's 
bounding boxes identify the target item. LocA is generally 
computed as the mean Intersection over Union (IoU) between 
the predicted bounding box and the ground truth bounding box 
for all accurate detections. A high LocA signifies that the system 
not only accurately identifies items but also precisely forecasts 
their locations and dimensions. 

False Positives (FP) refer to the detections produced by the 
tracking system that do not align with any actual ground truth 
objects. FP denotes the existence of an object that is, in reality, 
nonexistent (according to the ground truth annotation). A lower 
FP number indicates greater detection precision of the system. 

False Negatives (FN) refer to the quantity of actual items that 
the tracking system failed to detect. FN denotes the system's 
inability to identify an object that was genuinely present in the 
frame. A lower FN value corresponds to an increased detection 
recall of the system. 

Identity Precision (IDP) is a parameter that assesses the 
purity of the tracks produced by the tracking system. IDP is 
determined by the ratio of accurate associations to the total 
number of detections made by the system. A high IDP indicates 
that the majority of the generated tracks accurately reflect the 
genuine identify of the object. 

Identity Recall (IDR) is a metric that evaluates the efficacy 
of a tracking system in preserving accurate ground truth 
identities. IDR is determined by the ratio of correct associations 
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to the total count of ground truth items. A high IDR signifies that 
the system effectively monitors the majority of ground truth 
objects while preserving their identities. 

Identity Switches (IDS) refer to the frequency with which a 
monitored object's identity is erroneously altered throughout a 
video sequence. A low IDS signifies enhanced stability and 
consistency in the performance of association for preserving 
object identities. 

E. CLEAR Metric 

The CLEAR (Classification of Events, Activities, and 
Relationships) metric serves as a benchmark for the quantitative 
and objective assessment of moving object tracker performance 
[33]. Multi-Object Tracking Accuracy (MOTA) serves as the 
principal composite statistic inside the CLEAR evaluation 
framework [34]. MOTA comprises three principal types of 
mistakes in tracking: false positives (FP), false negatives (FN), 
and identity switches (IDS) [33]. MOTA is formally computed 
as (7): 

𝑀𝑂𝑇𝐴 = 1 −
|𝐹𝑁|+|𝐹𝑃|+|𝐼𝐷𝑆𝑊|

𝑔𝑡𝐷𝑒𝑡
                (7) 

In frame t, FN, FP, and IDSW denote the quantities of false 
negatives, false positives, and identity switches, respectively, 
whereas gt represents the count of ground truth objects in frame 
t. MOTA delivers a singular metric that evaluates both detection 
precision and identification coherence across time. An elevated 
MOTA value signifies superior tracking performance. 

Multi-Object Tracking Precision (MOTP) assesses the 
accuracy of successfully localised tracked objects, excluding 
errors in detection or identity [35]. MOTP is determined by the 
average overlap, typically employing Intersection over Union 
(IoU), between the predicted bounding boxes and the ground 
truth bounding boxes for all true positives over all frames. 
MOTP can be formally expressed as follows (8) [5]: 

𝑀𝑂𝑇𝑃 =  
∑ 𝑑𝑡,𝑖𝑡,𝑖

∑ 𝐶𝑡𝑡
                        (8) 

where,  𝑑𝑡,𝑖  is the distance (e.g. 1−IoU) between detection i 
and the corresponding ground truth at frame t, and 𝐶𝑡  is the 
number of correct matches at frame t. MOTP indicates the 
precision of the system in localising successfully tracked 
objects, with elevated values signifying superior localisation. 

III. METHOD AND MATERIAL 

A. MOT Step 

The implementation of a Multiple Object Tracking (MOT) 
system for road vehicles commences with the acquisition of an 
input video stream, sourced either directly from a camera or 
from pre-existing footage. The video is processed by 
decomposing it into a sequence of frame acquisitions, each of 
which is independently and sequentially processed. The last 
essential phase is object detection, which in this research was 
performed utilising different forms of the YOLOv8 architecture 
(nano, small, medium, large, or extra-large). The selection of the 
YOLOv8 variation considerably influences the equilibrium 
between inference speed and detection accuracy, which is the 
primary focus of this evaluation. The YOLOv8 detection results 
comprise detection output, a collection of bounding boxes 

around each identified vehicle, confidence ratings reflecting the 
amount of detection certainty, and class labels categorising the 
vehicle type. 

Following detection, feature extraction is conducted for each 
identified object utilising a deep neural network to obtain 
appearance features, a crucial component of the DeepSORT 
algorithm. This pre-trained deep neural network produces 
Appearance Features, which are vector descriptors that 
distinctly characterise the visual attributes of each vehicle. 
Simultaneously, State Estimation and Prediction are executed 
for each existing object track utilising a Kalman Filter. This 
filter assesses the present object state (position, velocity, etc.) 
and forecasts the anticipated object states in the subsequent 
frame. 

The subsequent phase is Association, which seeks to link the 
object detection in the present frame with the track prediction 
from the preceding frame. This procedure utilises the Hungarian 
Algorithm, which operates on a cost matrix. This cost matrix 
evaluates two primary metrics: distance and appearance are 
assessed based on the disparity in visual characteristics between 
the detection and the track, while the Mahalanobis Distance 
(Motion) quantifies the deviation between the detected position 
and the motion prediction, incorporating the uncertainty 
inherent in the Kalman filter prediction [36]. The Hungarian 
algorithm subsequently seeks the assignment with the lowest 
cost. Successfully linked detections are utilised for Track 
Updates, wherein the Kalman Filter of the track is revised using 
the most recent detection data, enhancing the estimation of the 
object's state. Ultimately, Track Management oversees the 
lifecycle of the object track through Initialisation for consistent 
new detections and Termination for tracks that remain 
undetected across multiple frames. The ultimate outcome of this 
method is Output: Tracked Objects, which displays the 
movement trajectory of each identified vehicle together with 
unique IDs that are preserved throughout the film. The phases of 
object tracking utilising Yolov8 and DeepSORT are illustrated 
in Fig. 1. 

B. YOLOv8 Object Detection 

The object detection procedure utilising YOLOv8 on a video 
stream commences with the acquisition of an input video stream, 
which may originate from a live roadside security camera or a 
recorded video. The video stream is segmented into a sequence 
of frame acquisitions, with each frame serving as a static visual 
analysis unit that will be processed sequentially by the YOLOv8 
model. The subsequent stage is grid division, wherein each 
frame is partitioned into an S×S grid of cells [37]. This division 
seeks to localise items into designated regions of the frame, with 
each grid cell tasked with anticipating the object's centre 
contained within it. 

YOLOv8 employs an anchor-free prediction methodology, 
distinguishing itself from its predecessors by explicitly 
forecasting the centre, height, and breadth of the bounding box 
in relation to each grid cell. This method offers enhanced 
adaptability in managing discrepancies in object dimensions and 
proportions. Each input frame undergoes a convolutional feature 
extraction process utilising the YOLOv8 CNN architecture [38]. 
This network systematically extracts visual information from 
low-level elements (edges and corners) to high-level 
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components (object-specific shapes). YOLOv8 utilises an 
efficient backbone architecture, such as CSPDarknet [39] or the 
C2f module to achieve a balance between speed and accuracy. 

 

Fig. 1. Multi object tracker step. 

YOLOv8 concurrently produces a Prediction per Grid Cell 
for each grid cell, encompassing the coordinates (x,y,w,h) of the 
prospective bounding box, an Objectness Score reflecting the 
confidence level of the object within the bounding box, and 
Class Probabilities that denote the conditional probability for 
each object class upon detection. Due to the possibility of 
numerous detections of the same object from several grid cells 
or overlapping bounding box predictions, Non-Maximum 
Suppression (NMS) is utilised. This procedure iteratively 
identifies the bounding box with the highest confidence score 
and discards other bounding boxes that exhibit substantial 
overlap (measured by Intersection over Union - IoU) and 
possess lower confidence scores. This procedure persists until 
solely the most precise bounding box for each identified object 

is preserved. The culmination of this phase is the Detection 
Output, comprising a collection of filtered bounding boxes, each 
associated with a high confidence score and accompanying 
vehicle class label, which will subsequently function as input for 
the DeepSORT tracking phase. 

C. Tracking Evaluation 

Assessing the efficacy of a Multiple Object Tracking (MOT) 
system is essential for comprehending the proficiency of your 
algorithm in tracking things within video [5]. This process 
involves comparing the MOT system's output with manually 
annotated ground truth data. Metrics such as HOTA and CLEAR 
are employed to assess several dimensions of tracking precision. 

The evaluation phase commences with Ground Truth Data 
(Manual Annotations). This constitutes the basis of the 
comprehensive assessment, featuring detailed manual 
annotations for each pertinent object (e.g. motorbikes, vehicles, 
buses, trucks) in every video frame. These annotations comprise 
precise bounding boxes and constant unique identifiers for each 
object throughout the video frames. Upon completion of the 
annotations, the MOT data must be prepared to ensure 
compatibility with the evaluation code. A standard format often 
comprises the frame number, object ID, and bounding box 
coordinates (x, y, width, height). 

Subsequently, we present the Tracking Result Data (MOT 
System Output). This is the output produced by your MOT 
system, namely a synthesis of YOLOv8 and DeepSORT. This 
data includes frame-by-frame details regarding the identified 
and monitored objects, together with bounding boxes and IDs 
allocated by the tracking algorithm. Similar to the GT data, this 
tracking data must be prepared to adhere to the HOTA and 
CLEAR assessment requirements. 

Upon formatting both data sets, the GT data and the tracking 
data, we proceed to the HOTA Evaluation phase. The HOTA 
code implementation will juxtapose the tracks produced by your 
system with the ground truth tracks for each object across the 
video sequence. The outcome of this assessment is HOTA 
Metrics, an extensive array of metrics that offers a thorough 
analysis of tracking performance. The metrics encompass: 
HOTA (which balances detection and association accuracy), 
DetA (detection accuracy), AssA (association accuracy), LocA 
(bounding box localisation accuracy), FP (false positives), FN 
(false negatives), IDP (identity precision), IDR (identity recall), 
and IDS (identity switches) [40], [41]. 

The CLEAR Metrics review is conducted concurrently with 
or subsequent to the HOTA review. GT data and tracking 
outcomes are used to compute these traditional metrics. The 
resulting CLEAR metrics encompass: MOTA (Multi-Object 
Tracking Accuracy), which integrates detection and association 
errors; MOTP (Multi-Object Tracking Precision), which 
assesses bounding box accuracy; MT (Mostly Tracked), the 
proportion of ground truth objects that are predominantly 
tracked; PT (Partially Tracked), the proportion of ground truth 
objects that are partially tracked; ML (Mostly Lost), the 
proportion of ground truth objects that are predominantly 
untracked; FP and FN (as in HOTA); IDS (number of identity 
switches); and Frag (Fragmentation), the frequency with which 
a track is interrupted and subsequently resumed. 

input video 

stream 

frame acquisition 

Object detection 

(Yolov8 n,s,m,l,x) 

Detection output 

(bounding Boxes, 

confidence scores, 

class label)  

feature extraction 

appearance features  

State Estimation 

Predicted Object States  

START 

 Association (Hungarian 

Algorithm based on Cost 

Matrix: Appearance & 

Motion)  

Track Updates (Update 

Kalman Filter with 

Matched Detections)  

Track Management 

(Initialization, 

Termination of Tracks)  

Output Tracked 

Objects  

END 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 9, 2025 

426 | P a g e  
www.ijacsa.thesai.org 

The concluding phases involve the analysis and 
interpretation of HOTA results and CLEAR results. The metric 
data from both sets are assessed to comprehend the overall 
efficacy of the tracking system. The emphasis for HOTA is on 
the aggregate HOTA value, including the contributions of DetA 
and AssA. Analysing HOTA values across many YOLOv8 
versions will identify the variation that provides optimal 
tracking performance. Alternative measurements offer 
supplementary insights into particular facets. Likewise, CLEAR 
metrics, particularly MOTA, offer a comprehensive summary, 
whereas MOTP emphasises bounding box precision. MT, PT, 
and ML measurements offer insights into the track quality of 
individual objects. The Mostly Tracked (MT) statistic quantifies 
the proportion of ground truth objects that are effectively 
monitored for the majority of their lifespan. An object is deemed 
"mostly tracked" if it is effectively linked to a track for a 
minimum of 80% of its overall duration in the video. MT offers 
insight into the system's capacity to sustain long-term 
monitoring of a singular item. Conversely, Mostly Lost (ML) 
quantifies the proportion of ground truth objects that are not 
monitored for the majority of their lifespan [31]. ML denotes the 
frequency with which the system fails to sustain long-term 
tracking of an item. Partially Tracked (PT) denotes the 
proportion of ground truth objects that do not belong to either 
the MT or ML categories. These things are monitored for a 
substantial duration of their existence, yet insufficiently to be 
categorised as MT or marginally enough to be designated as ML 

False Positives (FP) refer to the aggregate number of 
detections produced by the tracking system that do not align with 
any actual objects in the complete video sequence. FP denotes 
erroneous detections, or backdrops erroneously identified as 
objects. False Negatives (FN) refer to the total count of actual 
objects that the tracking system fails to detect during the whole 
video sequence. FN denotes the system's inability to identify an 
object that is genuinely present. Identity Switches (IDS) refer to 
the cumulative instances in which a monitored object's identity 
is erroneously altered over the video sequence. A low IDS 
signifies enhanced identity consistency and the system's 
capacity to preserve individual object trajectories without 
interchanging them with those of other objects. Fragmentation 
(Frag) quantifies the frequency with which an object's trajectory 
is disrupted and subsequently re-established. Fragmentation 
transpires when an object is monitored, thereafter vanishes 
(lacking association with a detection in the subsequent frame), 
and later reemerges with the identical ID. Minimal 
fragmentation signifies a more stable and uninterrupted 
trajectory. A conclusion regarding Tracking Performance 
Comparison is reached through this analysis, pinpointing which 
YOLOv8 variants consistently yield the highest HOTA values 
and other pertinent metrics for tracking motorcycles, cars, buses, 
and trucks on highways, while also addressing the trade-off 
between accuracy and speed. The illustration depicting the 
phases of the object tracking evaluation procedure is presented 
in Fig. 2. 

 

Fig. 2. Object tracking evaluation process. 

D. Material Research 

This work employs a relevant and extensive video dataset for 
the analysis of vehicle object tracking.  The video data included 
in this experiment was specifically obtained from CCTV 
security cameras operated by the Bali Provincial Transportation 
Agency (https://balisatudata.baliprov.go.id/ peta-cctv). This 
study employs a collection of 980 real-world traffic surveillance 
photos, featuring 8,829 identified items categorized into four 
classes: cars, motorcyclists, buses, and trucks.  To ensure model 
robustness, data were collected from two types of road 
environments: straight roads and intersections, thereby 
capturing diverse vehicle dynamics and spatial configurations.  

START 

Input Data 

Groud Truth 

(manual 

annotation) 

Format Ground 

Truth(GT) Data  

Data 

Ground 

Input Data 

Fesult 

Tracking 

Format Tracking 

Data 

HOTA Metric Evaluation 
CLEAR Metric  

Evaluation 

Result HOTA Metric 

Evaluation 

Result CLEAR Metric  

Evaluation 

Analysist Result HOTA and CLEAR 

Metric 

Conclution Result HOTA and CLEAR 

Metric 

END 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 9, 2025 

427 | P a g e  
www.ijacsa.thesai.org 

The dataset encompasses differences in traffic flow 
conditions—spanning free-flow, moderate, and congested 
traffic—allowing for the evaluation of the tracking model under 
different density levels.  The video data collection period took 
place in September 2024.  This period was chosen to represent 
typical traffic patterns in the region, omitting substantial 
fluctuations that may occur during vacations or special events.  
It is important to acknowledge that all data were collected under 
daytime conditions, so presenting nocturnal scenarios as a 
forthcoming issue for future research. 

This video dataset predominantly comprises two primary 
categories: motorbikes and cars, which are the subject of this 
research. Bali possesses a substantial motorbike demographic 
that often engages with bigger four-wheeled vehicles, including 
cars, buses, and trucks. The varied dimensions, forms, and 
motion trajectories of these two vehicle categories pose 
intriguing problems for object tracking algorithms. This dataset 
was created to assess the efficacy of tracking algorithms in 
differentiating and maintaining the identity of diverse vehicle 
types in congested traffic conditions. 

The gathered video data is subsequently utilised as input for 
the object tracking system created in this study, which 
incorporates the YOLOv8 object recognition framework and the 
DeepSORT tracking algorithm. Each video is segmented into a 
sequence of individual frames, which are subsequently analysed 
by the YOLOv8 model to identify the presence and location of 
cars. The YOLOv8 detector's output, comprising bounding 
boxes, confidence scores, and class labels for each identified 
vehicle, is subsequently fed into the DeepSORT algorithm. 
DeepSORT uses this information, in conjunction with visual 
appearance attributes derived from each detection and motion 
prediction via a Kalman filter, to temporally track objects while 
preserving the distinct identification of each vehicle across video 
frames. 

The utilisation of authentic video footage from a congested 
traffic setting in Bali enhances the authenticity and practical 
significance of this study's findings. The variety of traffic 
circumstances and vehicle types in the dataset enables thorough 
evaluation of the tracking algorithm's performance in practical 
situations. Moreover, the use of data from public transportation 
infrastructure, specifically CCTV from the Department of 
Transportation, underscores the prospective implementation of 
this object tracking technology in forthcoming traffic 
management and transportation monitoring systems. The 
dataset's quality and attributes establish a crucial basis for 
assessing performance and recognising potential enhancements 
in the suggested object tracking methodology. 

Moreover, the acquisition and utilisation of this video data 
were executed with appropriate consideration for pertinent 
ethical and privacy issues. The data utilised is publicly available 
and sourced from surveillance cameras deployed for traffic 
monitoring. This research does not entail the acquisition of 
personal data or information that could identify specific persons 
beyond the context of their automobiles on the roadway. The 
research primarily concentrates on the analysis and tracking of 
various vehicle types for scientific and technological 
advancement. This dataset is deemed representative and 

sufficient for assessing the efficacy of object tracking algorithms 
within the framework of intense and varied urban traffic. 

IV. RESULT 

A series of tests performed using 30-second video footage at 
a Bali crossroads yields significant visual insights into the 
evolutionary performance of several YOLOv8 model variants 
integrated with the DeepSORT algorithm. The quantitative 
assessment exclusively targets cars and motorbikes, the 
predominant vehicle categories at the site, while the 
visualisation additionally illustrates the system's efforts to 
identify other classes, including buses and trucks. Each graphic, 
depicting progressively intricate model variants (from n to x), 
clearly demonstrates the trade-off among speed, detection 
accuracy, and classification reliability, closely correlating with 
the data shown in the HOTA and CLEAR metrics tables. We 
executed the tests in succession, first with Yolov8 version n and 
progressing to version x. The identifying number (ID) of each 
object in every test was randomly and uniquely created. 
Subsequently, we juxtaposed the visualisation outcomes within 
the identical frame. 

To assess the model's detection efficacy on our unique 
dataset, we computed the mean Average Precision metric at a 
threshold of 0.50 (mAP50) for all four specified vehicle 
categories. This metric quantitatively assesses the model's 
accuracy in object localisation, with a detection deemed correct 
if the overlap between the predicted box and the ground-truth 
box is above 50%. The visual outcomes of this accuracy 
evaluation for each category are elaborated in Fig. 3. 

 

Fig. 3. mAP50 of Yolov8 variant. 

Fig. 4 illustrates the outcomes of the YOLOv8n + 
DeepSORT model, highlighting the efficacy of the most 
lightweight and rapid variant. As a baseline model, its 
performance demonstrates notable shortcomings. The most 
significant inaccuracy was a false positive identification of 
object ID 415, erroneously classified as a "bus." In reality, this 
object was a massive billboard featuring a complex graphic, 
suggesting that the `n` model had difficulty differentiating 
between substantial vehicles and misleading background 
elements. Additionally, there were multiple false negatives, with 
roughly four motorcycles completely undetected. The inability 
to identify smaller, rapidly moving objects such as motorcycles 
is a prevalent deficiency in lighter models, which immediately 
resulted in diminished Detection Recall (DetRe) and MOTA 
scores in the quantitative assessment. 
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Fig. 4. Result from YOLOv8n + DeepSORT. 

Fig. 5, which employs the YOLOv8s + DeepSORT model, 
shows that a progressive enhancement is observed. The count of 
undiscovered motorcycles decreases to three, signifying that the 
marginally more intricate ‘s’ model had superior detection skills, 
hence diminishing the incidence of false negatives. Nonetheless, 
classification issues persist. Object ID 343, a white van, is 
erroneously categorised as a “bus”. This categorisation of 
vehicles with unclear shapes (between a huge automobile and a 
small bus) is a persistent issue in the tests. Although these errors, 
when identified, do not directly influence detection metrics such 
as “DetA”, they may affect evaluation if conducted purely on a 
per-class basis. 

Fig. 6 presents the outcomes derived from the YOLOv8m 
combined with the DeepSORT model. There is a persistent 
misclassification, as the identical white van (now identified as 
349) is once more erroneously categorised as a “bus”. 
Nevertheless, it is evident that all motorcycles in the primary 
lane have been accurately detected, signifying an enhancement 
in detection recall relative to the ‘n’ and ‘s’ variants. The 
enhancement in the capacity to identify all pertinent target 
objects is substantial and is evidenced by the increase in the 
“DetA” and “MOTA” scores in the metrics table. This suggests 
that with an increase in model size, its capacity to manage 
smaller and partially obscured objects becomes more resilient. 

The trend of enhanced detection performance is notably 
illustrated in Fig. 7, produced by the YOLOv8l + DeepSORT 
model. An important discovery is that all vehicles, including 
motorcyclists, are accurately recognised and allocated bounding 
boxes. This is a notable accomplishment, indicating that the ‘l’ 
model possesses adequate representational capacity to tackle the 
detection issues at this congested intersection, successfully 
eradicating false negatives for this frame. Classification issues 
remain, as the white van (ID 290) is now erroneously 
categorised as a “truck”. This underscores that enhancements in 
detection capabilities do not necessarily result in proportional 
advancements in classification accuracy for ambiguous 
instances. 

 

Fig. 5. Result from YOLOv8s + DeepSORT. 

 

Fig. 6. Results from YOLOv8m + DeepSORT. 

Ultimately, Fig. 8 illustrates the performance of the 
YOLOv8x + DeepSORT model, the most formidable option. 
Similar to the ‘l’ model, the ‘x’ model effectively identified all 
automobiles within the frame, demonstrating that the larger 
model markedly excels in recall performance. Nonetheless, it 
erroneously categorised a white van (ID 284) as a “truck” . This 
indicates that, despite the model's extensive capacity, 
differentiating between visually analogous vehicle subclasses 
(such as vans, minibuses, and light trucks) continues to pose a 
significant challenge and may necessitate more varied training 
data or targeted fine-tuning methodologies. The visual 
progression from Fig. 4 to Fig. 8 clearly illustrates that 
augmenting the complexity of the YOLOv8 model enhances 
recall detection skills; yet, persistent challenges with ambiguous 
object classification underscore the necessity for future 
enhancement. 

 

Fig. 7. Results from YOLOv8l + DeepSORT. 
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Fig. 8. Results from YOLOv8x + DeepSORT. 

We subsequently present comprehensive HOTA evaluation 
results for the car class utilising a combination of the nano (n) 
and extra-large (x) YOLOv8 variants as detectors, paired with 
DeepSORT for association, and underscore the importance of 
these findings in determining the optimal detector architecture. 
The comprehensive assessment findings for all object classes 
and YOLOv8 versions will be displayed in tabular style and 
subsequently analysed in the following section. The CLEAR 
measure outcomes for this and further settings will be offered to 
offer a comprehensive view of performance tracking. 

Tables I and II present the HOTA tracking outcomes for the 
“car” and “motorcycle” categories, respectively. According to 
the statistics in Tables I and II, a consistent trend is evident 
across all YOLOv8 model variants (from n to x): the overall 
tracking system exhibits marginally better and steadier 
performance for the car class than for the motorcycle class. The 
discrepancies in the primary HOTA scores are minimal; for 
instance, the top-performing x variant recorded a HOTA of 
58.717, whereas the motorcycle attained 57.781. However, a 
thorough examination of the sub-metrics uncovers the origins of 
these performance variances and underscores the difficulties 
associated with motorcycle tracking. 

TABLE I.  HOTA TABLE FOR CAR CLASS 

 
Sub Metric 

Yolov8 variant 

n s m l x 

HOTA 53.137 55.541 55.596 58.477 58.717 

S 
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B 
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H 

O 

T 

A  

DetA 47.491 50.915 52.408 55.602 54.479 

AssA 59.696 61.066 59.576 62.116 64.030 

DetRe 56.101 58.961 59.166 62.836 60.942 

DetPr 59.958 60.84 62.511 63.027 64.160 

AssRe 65.526 67.383 65.626 68.539 70.243 

AssPr 69.216 68.426 68.554 68.847 70.293 

LocA 74.073 73.390 73.131 73.298 73.746 

OWTA 57.869 59.970 59.304 62.415 62.379 

HOTA(0) 87.410 94.123 94.755 98.984 96.915 

LocA(0) 63.555 62.342 62.11 62.627 63.598 

HOTALocA(0) 55.554 58.678 58.853 61.991 61.636 

TABLE II.  HOTA TABLE FOR MOTOR CYCLE CLASS 

 
 

Yolov8 variant 

n s m l x 

HOTA 51.545 54.140 55.372 57.703 57.781 
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DetA 47.820 48.684 53.002 55.624 53.842 

AssA 55.736 60.526 57.997 60.031 62.190 

DetRe 53.732 53.217 58.477 61.239 59.855 

DetPr 64.708 64.193 64.742 66.204 65.295 

AssRe 60.219 65.965 63.478 65.114 67.044 

AssPr 70.795 68.090 67.685 69.561 70.067 

LocA 75.339 73.128 73.620 74.365 74.317 

OWTA 54.656 56.696 58.198 60.611 60.993 

HOTA(0) 79.843 89.727 92.133 92.434 91.351 

LocA(0) 67.250 63.485 63.996 65.705 65.968 

HOTALocA(0) 53.694 56.963 58.962 60.734 60.262 

Disaggregating HOTA results into Detection Accuracy 
(DetA) and Association Accuracy (AssA) provides an essential 
initial perspective. In these metrics, automobiles routinely 
surpass motorcycles. The performance disparity is more evident 
in AssA (e.g. 64,030 for cars against 62,190 for motorbikes in 
variation x) than in DetA (54,479 versus 53,842). This indicates 
that although modest difficulties exist in recognising 
motorcycles, a more substantial problem pertains to the tracker's 
capacity to sustain consistent motorbike IDs over time. The 
tracker misidentifies or erroneously exchanges motorbike IDs 
more frequently than it does for automobiles. Additional 
examination of the associated sub-metrics corroborates this 
conclusion. The primary distinction is evident in Association 
Recall (AssRe), with automobiles routinely achieving superior 
scores (e.g. 70,243 compared to 67,044 for variation x). 
Reduced AssRe scores for motorbikes immediately signify a 
track fragmentation problem. This indicates that a singular, 
ostensibly continuous motorbike route is often disrupted and 
recommenced as a new track with a distinct ID. This is probably 
because of the inherent characteristics of motorcycles: their 
reduced dimensions render them more vulnerable to complete 
obstruction by other vehicles, and their nimble and non-linear 
movement complicates motion prediction algorithms such as the 
Kalman Filter often employed in DeepSORT. Conversely, the 
AssPr (Association Precision) scores are almost 
indistinguishable across the two classes, suggesting that the 
challenge of consolidating several distinct objects into a single 
track (track merging) is not a significant differentiating factor. 

The Detection Recall (DetRe) measure for motorbikes is 
marginally lower, indicating that the detector frequently 
overlooks motorcycles (false negatives) compared to vehicles, 
perhaps attributable to their reduced size. Notably, the Detection 
Precision (DetPr) for bikes is somewhat superior, suggesting 
that when the model identifies a motorbike, the forecast is 
generally more dependable (fewer false positives) compared to 
its predictions for cars. This HOTA measure research 
quantitatively demonstrates that the primary issue in tracking 
motorbikes, as opposed to cars, resides not merely in detection, 
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but predominantly in data association, particularly in preserving 
trajectory consistency despite agile motions and frequent 
occlusions. 

In summary, in the automobile class, the mean HOTA and 
sub-metrics rose from YOLOv8-n (61.3) to YOLOv8-x (65.7), 
exhibiting a standard variation of around 10 points, which 
signifies a constant enhancement in performance with larger 
models. In the motorbike class, a same tendency is observed: 
YOLOv8-n (61.3) enhances to YOLOv8-l/x (65.7); however, 
the elevated standard deviation suggests considerable variability 
among sub-metrics. Elevated maximum values (e.g. >90 for 
HOTA(0)) suggest that certain measurements demonstrate 
substantial performance improvements with larger YOLOv8 
variations. 

The CLEAR metric analysis offers a compelling narrative 
that seems contradicts the HOTA results. Table III is the result 
of CLEAR metric measurements for the car class and Table IV 
is the result of CLEAR metric measurements for the motorcycles 
class. Remarkably, the Multiple Object Tracking Accuracy 
(MOTA) measure consistently surpasses that of vehicles for 
motorcyclists across all iterations of the YOLOv8 model. In the 
most sophisticated model x, motorcycles attain a MOTA of 
62,622, whereas vehicles achieve only 57,331. This discovery 
necessitates a thorough examination of the error components 
constituting the MOTA score to comprehend the fundamental 
dynamics. 

The explanation for the elevated MOTA ratings for 
motorcycles is found in the analysis of the precision and recall 
metrics derived by CLEAR. The data indicate that tracking 
precision (CLR_Pr) for bikes markedly exceeds that of 
automobiles across all model variants (e.g. 84,199 for 
motorcycles compared to 80,179 for cars in variant x). MOTA 
is determined by the aggregate of errors, including False 
Positives (FP), False Negatives (FN), and ID Switches (IDS), 
and exhibits significant sensitivity to the quantities of FP and 
FN. Increased precision immediately indicates a markedly 
reduced quantity of. 

TABLE III.  CLEAR METRIC TABLE FOR CAR CLASS 

Sub Metric 
Yolov8 variant 

n s m l x 

MOTA 44.415 47.904 50.888 56.604 57.331 

MOTP 70.630 69.671 69.418 69.374 69.790 

MODA 44.894 47.904 50.888 56.680 57.331 

CLR_Re 69.231 72.408 72.768 78.188 76.158 

CLR_Pr 73.990 74.715 76.882 78.426 80.179 

MTR 19.737 28.571 31.746 41.935 34.722 

PTR 48.684 35.714 20.635 29.032 45.833 

MLR 31.579 35.714 47.619 29.032 19.444 

IDSW 24 16 8 5 5 

Frag 212 536 547 515 434 

False Positives. Consequently, although motorbikes may 
encounter a higher frequency of association mistakes, a 
diminished number of false positives significantly decreases the 
overall errors in the MOTA formula, thereby enhancing their 
score relative to automobiles. A higher MOTA does not 
inherently indicate superior tracking performance; instead, it 
may signify the detector's exceptional accuracy for that specific 
class. 

TABLE IV.  CLEAR METRIC TABLE FOR MOTOR CYCLE CLASS 

Sub Metric 
Yolov8 variant 

n s m l x 

MOTA 53.906 51.935 55.943 63.886 62.622 

MOTP 70.921 68.812 69.581 70.169 70.076 

MODA 55.213 52.311 56.236 63.953 62.699 

CLR_Re 69.125 67.606 73.279 78.227 77.183 

CLR_Pr 83.246 81.550 81.131 84.569 84.199 

MTR 31.169 44.495 28.571 30.435 40.370 

PTR 58.442 37.615 44.643 58.261 42.609 

MLR 10.390 17.890 26.786 11.304 16.522 

IDSW 42 20 17 4 5 

Frag 342 554 702 693 532 

MOTA indicates a benefit for motorcycles; nevertheless, 
measures emphasising trajectory consistency present a 
contrasting narrative, aligning more closely with the prior 
HOTA findings. The quantity of FRAGs (Fragmentations) and 
IDSW (ID Switches) is continually elevated for motorcycles. In 
version x, motorcyclists exhibit 532 fragmentations, whereas 
vehicles have 434. In a less robust model, such as n, 
motorcyclists possess 42 IDSWs, whereas cars have just 24. 
These figures quantitatively validate that motorbike routes are 
more often fractured and their identities are more frequently 
exchanged. This substantiates the conclusion derived from the 
HOTA investigation that data association—sustaining 
consistent IDs amidst occlusion and dynamic movement, poses 
a far bigger problem for motorcycles. 

Alternative trajectory quality measurements offer a more 
thorough perspective. The Mostly Tracked Ratio (MTR) for 
bikes is consistently superior (40,370 compared to 34,722 in the 
x variation); however, the Mostly Lost Ratio (MLR) is inferior 
(16,522 versus 19,444). This indicates that although motorcycle 
trajectories are prone to intermittent fragmentation, a greater 
percentage of the overall trajectories are effectively monitored 
during the majority of their duration. This suggests that your 
tracker is proficient at managing motorcycles in straightforward 
movement situations, although it struggles during complex 
events (sharp manoeuvres, significant occlusions) that result in 
IDSW and Frag. The nearly similar MOTP (Multiple Object 
Tracking Precision) ratings for both categories suggest that 
when an object is accurately recognised and appropriately 
associated, the bounding box localisation accuracy is equally 
proficient for both automobiles and motorcycles. 
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The results for motorbike tracking demonstrate that 
YOLOv8-x attains a HOTA score of 57.8, much surpassing the 
51.5 achieved by YOLOv8-n, hence validating that larger 
detector variants enhance detection recall and association 
stability for tiny objects. Nonetheless, the aggregate HOTA 
values for motorbikes are inferior to those of cars, mostly 
attributable to recurrent occlusions, elevated object density, and 
the limited visual footprint of motorcycles in traffic scenarios. 
This finding aligns with the research of Frank Ngeni et al. [7], 
who indicated that tracking performance for small-scale and 
rapidly moving objects is susceptible to identification 
fragmentation, despite the utilisation of sophisticated detectors. 
Likewise, Jorge E. Espinosa1 et al. [4] noted that occlusion and 
swift manoeuvres markedly elevate ID switches in multi-object 
tracking benchmarks, underscoring the difficulties faced in this 
work. The comparisons indicate that although the integration of 
YOLOv8 with DeepSORT enhances motorcycle tracking 
relative to smaller detector variants, persistent challenges such 
as occlusion and identity consistency remain unaddressed, 
implying that future research should incorporate appearance-
based re-identification modules or alternative tracking methods. 

V. CONCLUSION 

This article presents numerous major conclusions regarding 
the efficacy of a vehicle tracking system utilising the YOLOv8 
detector in conjunction with the DeepSORT tracker, based on a 
thorough analysis undertaken. There exists a distinct positive 
correlation between the size of the YOLOv8 model and its 
detection accuracy; larger variants, such as YOLOv8l and 
YOLOv8x, markedly decrease the incidence of missed 
detections (false negatives), particularly for smaller objects like 
motorcycles, although difficulties in accurately classifying 
ambiguously shaped vehicles persist. Secondly, the dual-metric 
analysis provides significant complementary insights: the 
HOTA measure demonstrates that car tracking is more stable 
and consistent (higher “AssA” scores) compared to motorcycles, 
which frequently encounter track fragmentation due to their 
diminutive size, occlusion, and agile manoeuvres. Secondly, 
conversely, the CLEAR MOTA metric unexpectedly indicates 
elevated scores for motorcycles. This improvement is not 
attributable to enhanced association but rather to increased 
detection precision (fewer false positives), which 
disproportionately elevates the MOTA score and conceals 
deficiencies in tracking consistency (more ID shifts and 
fragmentation). This discovery significantly corroborates the 
original premise that a detection-biased statistic such as MOTA 
may yield an inadequate representation of actual tracking 
performance. This study indicates that HOTA offers a more 
equitable and comprehensive assessment by individually 
evaluating detection and association quality. This indicates that 
the selection of detector architecture and assessment metrics 
must be customised to the specific application requirements: in 
safety-critical systems, where identification consistency is 
essential, prioritising the HOTA association score is vital. 

Subsequent study may focus on investigating the integration 
of YOLOv8 with different tracking algorithms beyond 
DeepSORT to enhance identification consistency and minimize 
trajectory fragmentation in multi-object tracking.  A notable 
possibility is ByteTrack, which has a distinctive technique that 
accounts for low-rank detection boxes.  Furthermore, advanced 

trackers like StrongSORT and OC-SORT merit assessment due 
of their enhancements in association consistency and tracking 
robustness in intricate traffic scenarios.  Through the 
examination of diverse combinations, it is anticipated that a 
YOLOv8-based vehicle tracking system will attain enhanced 
performance and adaptability to a range of real-world 
conditions. 
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