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Abstract—Sign Language Recognition (SLR) has been an 

active area of research, but sentence-level SLR remains relatively 

underexplored. While most studies focus on recognizing 

individual signs, understanding full sentences presents greater 

challenges. This research proposes a sentence-level SLR using a 

combination of 3D Convolutional Neural Networks (3D CNN) for 

spatio-temporal feature extraction with sequential modeling 

using Long Short-Term Memory (LSTM) and Bidirectional 

LSTM (BiLSTM). Connectionist Temporal Classification (CTC) 

is also used to enable training without word-level annotations. In 

this study, we used the Indonesian Sign Language (BISINDO) 

dataset, specifically the DKI Jakarta version, consisting of 900 

videos representing 30 sentences, which was expanded to 3600 

videos through data augmentation techniques such as speed 

variation and brightness adjustments. All videos underwent 

preprocessing to ensure data quality, and Bayesian Optimization 

was applied for hyperparameter tuning to obtain optimal 

configurations for each model. Both models were trained with 

CTC loss and evaluated using Word Error Rate (WER). The 

3DCNN-LSTM model achieved a WER result of 59.21%, while 

the 3DCNN-BiLSTM presents a significantly better performance 

with a WER of 2.77%. Despite these promising results, the 

models’ ability to generalize across different signers may require 

further research, as the dataset used in this research involved 

only a single signer. 
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I. INTRODUCTION 

As social creatures, communication is an essential part that 
is inseparable from human life. Through communication, 
humans are able to exchange ideas, build relationships, and 
collaborate to fulfill their needs and achieve their goals. 
Broadly speaking, communication can be classified into verbal 
communication, which uses spoken or written words, and non-
verbal communication, which relies on facial expressions, 
gestures, and body language. 

Despite the fact that verbal communication, especially 
speaking, is the most common way humans interact, it is 
undeniable that some people cannot speak. Deaf individuals, 
unlike the general population, are among those who are unable 
to speak. For this reason, the deaf community communicates in 

their own, unique way, which is through the use of sign 
language. 

In Indonesia, there are two types of sign language used: 
Indonesian Sign Language System (SIBI) and Indonesian Sign 
Language (BISINDO). SIBI is a sign language system that 
follows standard Indonesian grammar, which includes basic 
signs that symbolizes words, and additional signs for prefixes, 
suffixes, and particles. However, it is not fully accepted by the 
deaf community, who find it difficult for daily use. Although 
SIBI is used in formal education, BISINDO is more commonly 
used by the deaf for everyday communication. Research at 
PGMI UIN Sunan Kalijaga shows BISINDO is easier to 
understand, more natural, expressive, and effective than SIBI 
[1]. 

The difference in communication styles between the deaf 
and hearing communities creates a communication gap, which 
can lead to social distance and discrimination within society. 
Therefore, a system is needed to help bridge this gap. As a 
solution to this gap, sign language recognition (SLR) systems 
have been widely developed [2]. The goal of SLR is to develop 
a method capable of detecting and understanding the sign 
language gestures made by individuals [2]. Various models 
have been applied in the development of sign language 
recognition systems, ranging from Convolutional Neural 
Networks (CNN) [3], Bidirectional Recurrent Neural Networks 
[4], Transformers [5], Long Short-Term Memory Networks 
(LSTM) [6], deep convolutional networks [7], to a combination 
of 2 or more models [8]. 

Considering the fact that Indonesia is one of the four 
countries in Asia with a fairly high prevalence of hearing loss 
at 4.6%, and a deafness prevalence of 0.4% across all age 
groups in seven provinces, a continuous sign language 
recognition, also known as sentence-level SLR, is very feasible 
to be developed to help deaf individuals communicate with 
hearing individuals. While this system helps translate what 
deaf individuals want to convey to hearing individuals, it also 
serves as a tool for hearing individuals to learn sign language. 
In Indonesia itself, there has been a research on sentence-level 
SLR using 3D CNN and Bidirectional Recurrent Neural 
Networks (BiRNN) [4]. However, the model developed utilizes 
the SIBI dataset, which is not frequently used by deaf 
individuals in their daily interactions. Besides, it shows a 
relatively high word error rates (WER) and character error 
rates (CER), which may be caused by a mismatch between the 
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model and the dataset used, such as the presence of noise in the 
dataset due to suboptimal preprocessing. Additionally, 
sentence-level SLR is generally more challenging than 
alphabet or word-level recognition due to the need to capture 
both manual and non-manual features, while also modeling 
temporal dependencies across multiple gestures and handling 
variations in gesture sequences. 

In response to this problem, this study proposes a sentence-
level SLR model for Indonesian Sign Language (BISINDO) 
using 3D CNN-LSTM and 3D CNN-BiLSTM models. To 
address limitations in previous studies, the dataset consists of 
BISINDO videos collected with consistent lighting, framing, 
and other conditions to minimize noise. LSTM and BiLSTM 
are used instead of BiRNN due to their gating mechanisms, 
which better handle vanishing gradients and capture long-term 
dependencies in gesture sequences [9]. 

Since BISINDO naturally develops within the Deaf 
community, there are lots of variations in BISINDO gestures 
across different regions, reflecting the local culture in each 
area. This results in several regional variants of BISINDO, 
such as BISINDO DKI Jakarta, BISINDO West Java, 
BISINDO East Java, and others. However, since DKI Jakarta is 
the province with the highest population density in Indonesia 
[10] and as a central area where many communities interact, 
the DKI Jakarta version of BISINDO is likely to be more 
widely used and recognized than variants of other regions. 
Therefore, we chose to focus on BISINDO DKI Jakarta in this 
research. 

To sum up, this study aims to develop and evaluate a 
sentence-level BISINDO DKI Jakarta recognition using a 
combination 3D CNN and LSTM model, as well as 3D CNN 
and BiLSTM model. While previous studies have focused on 
word or alphabet-level recognition, only a few have focused on 
sentence-level SLR. This gap motivates the development of a 
model capable of recognizing sentence-level sign language 
gestures. The proposed model is expected to provide a basis for 
developing future systems that support communication 
between Deaf and hearing communities. It has the potential to 
support sign language learning, contribute to the development 
of applications such as sign language translators, and enable 
future innovations in automated public service systems. 

To address these objectives, this study seeks to answer the 
following research questions: 1) How can hybrid 3D CNN-
LSTM and 3D CNN-BiLSTM models be developed to 
effectively recognize sentence-level BISINDO gestures? 
2) How do the performance of the 3D CNN-LSTM and 3D 
CNN-BiLSTM models compare in terms of their accuracy in 
recognizing word sequences within BISINDO sentences? 

The next section of this paper is organized as follows: 
Section II presents related works on Sign Language 
Recognition, Section III presents the methods used in this 
research. The results and discussion are presented in 
Section IV and Section V, respectively. Finally, Section VI 
presents the conclusion and future works of this research. 

II. RELATED WORKS 

To date, there has been considerable research focused on 
sign language recognition systems. Different algorithms have 

been implemented by previous researchers to develop a sign 
language recognition system that can perform with good 
accuracy. 

In 2018, Ariesta et al. proposed a sentence-level Indonesian 
sign language recognition system using 3D CNN and 
Bidirectional Recurrent Neural Networks. The study utilized 
SIBI dataset, which includes 30 sentences in SIBI. The 
researchers developed several models for this system, all 
combining 3D CNN and bidirectional RNN. However, the 
evaluation revealed that the performance of the developed 
models was not optimal, as indicated by the high Word Error 
Rate (WER) of 85%-90% and Character Error Rate (CER) of 
65%-77% [4]. This study is notable for attempting sentence-
level sign language recognition, which is a challenging task. 
The use of 3D CNN-BiRNN is also suitable for capturing 
spatio-temporal features. However, the dataset and the model 
seem to be mismatched, resulting in suboptimal performance. 
This highlights the importance of preparing the dataset 
carefully for sentence-level recognition. 

Aljabar and Suharjito in 2020 proposed a word-level sign 
language recognition system, utilizing BISINDO dataset 
consisting of two alphabets and eight words in BISINDO. They 
developed CNN, LSTM, and a combination of CNN and 
LSTM model, in which the CNN model achieves an accuracy 
of 73%, LSTM model achieves an accuracy of 81%, and the 
combination of CNN and LSTM model achieves the highest 
accuracy, reaching 90% [11]. 

Another research in 2020 by Latif et al. proposed an 
alphabet-level sign language recognition system to detect 
alphabet in Arabic sign language. They used a deep 
convolutional network, which was trained and evaluated using 
a dataset consisting of 50000 images of Arabic signs. After 
evaluation, it is found that this model achieves an accuracy of 
97.6% [7]. While this study achieves a high accuracy in 
recognizing Arabic letters with its large and diverse dataset, it 
is still limited to letters rather than word or sentence-level 
recognition. 

In the same year, a continuous sign language neural 
machine translation was proposed by a group of researchers 
from China. In this research, they used a dataset consisting of 
50 sentences in Chinese Sign Language. The model proposed 
in this research is the ST-LSTM fusion attention network, 
which is then called Bi-ST-LSTM-A. This model achieves an 
accuracy of 81.22% on the CSL dataset, 76.12% on the 
RWTH-PHOENIX-Weather dataset, and 75.32% on the 
RWTH-PHOENIX-2014T dataset [8]. 

In 2021, a group of researchers from Saudi Arabia 
proposed an Arabic Sign Language recognition to detect 
alphabets in Arabic Sign Language using R-CNN, in which 
they achieved an accuracy of 93% based on the evaluation 
conducted [12]. Although this study focuses only on 
recognizing alphabets in Arabic Sign Language, the model 
proposed in this study can detect hands and recognize gestures 
with a high accuracy, even in a complicated background. 

Another researcher from Indonesia also proposed a sign 
language detection system for BISINDO in 2022. They used a 
dataset of nine class, which consists of the alphabet A-E, and 
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three words which are “saya”, “kamu”, and “I love you”. They 
used CNN to detect those classes, in which they achieved an 
accuracy of 99.82% [13]. This study still needs a lot of 
improvements, especially in terms of the dataset size, as the 
limited vocabulary makes it unreliable in real-world scenarios. 

Another alphabet-level sign language recognition is also 
proposed by Murali et al. in 2022. They used a CNN model to 
detect alphabets in American Sign Language, in which they got 
an accuracy of 98% [3]. 

In the same year, research by Kothadiya et al. proposed a 
system to detect words in Indian Sign Language. They used 
deep learning models, especially the Long Short-Term 
Memory (LSTM) and GRU. The model, which consists of 1 
LSTM layer and GRU, achieves an accuracy of 97% for more 
than 11 word classes [14]. This shows a high accuracy for 
Indian Sign Language Recognition in a challenging and 
uncontrolled environment, representing natural conditions. 
However, the dataset is still limited in diversity, containing 
only 11 words, which may restrict the model’s ability to 
recognize sign language in real-world applications. 

Another alphabet and word-level sign language recognition 
is proposed by Shin et al. in 2023. They combined a CNN and 
a transformer model to create a model to detect alphabet and 
words in the KSL Dataset. After evaluation, almost all 
alphabets are identified correctly, two alphabets achieved an 
accuracy of 95%, and two others gained an accuracy of 84%- 
90%. Testing was also done on the proposed dataset, which 
consists of 20 classes, achieving a score of 98.5% for precision, 
98.35% for recall, 98.4% for F1-score, and 98.3% for accuracy 
[5]. This study effectively combines CNN and transformer 
architectures, resulting in high accuracy with relatively low 
computational cost. However, it is limited to word-level 
recognition and relies on a relatively small dataset, which 
limits its applicability to continuous, real-world sign language 
scenarios. 

In 2023, a group of researchers from India proposed a 
system using the LSTM networks to detect words in Indian 
Sign Language. This model achieves an accuracy of 87% [6]. 
This study achieves a relatively high accuracy, and it is strong 
in its practical applicability, demonstrating a usable, real-time 
sign-action recognition system. However, it is limited to word-
level recognition and does not address sentence-level 
sequences. 

Lastly, in 2024, a hybrid deep learning model was proposed 
for a real-time Arabic Sign Language. This study presents a 
new, custom dataset containing 10 static gesture words and 10 
dynamic gesture words. CNN and LSTM were used in this 
study, with the CNN achieving accuracy rates of 94.40% and 
the LSTM achieving 82.70% [15]. The results highlight the 
strong potential of the proposed model, especially proving 
CNN’s effectiveness in recognizing static signs. However, the 
dataset used in this research is relatively small, which makes it 
less applicable in real-world scenarios. Expanding the dataset 
in the future, especially for dynamic gestures, is essential to 
achieve a more reliable sign language recognition system. 

From the previous research, it can be concluded that sign 
language recognition systems with various models, especially 

CNN and LSTM can be used to detect gestures in sign 
language with a fairly good level of accuracy, with an average 
accuracy of more than 90% for word-level sign language 
recognition. However, research related to sentence-level sign 
language recognition is still limited. Based on previous 
research that has been discussed, there are only two groups of 
researchers who studied sentence-level sign language 
recognition, where 1 of them shows a large error rate, and 1 the 
other shows fairly good accuracy results (75%- 82%), although 
not as good as the accuracy of the system in the word-level 
sign language recognition. Therefore, referring to previous 
research, this study will develop sentence-level sign language 
recognition using a combination of 3D CNN and LSTM 
models. This study was conducted to detect gestures in the DKI 
Jakarta version of BISINDO. 

III. METHODOLOGY 

This section presents the detailed research workflow, 
describing the step-by-step process involved in preparing the 
data, building and training the model, to evaluating its 
performance for BISINDO DKI Jakarta sentence-level SLR. 

A. Problem Identification 

In the problem identification phase, we focused on 
highlighting specific issues within the field of Sign Language 
Recognition (SLR), aiming to address gaps in current research. 
This process was done through an extensive review of recent 
studies and literature related to SLR. Even though numerous 
researchers have successfully developed SLR, most of them 
still focus on word-level Sign Language Recognition, so the 
communication gap between deaf and hearing individuals is 
not fully addressed. 

In order to address the problem, this research focuses on 
developing a sentence-level SLR using the BISINDO dataset, a 
sign language which is preferred by deaf individuals in 
Indonesia. While the BISINDO dataset varies across Indonesia, 
this research focuses particularly on the DKI Jakarta version of 
BISINDO. 

B. Video Acquisition 

While several BISINDO datasets are available at the word 
or alphabet level, no publicly accessible dataset exists for 
sentence-level BISINDO (especially the DKI Jakarta version). 
Due to this gap, we created our own BISINDO DKI Jakarta 
dataset to be used in this research. 

The video acquisition phase began with compiling a list of 
sentences to be recorded, which will then be used in this study. 
To construct the sentences, we utilizes vocabularies which are 
included in the 50 high frequency words based on research 
conducted by Siagian, which are recommended as mandatory 
vocabularies to be mastered when learning a new foreign 
language [16]. From this list, we selected several words to 
construct the sentences. The selection of these words was 
based on their frequency in everyday conversations and their 
applicability within Bahasa Isyarat Indonesia (BISINDO). 
While most words were selected from the 50 high-frequency 
words list, additional words outside the list were also 
incorporated as needed to form meaningful sentences. The 
sentences constructed from these words are then recorded to be 
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used as input for training and testing our sentence-level sign 
language recognition model. The list of sentences which will 
be included in this dataset can be seen in Table I. The 
“Sentence” column contains the original sentence in 
Indonesian, while the “Sign Gloss” column represents the 
translation of the sentence into BISINDO gloss notation. As 
shown in the examples, the gloss often differs from the spoken 
sentence structure, illustrating the linguistic differences 
between spoken Indonesian and BISINDO, which the 
recognition model must learn to accurately align sentences 
with their corresponding signs. 

TABLE I.  LIST OF SENTENCES IN THE DATASET 

No. Sentence Sign Gloss 

1. Aku bangun jam sepuluh. AKU BANGUN JAM SEPULUH 

2. 

Aku tidur jam sepuluh 

malam sampai jam lima 

pagi. 

AKU MALAM TIDUR JAM 

SEPULUH SAMPAI PAGI JAM 

LIMA 

3. Aku mau makan. AKU MAU MAKAN 

4. Aku punya kakak. AKU PUNYA KAKAK 

5. Aku suka kamu. AKU SUKA KAMU 

6. Di mana Bapak dan Ibu? BAPAK DAN IBU DIMANA 

7. Halo, nama aku Katriel HALO NAMA AKU FS:KATRIEL 

8. 
Ibu aku punya kucing dan 

ikan. 

IBU AKU PUNYA KUCING DAN 

IKAN 

9. Kakak aku suka makan. KAKAK AKU SUKA MAKAN 

10. 
Berapa anak yang kamu 

punya? 
KAMU ANAK BERAPA 

11. Jam berapa kamu bangun? KAMU BANGUN JAM BERAPA 

12. 
Apakah kamu sudah 

makan? 
KAMU MAKAN SUDAH 

13. 
Keluarga aku terdiri dari 

lima orang. 
KELUARGA AKU ORANG LIMA 

14. 
Berapa jumlah anggota 

keluarga kamu? 

KELUARGA KAMU ORANG 

BERAPA 

15. Kucing makan apa? KUCING MAKAN APA 

16. Kucing makan ikan. KUCING MAKAN IKAN 

17. Siapa nama dia? NAMA DIA SIAPA 

18. Siapa nama kamu? NAMA KAMU SIAPA 

19. Nama isyarat kamu apa? NAMA PANGGIL KAMU APA 

20. Rumah aku di Jakarta  RUMAH AKU FS:JAKARTA 

21. Rumah aku nomor lima. RUMAH AKU NOMOR LIMA 

22. Rumah kamu di mana? RUMAH KAMU DIMANA 

23. 
Rumah kamu nomor 

berapa? 
RUMAH KAMU NOMOR BERAPA 

24. Sekarang jam berapa? SEKARANG JAM BERAPA 

25. Selamat hari Ibu. SELAMAT HARI IBU 

26. 
Selamat hari kemerdekaan 

Indonesia. 

SELAMAT HARI KEMERDEKAAN 

INDONESIA 

27. 
Selamat malam, aku mau 

tidur. 

SELAMAT MALAM AKU MAU 

TIDUR 

28. 
Selamat pagi, Bapak dan 

Ibu. 
SELAMAT PAGI BAPAK DAN IBU 

29. Terima kasih TERIMAKASIH 

30. Umur kamu berapa? UMUR KAMU BERAPA 

The recordings were carried out by a single participant – 
the author of this research – who is a non-native signer but has 
completed a sign language course, which provides sufficient 
experience to ensure accurate movements and expressions for 
the dataset. The decision to record with one signer was made 
due to limited resources, which made it challenging to involve 
multiple native signers. However, the recordings were carefully 
done to maintain consistency and clarity. 

In total, 30 BISINDO sentences (DKI Jakarta version) were 
recorded, each repeated 30 times, using a smartphone camera 
at 30 fps. The video recording was carried out under controlled 
conditions, such as: 

• Videos were recorded with a plain white background to 
minimize unnecessary visual distractions, to help the 
model focus on the signer. 

• Videos were recorded indoors under sufficient lighting, 
ensuring every gesture was clearly visible. 

• The camera was positioned to capture the signer’s upper 
body (from head to waist), so that both hand 
movements and relevant facial expressions were clearly 
captured. 

Nevertheless, relying on a single non-native signer remains 
a key challenge of this dataset, as it may limit the model’s 
ability to generalize across different signers. To partially 
address this challenge, data augmentation techniques were 
applied to enhance the variability of the dataset, which will be 
described in the following section. 

C. Video Preprocessing 

To ensure that the recorded videos could be effectively 
used for model training, we applied several preprocessing 
steps. Firstly, we cropped the recorded videos to remove 
unnecessary parts of the frame, allowing the model to better 
focus on the signer’s gestures and expressions. It is ensured 
that all videos have a resolution of 1080x1080 pixels. Next, the 
video frame rate was reduced from 30 fps to 15 fps. This was 
done to reduce computational load without changing the 
duration of the video. By reducing the fps, the total number of 
frames in each video can be cut in half while preserving 
necessary temporal information. Then, each frames are resized 
from 1080x1080 pixels to 256x256 pixels to maintain 
consistency in the input data, while also improving 
computational efficiency without losing essential details such 
as hand and facial features. 

Next, padding was applied to the videos to ensure that the 
number of frames across all videos is the same. Since this 
research is focused on sentence-level sign language 
recognition, the number of frames of each video in the dataset 
will be different, due to the difference in sentence length or the 
variability in signing speed. Hence, padding was done by 
determining the maximum number of frames in a video across 
all videos in the dataset. The videos with fewer frames than the 
maximum number of frames are then given additional frames 
to equalize the number of frames across all videos in the 
dataset. 
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D. Data Augmentation 

Since the total number of videos collected for this dataset is 
relatively small, consisting of only 900 videos covering 30 
sentences, several data augmentation techniques were applied 
to enhance the variability of our training data. We carefully 
selected the augmentation techniques based on their 
compatibility with BISINDO, and made sure that the 
modifications did not alter the meaning of signs or even violate 
BISINDO rules. There are two augmentation techniques used 
in this research, which are: 

1) Speed variation: This technique was used to increase 

the speed of the video by 1.2 times, which is intended to 

mimic the variability of signing speeds in real-world 

scenarios. It allows the model to learn and manage different 

signing speeds. 

2) Brightness adjustments: This technique was used to 

modify the lighting conditions of the videos to simulate 

different lighting conditions found in different environments, 

which has been proven to improve model performance on 

object detection tasks [17]. In this study, brightness 

adjustments were applied by making the videos 40% darker 

and 40% brighter than the original video. Examples of 

brightness variations can be seen in Fig. 1 and Fig. 2. For 

privacy reasons, faces are covered in the dataset samples 

shown. 

 

Fig. 1. Original video brightness. 

 

Fig. 2. Video with 40% brighter lighting (left) and video with 40% darker 

lighting (right). 

These techniques were used because they align with the 
characteristics of the dataset used. Other methods, such as 
mirroring, were avoided due to BISINDO rules on right and 
left hand usage, which could alter sign meaning. Other 

techniques like cropping or adding noise were also not applied, 
as they might remove essential facial expressions, hand 
positions, and other details needed for sign recognition. 

E. Data Preparation 

After all the preprocessing steps have been finished, the 
dataset was split into three groups, which are: training, 
validation, and testing sets. The data distribution can be seen in 
Table II. 

TABLE II.  ORIGINAL DATA DISTRIBUTION 

Data Sets Percentage Number of Videos 

Training Set 70% 630 

Validation Set 15% 135 

Testing Set 15% 135 

TOTAL 100% 900 

As shown in Table II, a 70-15-15 split was applied to the 
original dataset consisting of 900 videos. Meanwhile, the 2700 
augmented videos were included in the training set, as the 
purpose of augmentation is to enrich the diversity of data 
available for training, allowing the model to generalize better. 
The final distribution dataset can be seen in Table III. 

TABLE III.  FINAL DATA DISTRIBUTION 

Data Sets Number of Videos 

Training Set 3330 

Validation Set 135 

Testing Set 135 

TOTAL 3600 

F. Model Building and Training 

In this phase, we developed a hybrid deep learning model 
that integrates a 3D CNN and recurrent model 
(LSTM/BiLSTM) for sentence-level sign language recognition. 
Since recognizing sign language requires attention and 
consideration to both manual features (hand shape, position, 
and movements) and non-manual features (facial expressions, 
head position, and lip shape) [18], the 3D CNN was utilized to 
extract spatial and temporal features from the video frames. 
These extracted features are then passed into two different 
sequence models, the conventional LSTM and bidirectional 
LSTM. This model design was chosen to leverage the main 
strengths of each model, where the 3D CNN serves as the 
feature extractor, while the LSTM/BiLSTM models capture 
temporal dependencies within the sign sequence. The model 
architecture used in this research is presented in Fig. 3, while 
the configuration of each layer is shown in Table IV. The rows 
highlighted in blue represent the 3D CNN component of the 
model, while the rows highlighted in orange represent the 
LSTM/BiLSTM component. All models were trained from 
scratch on the BISINDO DKI Jakarta dataset without the use of 
pre-trained weights or fine-tuning. This was done to ensure that 
the models are fully adapted to BISINDO sentence-level 
recognition data. 
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Fig. 3. Model architecture. 

TABLE IV.  LAYER CONFIGURATION OF THE 3D CNN AND 

LSTM/BILSTM MODEL 

Layer Configuration Output Shape 

Input 3D CNN Video frames 
(151, 256, 256, 

3) 

Conv3D 

32 filters, kernel (3,3,3), 

stride (1,1,1), activation 

ReLU 

(151, 256, 256, 

3) 

MaxPooling3D Pool size (1, 2, 2) 
(151, 128, 128, 

32) 

Conv3D 

64 filters, kernel (3, 3, 3), 

stride (1, 1, 1), activation 

ReLU 

(151, 128, 128, 

64) 

MaxPooling3D Pool size (2, 2, 2) (75, 64, 64, 64) 

Conv3D 

128 filters, kernel (3, 3, 3), 

stride (1, 1, 1), activation 

ReLU 

(75, 64, 64, 

128) 

TimeDistributed 

(GlobalAveragePooling2D) 
 (75, 128) 

Input LSTM 3D CNN extracted features (75, 128) 

LSTM/BiLSTM 
X units (adjusted based on 

tuning results) 
(75, X) 

LSTM/BiLSTM 
X units (adjusted based on 

tuning results) 
(75, X) 

TimeDistributed Dense 

(ReLU) 
128 units, activation ReLU (75, 128) 

TimeDistributed Dense 

(Softmax) 

45 units, activation 

Softmax 
(75, 45) 

As shown in Table IV, firstly the videos containing 
BISINDO sign language gestures were used as an input for the 
3D CNN model. The 3D CNN then performed spatiotemporal 
feature extraction. The spatial features extracted include hand 
movements and facial expressions, as these two components 
are key elements in performing BISINDO, and are essential for 
identifying sign gestures. 

The 3D CNN model used in this study receives video input 
with dimensions of (151, 256, 256, 3), where: 

• 151 represents the number of frames in each video 

• 256 x 256 is the resolution of each frame, and 

• 3 represents the number of channels (RGB) 

This input is processed through several convolutional and 
pooling layers as shown in Table IV. Then, a TimeDistributed 
layer with GlobalAveragePooling2D is applied to average the 
spatial feature values for each video frame individually, 
preserving the temporal dimension of the video data. This 
process results in a one-dimensional feature vector for each 
frame, which can then be passed into the LSTM/BiLSTM 
model. The output at this stage has the shape (75, 128), where: 

• 75 is the number of frames remaining after pooling and 
downsampling, and 

• 128 is the number of features generated for each frame. 

To avoid repeating feature extractions due to limited 
computational resources, the extracted features were stored in a 
.npy file. These features are then used as an input to the 
LSTM/BiLSTM model. For sequence modeling, two stacked 
LSTM/BiLSTM layers were used to capture temporal 
dependencies.  The LSTM processes the frame sequence in one 
direction, while the BiLSTM processes the sequence in both 
directions [19]. Stacked LSTMs are used in this study to 
enhance the model’s ability to learn complex relationships in 
sequential data. In these layers, the output shape becomes (75, 
X), where 75 is the number of timesteps and X is the number 
of units in LSTM/BiLSTM which is determined through 
hyperparameter tuning. 

Next, a TimeDistributed Dense layer with 128 units and a 
ReLU activation function was applied, producing an output of 
shape (75, 128), where 75 represents the timesteps and 128 
represents the number of units in Dense layer. Lastly, a 
TimeDistributed Dense layer with a Softmax activation 
function, which is responsible to generate frame-level 
predictions as probability distributions for every vocabulary 
and blank token, was applied. It results in an output shape of 
(75, 45), where 75 represents the timesteps and 45 represents 
the number of vocabulary in the dataset. During the training, 
CTC loss function was applied to handle the mismatch between 
input frames and predicted word lengths. Finally, a decoding 
process was done using the argmax function to convert the 
probability outputs into a sequence of predicted words. 

After defining the model architecture, hyperparameter 
tuning was conducted to obtain the most optimal 
hyperparameter configurations for the 3DCNN-LSTM and 
3DCNN-BiLSTM model. This process ensure that the models 
were trained using the best combination of hyperparameter, so 
that the models are able to recognize sentences in BISINDO 
with the lowest possible Word Error Rate (WER). In this study, 
Bayesian Optimization (BO) was used for hyperparameter 
tuning due to its efficiency in finding optimal configurations 
compared to methods like Random Search [20] or Grid Search, 
while maintaining equal or better model accuracy [21]. The 
hyperparameters tuned in this research includes the number of 
LSTM/BiLSTM units, learning rate, batch size, and dropout 
rate. The predefined ranges for these hyperparameters are 
shown in Table V. 
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TABLE V.  OPTIMIZED HYPERPARAMETERS 

Hyperparameter Value 

LSTM/BiLSTM units 64, 128, 256 units 

Learning Rate 0.001, 0.0005, 0.0001 

Batch Size 16, 32, 64 

Dropout Rate 0.2, 0.3, 0.4 

Once the optimal combination of hyperparameter was 
found for both the 3DCNN-LSTM and 3DCNN-BiLSTM 
models, the final models were built using these values and 
training was initiated. This ensured the models were trained 
under the best configuration, which allows the model to 
maximize their ability in recognizing word sequences in 
BISINDO. 

G. Evaluation 

To evaluate the model against the given input sentences, 
the metric used in this research is Word Error Rate (WER). 
This metric is a standard measure commonly used to evaluate 
the performance of a machine translation system or speech 
recognition system. 

The WER measurement helps evaluate the difference 
between the output sequence (the identified sentences) and the 
actual sentences by taking into account substitutions (instances 
where identified word is different from the actual word 
intended to be conveyed through sign gestures), deletions 
(instances where a signed word is missing from the identified 
output sequence), and insertions (instances where an extra 
word appears in the output sequence that was not present in the 
signed gesture). The formula for measuring WER is as follows: 

𝑊𝐸𝑅 =  
𝑆 +  𝐷 +  𝐼

𝑁
 =  

𝑆 +  𝐷 +  𝐼

𝑆 +  𝐷 +  𝐶
 

where, 

• S represents the number of substitutions 

• D represents the number of deletions 

• I represents the number of insertions 

• C represents the number of correctly identified words 

By using WER as an evaluation metric, researchers can 
determine how many errors or mistakes the system makes in 
identifying sentences in sign language, allowing for a more 
accurate assessment of the model’s performance. A smaller 
WER value indicates fewer errors in the identified output, 
meaning that a lower WER reflects better system performance. 

IV. RESULTS 

This chapter presents the results of the sentence-level SLR 
model, which was trained and evaluated using the WER metric. 
Before training the model, hyperparameter tuning was done 
using Bayesian Optimization to find the best hyperparameter 
combination for both the 3DCNN-LSTM and 3DCNN-
BiLSTM models. The tuning process was carried out with 15 
trials for each model. The results of the hyperparameter tuning 
trials for the LSTM model can be seen in Table VI, and the 
results for the BiLSTM model can be seen in Table VII. 

TABLE VI.  LSTM MODEL HYPERPARAMETER TUNING TRIALS 

Trial ID 
LSTM 

Units 
Dropout 

Batch 

Size 

Learning 

Rate 
Score 

0 256 0.3 32 0.0005 11.93222332 

1 64 0.3 64 0.0005 14.42325211 

2 64 0.2 16 0.0005 12.05967999 

3 256 0.2 16 0.0005 12.19359112 

4 256 0.2 64 0.001 12.75675106 

5 128 0.4 16 0.0005 12.39139652 

6 128 0.3 16 0.0005 11.87120438 

7 256 0.2 64 0.0001 16.38278389 

8 128 0.2 64 0.0001 16.72937202 

9 128 0.4 64 0.0005 13.32501125 

10 256 0.4 64 0.0005 13.03599548 

11 128 0.4 64 0.0001 16.78538322 

12 256 0.4 32 0.001 12.30996895 

13 128 0.2 16 0.001 11.21184921 

14 64 0.3 16 0.001 11.78033161 

TABLE VII.  BILSTM MODEL HYPERPARAMETER TUNING TRIALS 

Trial ID 
LSTM 

Units 
Dropout 

Batch 

Size 

Learning 

Rate 
Score 

0 64 0.3 32 0.0001 12.86169529 

1 128 0.4 16 0.0005 9.067760468 

2 64 0.4 64 0.0005 11.28538609 

3 256 0.4 64 0.001 8.874022484 

4 256 0.4 32 0.0001 9.88320446 

5 128 0.2 16 0.0005 9.092283249 

6 256 0.3 16 0.0005 8.945654869 

7 256 0.4 64 0.0005 9.24458313 

8 128 0.3 64 0.001 9.18018055 

9 256 0.3 64 0.0005 9.229111671 

10 256 0.2 64 0.0001 10.96395779 

11 128 0.2 32 0.001 9.443668365 

12 256 0.4 16 0.001 8.634145737 

13 256 0.2 16 0.001 8.818277359 

14 64 0.3 16 0.001 9.163191795 

Tables VI and VII show the results of hyperparameter 
tuning for the LSTM and BiLSTM models, where each trial 
tests a different combination of LSTM units, dropout rate, 
batch size, and learning rate. The “Score” column represents 
the validation loss, meaning that lower values indicate better 
model performance on unseen data. Based on Tables VI and 
VII, it can be seen that the best hyperparameter combination 
for the LSTM model consists of 128 LSTM units, a dropout 
rate of 0.2, a batch size of 16, and a learning rate of 0.001. 
Meanwhile, the BiLSTM model achieved its best performance 
with 256 LSTM units, a dropout rate of 0.4, a batch size of 16, 
and a learning rate of 0.001. These hyperparameter 
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combinations were then used to build the models for training. 
Accordingly, the final structure of the 3DCNN-LSTM model 
can be seen in Fig. 4, and the final structure of the 3DCNN-
BiLSTM model can be seen in Fig. 5. 

 
Fig. 4. Hybrid 3DCNN-LSTM model structure. 

 
Fig. 5. Hybrid 3DCNN-BiLSTM model structure. 

Each model was trained for 200 epochs. To prevent 
overfitting, early stopping with a patience of 20 was applied by 
monitoring the validation loss. The LSTM model achieved its 
lowest validation loss at epoch 187, with a value of 5.7631. 
The training and validation loss of the LSTM model can be 
seen in Fig. 6. 

 
Fig. 6. Training and validation loss of LSTM model. 

The graph shows that both training and validation loss 
decreased steadily, indicating that the model was learning well. 
However, at epoch 193, there was a sudden spike in both 
losses, which later dropped again. This spike was likely caused 
by temporary fluctuations. Since the losses continued to 
decline afterwards, the model was still learning effectively. In 
this case, the best weights were used, taken from before the 
spike occurred. 

Meanwhile, the BiLSTM model achieved its lowest 
validation loss at epoch 183, with a value of 0.2444. The 
training and validation loss of the BiLSTM model can be seen 
in Fig. 7. 

 

Fig. 7. Training and validation loss of BiLSTM model. 

The graph shows a consistent decrease in both training and 
validation loss, indicating that the model was learning well 
from the data. Although some fluctuations occurred during 
training, overall the loss decreased steadily, with the training 
and validation loss values remaining close throughout the 
process. 

After training and selecting the best weights for both 
models, we evaluated them on the test set to measure their 
performance. The predictions from this testing phase were 
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decoded to convert the model’s output into sentence form. 
Once the predicted word sequences were obtained, the model’s 
performance was evaluated using the WER metric, which is 
calculated based on the number of prediction errors, including 
substitutions, insertions, and deletions. 

In the 3DCNN-LSTM model, the evaluation on the testing 
set resulted in a relatively high WER of 59.21%. It produced 
the most errors in substitutions with a total of 211 substitutions, 
followed by 60 deletions and 28 insertion errors. The error 
distribution for the LSTM model can be seen in Fig. 8. 

 
Fig. 8. Error percentage of the LSTM model on the test set. 

Meanwhile, the 3DCNN-BiLSTM model achieved a better 
performance with a significantly lower WER of 2.77%, with 
the most errors in substitution with a total of 12 substitutions, 
followed by two insertion errors. The 3DCNN-BiLSTM model 
did not produce any deletion errors. The error distribution for 
the BiLSTM model can be seen in Fig. 9. 

 
Fig. 9. Error percentage of the BiLSTM model on the test set. 

To address the limitation of having only one signer in the 
dataset, additional signer videos with plain backgrounds and 
clear visuals were collected from publicly available sources on 
the internet to serve as a supplementary test set. We 
successfully collected seven videos of BISINDO DKI Jakarta 
sentences to be used for the additional test. 

In testing using the additional signer videos collected from 
the internet, the LSTM model achieved a WER of 120% with 

11 substitution errors, followed by 5 insertions and 2 deletions 
errors. Meanwhile, the BiLSTM model achieved a WER of 
60%, with 9 substitution errors without insertion and deletion 
errors. 

V. DISCUSSION 

Both 3D CNN-LSTM and 3D CNN-BiLSTM models were 
trained using the hyperparameters determined from tuning, 
ensuring that each model was optimized for its architecture. 
Both models were trained for the same number of epochs, 
which is 200 epochs, to allow a fair comparison. The average 
training time per epoch was 8.66 seconds for the LSTM and 11 
seconds for BiLSTM model. The BiLSTM model contains a 
larger number of trainable parameters than the LSTM, which 
contributes to the slightly longer training time. While BiLSTM 
requires slightly more time due to its bidirectional architecture, 
the difference is small and does not significantly affect the 
fairness of the comparison. 

Based on the evaluation results of the LSTM and BiLSTM 
models, there is a significant difference in WER between the 
two models. The 3D CNN-BiLSTM model shows a drastically 
lower WER compared to the 3D CNN-LSTM model. As seen 
from the training loss, the LSTM loss was still decreasing at 
the end of 200 epochs, indicating that it could potentially 
achieve slightly better performance if trained for more epochs. 
However, the BiLSTM still outperforms the LSTM due to its 
ability to capture context in both directions. 

In sentence-level SLR, the meaning of a gesture often 
depends on both what comes before and after, creating context 
across the whole sentence. While the LSTM can only utilize 
past frames, the BiLSTM may look at the sequence in both 
directions. This bidirectional processing helps BiLSTM to 
distinguish gestures that might look similar on their own and 
better capture subtle differences in hand movements and facial 
expressions. Even if the LSTM is trained longer, LSTM is still 
limited in using future context, which explains the drastic 
performance difference between the models. This also shows 
that bidirectional modeling is so important for sentence-level 
SLR. 

However, the significantly low WER on the BiLSTM 
model may also be due to the lack of signer variation in the 
dataset, meaning the model has effectively learned the patterns 
of a single individual, which allows it to predict word 
sequences in the test set very well. This becomes clear when 
testing on videos from new signers, where the WER is higher 
than on the original test set. However, this should not be 
considered as the main benchmark, as uncontrolled factors in 
videos collected from social media can affect the model’s 
ability to recognize sign language. The differences in signing 
style may also contribute to the model’s difficulty in accurately 
recognizing gestures in videos from new signers. Although the 
model cannot yet fully recognize the word sequences in sign 
language sentences, it can be seen that it can fairly well 
recognize and identify sentence length. This is demonstrated by 
the small number of insertion and deletion errors made by both 
models, while both models make more substitution errors. This 
demonstrates that overall sentence length can be identified 
well, although errors in sign recognition still occur, which can 
be due to various factors, such as similar gestures. 
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Nevertheless, compared to previous similar work, such as 
sentence-level SLR using 3D CNN-BiRNN model, the 3D 
CNN-BiLSTM model still shows a lower WER, even when 
testing on videos from different signers. This improvement is 
likely due to the LSTM’s gating mechanisms, which better 
handle vanishing gradients, allowing the model to remember 
important information over longer sequences better than 
BiRNN. 

VI. CONCLUSION 

This study presents a novel approach to sentence-level 
BISINDO DKI Jakarta sign language recognition by 
combining a 3D CNN model for spatial and temporal feature 
extraction, followed by a LSTM/BiLSTM network to capture 
sequential dependencies, enhanced by CTC, which allows for 
sentence-level sign language recognition without the need for 
word-level annotations. Both 3DCNN-LSTM and 3DCNN-
BiLSTM model was trained and evaluated on the 30 BISINDO 
sentence videos consisting of everyday phrases, with data 
augmentation applied to improve generalization and 
hyperparameters tuned to optimize performance. 

The research was conducted through several stages. First, 
the feature extraction was performed by the 3D CNN model, 
with the resulting features stored in a .npy file. These features 
are then passed to two different models – LSTM and BiLSTM 
– for training and testing in sentence-level BISINDO 
recognition. Both models were built using optimal 
hyperparameter configurations obtained through Bayesian 
Optimization. From the experiments, several key findings can 
be drawn: 

1) The 3DCNN-LSTM model was not able to achieve a 

good recognition performance, indicated by a relatively high 

WER of 59.21% on the testing set. When evaluated on new 

signer videos, the model produced an even higher WER of 

120%, demonstrating that it was unable to effectively 

recognize sign language, particularly when faced with data 

from different signers. 

2) The 3DCNN-BiLSTM model showed significantly 

better recognition performance than the 3DCNN-LSTM. It 

achieved a low WER of 2.77% on the testing set, indicating 

strong performance for recognizing sentences from a single 

signer. However, when tested on new signer videos, it 

achieved a higher WER of 60%. While it is still not highly 

accurate in recognizing unseen signers, the BiLSTM 

outperformed the LSTM. This is likely due to BiLSTM’s 

ability to capture contextual information in both forward and 

backward directions. 

3) The combination of 3D CNN as a feature extractor and 

BiLSTM as a sequence model demonstrated promising results 

for sentence-level BISINDO recognition in the testing set. 

However, this outstanding performance is still influenced by 

the limitations of the dataset, especially the limited number of 

signers, which causes the model to overfit to specific 

movement patterns. 

4) Although neither the 3DCNN-LSTM nor the 3DCNN-

BiLSTM achieved perfect recognition of BISINDO sentences, 

both models were relatively effective in capturing sentence 

length. This was reflected by fewer insertion and deletion 

errors compared to substitution errors. 

One of the main limitations in this study is the very limited 
dataset size, which only involves one non-native signer, so the 
model’s ability to generalize to various variations of signer 
gestures when demonstrating sign language cannot be fully 
proven. Therefore, in the future, it is recommended for 
researchers to develop the dataset by adding more signers so 
that the model can learn the variations of gestures of several 
signers who have their own unique characteristics. 
Furthermore, the number of sentence samples should be 
increased to allow the model to learn from a broader variety of 
expressions. By expanding the dataset, the resulting model will 
be able to recognize a wider range of sign language gestures. 

Furthermore, based on the excellent results of the 3DCNN-
BiLSTM model evaluation in recognizing sign language 
sentences on a single signer test set, the development of 
personalized sign language recognition can also be considered 
in future research. As the number of datasets and the variety of 
signers increase, researchers can also develop this recognition 
model into a system with a broader scope for public use. For 
example, this research can be further developed into a web-
based or mobile application that can be used as a medium for 
learning sign language in the community, to become a reliable 
communication medium for the deaf and hearing communities. 
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