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Abstract—Precision agriculture increasingly relies on 

autonomous UAVs for tasks, such as crop monitoring and targeted 

pesticide spraying. However, maintaining stable flight and precise 

spray delivery under varying payloads and wind disturbances 

remains challenging. This paper proposes a hybrid control 

architecture that combines interpretable Mamdani fuzzy logic 

controllers with a deep reinforcement learning (DRL) agent 

(Proximal Policy Optimization, PPO). The fuzzy controllers 

encode expert-crafted rules for baseline altitude and attitude 

stabilization, while the PPO agent adaptively adjusts setpoints to 

optimize spray coverage and energy efficiency. We train the agent 

in a realistic PyBullet simulator with dynamic payload and wind 

conditions. In simulated precision-spraying trials, our hybrid 

controller outperformed both a conventional PID-based controller 

and a pure PPO controller. Specifically, it achieved roughly 2–3× 

faster disturbance rejection, near-zero overshoot, and ~30% faster 

settling than the baselines, resulting in more uniform coverage and 

reduced pesticide use. These results demonstrate that fusing fuzzy 

logic with deep PPO yields a UAV spray controller that is both 

high-performance and robust for precision agriculture 

applications. 
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I. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) have become vital tools 
in precision agriculture for tasks such as crop monitoring, health 
assessment, and targeted spraying. Compared to ground-based 
systems or manned spraying, UAVs can achieve more uniform 
coverage and reduced chemical usage [1, 2]. However, realizing 
fully autonomous spraying requires robust flight control: the 
UAV must maintain accurate altitude and attitude while 
compensating for external disturbances (e.g., wind gusts) and 
internal changes (e.g. decreasing payload mass as pesticide is 
dispensed) [3]. Traditional UAV controllers use cascaded 
proportional–integral–derivative (PID) loops for altitude and 
attitude stabilization. While PID controllers perform well under 
nominal conditions, a fixed-gain PID tuned for one weight or 
calm wind conditions can exhibit large errors, overshoot, or 
oscillations if the payload changes or a sudden gust occurs [3]. 
These limitations motivate more adaptive, nonlinear control 
strategies. 

Nonlinearities without an explicit plant model. Mamdani-
type fuzzy controllers have been successfully applied to 
quadcopter attitude and altitude control. Fuzzy controllers often 
achieve faster response and minimal steady-state error in certain 
scenarios, thanks to their ability to encode heuristic rules (e.g., 
“if altitude error is positive and increasing, then apply strong 
downward thrust”) [16]. Similarly, researchers used Takagi–
Sugeno fuzzy models to reduce controller complexity and still 
achieve accurate tracking [16]. Overall, fuzzy logic offers 
interpretability and robustness, which is valuable for safety-
critical UAV tasks. However, pure fuzzy controllers do not learn 
or adapt online, and designing membership functions and rule 
bases typically requires manual tuning. 

Deep Reinforcement Learning (DRL) showed promise for 
UAV control by learning policies through trial-and-error in 
simulation [3, 4]. Modern policy-gradient algorithms such as 
PPO [13] can train controllers that adapt to complex dynamics. 
Other works combined PID with DRL to achieve fast stability: 
Wu et al. used a corrective-feedback DRL scheme for UAV 
landing and mixed a PID baseline with learned adjustments, and 
Ma et al. applied deep RL to reject wind disturbances, 
demonstrating improved stability in level-5 wind conditions [5, 
6]. Nevertheless, DRL requires extensive data and yields black-
box policies, raising safety and interpretability concerns. 

To leverage the strengths of both approaches, hybrid fuzzy–
RL architectures have been proposed. A common scheme is to 
run a fuzzy (or PID) controller in the inner loop for basic 
stability, while an RL agent provides high-level setpoints or bias 
corrections. For example, [14] introduced a Fuzzy-PPO 
controller for a guided vehicle, where the PPO agent augmented 
a fuzzy system and reduced tracking path errors compared to a 
fuzzy-based controller (average error from 0.05 m to 0.02 m). 
These studies suggest that integrating fuzzy rules can accelerate 
learning and improve safety; however, to our knowledge, none 
have specifically addressed precision UAV spraying with a 
Mamdani fuzzy–PPO scheme. 

In this paper, we apply the hybrid fuzzy–RL concept to 
precision UAV spraying. We design a Mamdani fuzzy control 
system for altitude, pitch, and roll stabilization, and integrate it 
with an adaptive learning (PPO) agent. The fuzzy controllers 
provide baseline stability via intuitive rules, while the agent 
adjusts setpoints to optimize spray accuracy and energy. We 
train and evaluate our architecture in a detailed PyBullet 
simulation with wind and payload variation [15, 35]. 
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In this work, we introduce a novel hybrid Mamdani fuzzy–
PPO controller tailored for a quadrotor pesticide sprayer. Our 
contributions are: 

• Hybrid control design: We develop Mamdani fuzzy 
controllers for altitude, pitch, and roll stabilization and 
integrate them with a PPO agent. The fuzzy layer ensures 
immediate stability through intuitive rules, while the 
PPO agent supplies adaptive setpoint adjustments. This 
hierarchical design combines expert knowledge and 
learning-based adaptability in a unified framework. 

• Reward shaping for spray tasks: We introduce reward 
functions that balance tracking precision with control 
effort and spray uniformity. By penalizing overshoot and 
incentivizing steady flight, the shaped rewards accelerate 
RL training and lead to efficient spray trajectories. 

• Comprehensive evaluation: We conduct extensive 
simulations comparing our hybrid controller against 
strong baselines: a well-tuned PID controller, a 
standalone PPO agent, and (qualitatively) advanced 
adaptive baselines. The hybrid controller consistently 
outperforms all alternatives: it rejects disturbances 
roughly 2–3× faster and settles ~30% quicker, with 
minimal overshoot and lower energy use (see Table IV). 

• Operational benefits: We quantify practical gains in 
spraying scenarios: the hybrid system achieves more 
uniform chemical coverage, reduces energy 
consumption, and maintains stability under variable load 
and wind. These improvements translate into cost 
savings and sustainability in agricultural operations (less 
wasted pesticide, longer flight time). 

Overall, our results demonstrate that combining an 
interpretable fuzzy baseline with deep PPO yields a UAV 
controller that is both accurate and robust for precision 
agriculture spraying [46]. 

The rest of this paper is organized as follows: Section II 
presents the literature review, Section III details our 
methodology (system design, fuzzy logic control, PPO 
integration), Section IV presents experimental results and 
comparisons, and Section V concludes with discussion of 
implications and future work. 

II. LITERATURE REVIEW 

We classified the previous studies related to our subject into 
five categories, namely: 

A. UAVs in Precision Agriculture 

UAV platforms have transformed agricultural practices by 
providing flexible, on-demand aerial applications. Recent 
surveys highlight the wide range of precision farming uses for 
drones, including crop monitoring, variable-rate application, and 
targeted spraying [2]. Delavarpour et al. (2023) review 213 
sources on UAV sprayers and emphasize that UAVs can deliver 
chemicals more precisely than manned aircraft, though 
autonomy and control remain key gaps [2]. RL has also been 
integrated with perception for precision-ag UAVs [39], and deep 
RL has been applied to agricultural path planning [8, 26]. Spray 
accuracy is particularly sensitive to wind: field studies report 

that even moderate winds can carry droplets off-target, reducing 
efficacy [19]. These agricultural factors confirm the need for 
accurate flight control. To maximize spray (coverage) 
uniformity, the UAV must maintain steady height and heading 
so the spray path aligns with the crop rows, even as payload 
mass varies. Thus, well-regulated flight attitude improves 
coverage, saves energy, and ensures safety [9, 10]. In summary, 
the precision agriculture domain sets hard demands: controllers 
must handle nonlinear dynamics, time-varying payloads, and 
external disturbances, all while optimizing coverage efficiency. 

B. Classical Control: PID and Variants 

Traditionally, UAV flight control systems employ cascaded 
PID loops for altitude and attitude stabilization. These 
controllers are simple and effective in nominal conditions [21, 
22, 23]. However, PID has notable limitations. First, it assumes 
a linear response around an operating point. Quadrotor dynamics 
are nonlinear and under-actuated (four inputs for six degrees of 
freedom), leading to cross-axis couplings that a separate PID per 
axis cannot fully address [16]. Second, PID parameters are 
usually tuned for a particular mass and airframe configuration. 
In practice, as payload weight decreases (when spray is used up) 
or when external forces change, the fixed gains no longer yield 
optimal performance. As Koch et al. [3] remark, under unknown 
wind or payload changes, “a PID controller can be far from 
optimal.” This motivates exploration of nonlinear and learning-
based alternatives [45, 32, 38, 33]. 

C. Fuzzy Logic Control for UAVs 

Fuzzy logic controllers (FLCs) have been widely studied for 
UAV stability control because they can capture heuristic expert 
knowledge and handle nonlinearities without an explicit model 
[16]. A fuzzy controller defines a set of IF–THEN rules. In a 
Mamdani FLC, the output of each rule is a fuzzy set, which is 
defuzzified to produce a crisp control action. The rule base can 
be constructed manually based on physical insight or tuned via 
data. For quadrotor control, Mamdani FLCs have been applied 
to altitude and attitude loops. Studies show that a fuzzy PD 
controller can outperform a conventional PID (faster rise time 
and smaller overshoot) [12, 16, 40, 43]. Moreover, some 
researchers proposed adaptive fuzzy schemes to handle 
disturbances [25, 28]. For example, Coza et al. developed an 
adaptive-fuzzy controller that adjusts membership centers 
online to account for wind disturbances, and maintain stability 
without chattering [30]. Robust and adaptive fuzzy trajectory 
tracking further mitigates disturbances [44], including advanced 
T–S fuzzy designs with LMI tuning [41]. 

Overall, fuzzy controllers offer robustness to uncertainty and 
do not require accurate system identification, and can handle 
variable load effects and average wind by adjusting control. 
However, they do not inherently adapt online; designing 
effective membership functions and rule bases still requires 
expert knowledge or formal methods [16, 37]. Additional 
hovering control studies corroborate these gains [42]. 

D. Deep Reinforcement Learning for UAV Control 

Deep reinforcement learning (DRL) has emerged as a 
powerful tool for UAV control by leveraging neural networks to 
learn complex policies [36]. Early works applied DRL to high-
level tasks (e.g. navigation), but more recent research has moved 
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RL into the inner loop. Koch et al. showed that PPO produced 
smoother control signals and lower roll/yaw error than PID in an 
inner-loop attitude task, supporting its suitability for high-
precision control [47]. Subsequent studies applied DRL to 
various UAV tasks. Wu et al. (2022) [5] used a DDPG-based 
agent with corrective feedback to land a UAV on a moving 
platform; by blending a PID baseline with learned adjustments, 
they achieved precise landings under dynamic conditions. 
Hybridizing RL with Sliding-Mode control also reduced 
chattering in attitude control [27]. Ma et al. (2024) trained a deep 
RL policy specifically to reject wind disturbances, maintaining 
level flight in gusts that destabilized fixed PID [6]. In precision 
spraying missions, hierarchical action-masked PPO improved 
navigation and spray efficiency [31], and conditional-action-tree 
RL achieved similar gains in agricultural tasks [24]. 
Complementarily, RL has also been used to tune classical PD 
gains online with successful real-flight tests [34]. Despite these 
advances, pure RL policies remain data-hungry and less 
transparent, raising safety and interpretability concerns. 

E. Hybrid Fuzzy-RL Architectures 

Motivated by the complementary strengths of fuzzy logic 
and DRL, recent research has proposed hybrid controllers. The 
key idea is to retain a rule-based fuzzy or classical core for 
stability and let a learning agent tweak setpoints or feedforward 
bias for performance and adaptability. One general strategy is a 
cascaded architecture, where the fuzzy (or PID) controller runs 
in the inner loop to provide safe control, and the RL agent acts 
as an outer-loop “bias” or feed-forward adjustment [48]. This 
way, the RL agent does not have to learn basic stabilization from 
scratch, speeding up training and improving reliability. Kuo et 
al. (2025) [14] developed a Fuzzy PPO (FPPO) controller for an 
autonomous guided vehicle (AGV) path tracking task. Xia et al. 
(2024) [11] propose a different hybrid: they combine a Soft 
Actor-Critic (SAC) DRL agent with a Fuzzy Inference System 
(FIS) for UAV target interception [49]. The SAC–FIS agent 
splits control among subsystems using fuzzy logic for attitude 
commands and deep learning for navigation; the fuzzy 
component provides “universal experiences” (prior knowledge) 
that reduce training time and control cost. Their results support 
the idea that fuzzy rules accelerate learning by narrowing the 
policy search. 

In summary, while these efforts are promising, to our 
knowledge none have specifically addressed precision UAV 
spraying with a hybrid Mamdani fuzzy–PPO scheme. As 
summarized in Table I, fuzzy controllers and DRL controllers 
each bring complementary advantages—fuzzy logic yields 
robustness and interpretability, whereas DRL offers adaptability 
and self-tuning—while hybrid approaches attempt to integrate 
these benefits. Our work extends this line by focusing on a 
spraying UAV: we propose the first architecture that merges 
Mamdani fuzzy control with a PPO agent for precision 
agricultural spraying, and we provide a detailed simulation study 
demonstrating the resulting performance gains. The next 
sections describe our methodology and experiments. 

TABLE I COMPARATIVE SUMMARY OF UAV CONTROL APPROACHES 

(FIXED-GAIN PID, FUZZY LOGIC CONTROL, DRL, AND HYBRID FUZZY–RL): 
KEY STRENGTHS, WEAKNESSES 

Approach Strengths Weaknesses 
Representative 

Works 

Fixed-Gain 

PID 

Simple design, 

proven stability 

Performance 

degrades under 

payload/wind 

changes 

[20] 

Fuzzy Logic 

Control 

Handles 

nonlinearity, 

robust to 

uncertainty 

Requires expert 

rule tuning, no 

automatic 

adaptation 

[25] [30] 

DRL 

(PPO/DDPG, 

etc.) 

Adaptive, 

model-free, can 

optimize 

performance 

Data-hungry, 

opaque policies, 

safety concerns 

[3], [5] 

Hybrid 

Fuzzy–RL 

Combines 

interpretability 

with adaptivity 

Higher design 

complexity, few 

prior examples 

[14], [11] 

III. METHODOLOGY 

In this section, we present the design of the proposed hybrid 
control system and explain its key components. We also discuss 
the mathematical foundations behind both the fuzzy logic 
framework and the reinforcement learning approach that drive 
its performance. 

A. System Design 

The proposed UAV control system consists of a hierarchical 
architecture where a high-level learning agent provides adaptive 
setpoints that are tracked by low-level fuzzy controllers. Fig. 1 
shows a schematic of the hybrid control system, which includes 
the UAV plant, sensors, PPO RL agent, fuzzy inference 
controllers, and the environmental disturbance inputs. In this 
architecture, the UAVs provide sensors (e.g., IMU, altimeter, 
GPS, wind sensor) that provide state measurements such as 
altitude, roll, pitch, yaw angles, angular rates, and 
battery/throttle status. These sensor data are fed into two parallel 
control modules: 1) the RL agent (PPO policy network) and 2) 
the fuzzy logic controllers. The RL agent observes the state and 
environmental context (like current wind speed/direction and 
remaining payload) as its input. At each time step (e.g. 10 Hz 
control loop), the PPO policy computes a high-level action – in 
our design, this action is a setpoint or adjustment for the desired 
flight state. Specifically, the PPO outputs a target altitude and 
target pitch/roll angles (or equivalently, target horizontal 
velocities) that it deems optimal for the current conditions. 
These serve as dynamic references that can change in 
anticipation of or reaction to disturbances. 

The PPO agent’s action vector is given as: 

𝑎𝑘 ∈ [−1,1]4    (1) 

This is rescaled to: 

𝑎𝑘̅̅ ̅  =  
𝑎𝑘+1

2
 ∈ [0,1]4   (2) 
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Fig. 1. A schematic of the hybrid control system. 

This normalized output defines the base thrust per rotor:  

𝑇𝑘
base =

[
 
 
 
𝑎1,𝑘

𝑎2,𝑘

𝑎3,𝑘

𝑎4,𝑘]
 
 
 
  ×  ( 𝐹𝑚𝑎𝑥(𝑚𝑘))   (3) 

where, 𝐹𝑚𝑎𝑥(𝑚𝑘) = 1.5 
𝑚𝑘 𝑔

4
 and the total mass is :  𝑚𝑘 =

𝑚𝑑 + 𝑚𝑝,𝑘 + 𝑚𝑟
tot 

Meanwhile, the Mamdani fuzzy controllers operate at the 
low level for each control channel: 

• Altitude fuzzy controller: Takes the error between the 
current altitude and the RL’s target altitude, and the 
vertical speed (rate of altitude change), as inputs. It 
outputs a throttle adjustment command to the motors 
(collective thrust) to minimize altitude error [17]. 

• Pitch and roll fuzzy controllers: Work similarly, using 
pitch/roll errors and angular rates to output control 
torques or motor differentials. 

The fuzzy inference system evaluates 𝑒𝑧,𝑘 and 𝑣𝑧,𝑘  using 

membership functions and a 3×3 rule base with sets NL, Z, PL. 
The membership functions for each set are defined as shown 
above. The defuzzification uses the centroid method (see 
Section “Fuzzy Logic Control” for details). The final total thrust 
per rotor is computed as: 

𝑇𝑖,𝑘  =  𝑇𝑖,𝑘
base  +  Δ𝑇𝑘 𝐹𝑚𝑎𝑥(𝑚𝑘),  𝑖 = 1,… ,4.  (4) 

Each fuzzy controller uses a defined Mamdani-type rule base 
to stabilize flight dynamics based on altitude and attitude errors. 
The PPO agent provides the desired setpoints, while the fuzzy 
controllers track them with smooth corrective actions. Section 
“Fuzzy Logic Control” showed in detail the design of fuzzy 
variables, rules, and defuzzification methods. 

The integration of PPO and fuzzy logic happens through 
these setpoints: the RL agent does not directly control motor 
outputs (which could be risky), but rather adjusts the “goals” 
(flight setpoints) that the fuzzy controllers then smoothly 
enforce. 

Note: When spraying ends, we disable fuzzy thrust 
correction by setting. In this case, PPO fully controls base thrust. 

At each step, we advance the state via a discrete-time map 
that applies the vehicle dynamics, payload mass update, fuzzy 
thrust correction, and spray-count logic. These are computed 
using: 

• Base thrust per rotor: 

𝑇𝑖,𝑘
base = 𝑎𝑖,𝑘̅̅̅̅ ̅ 𝐹𝑚𝑎𝑥(𝑚𝑘)   (5) 

• Fuzzy correction (if active): 

𝑇𝑖,𝑘 = 𝑇𝑖,𝑘
base∆𝑇𝑘. 𝐹𝑚𝑎𝑥(𝑚𝑘)  (6) 

• Payload mass update: 

𝑚𝑝,𝑘+1 = max⁡(𝑚𝑝,𝑘 − ∆𝑚,0)  (7) 

• Spray counter update: 

𝑐𝑘+1 = 𝑐𝑘 + 1⁡(𝑤ℎ𝑒𝑛⁡𝑠𝑝𝑟𝑎𝑦𝑖𝑛𝑔⁡𝑖𝑠⁡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒) 

During a control step, the sequence is: 

• Sensors update the state 

• RL agent produces new target setpoints 

• Fuzzy controllers generate actuator commands 

• UAV state updates under physics + disturbances 

• Repeat 

• Mark waypoint done when 𝑐𝑘+1 ≥ 𝑁_𝑚𝑖𝑛⁡ , then reset 
counter. 

Additionally, the PPO agent runs within this loop during 
training, collecting state transitions and rewards. Termination 
conditions are: 

|∅𝑘| > ⁡∅𝑚𝑎𝑥⁡𝑜𝑟⁡𝑘 > max⁡ _𝑠𝑡𝑒𝑝𝑠   (8) 

1) Hybrid control operation: The fuzzy controllers are 

always active to correct fast disturbances and maintain stability. 

The PPO agent operates at a slightly lower frequency or can be 

event-driven (e.g., updating setpoints once every few control 

loops) to avoid excessive oscillation of references. In practice, 

one can think of the RL agent as a supervisory controller 

adjusting the “bias” or “trim” of the flight control system [7]. 

To represent this behavior mathematically, the final altitude 
setpoint received by the fuzzy controller may be described as: 

𝑧𝑟𝑒𝑓,𝑘 = 𝑧𝑛𝑜𝑚𝑖𝑛𝑎𝑙 +⁡∆ℎ𝑘   (9) 

where, ∆ℎ𝑘⁡is the PPO-learned offset. 

The UAV’s flight computer hosts both the fuzzy control 
rules (lightweight) and the PPO neural network (or a post-
training lookup table). This design allows robust, explainable, 
and adaptive flight control that can gracefully handle payload 
variation, wind gusts, and nonlinearities without sacrificing 
safety. 

Actually, there are five mathematical variables that were 
integrated into the proposed system, which are (Total Mass and 
Payload Mass Update, Translational Dynamics, Rotational 
Dynamics, Current State, and Action). 
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B. Fuzzy Logic Control 

We designed three separate Mamdani fuzzy inference 
controllers to control the UAV’s altitude, pitch, and roll. Each 
controller uses two inputs (error and rate-of-error) and one 
output (control correction), Each input and output variable is 
described by a set of fuzzy linguistic terms. 

• Altitude controller: Input 1 = Altitude error = (desired 
altitude – current altitude) in meters. Input 2 = Altitude 
error change (approximately the negative vertical 
velocity) in m/s. Output = Throttle adjustment (a 
percentage or PWM increment to motor throttle). 

• Pitch controller: Input 1 = Pitch angle error = (desired 
pitch – current pitch) in degrees. Input 2 = Pitch rate 
(angular velocity about the y-axis) in deg/s. Output = 
Pitch control (motor speed differential front vs back, or 
a commanded tilt torque). 

• Roll controller: Input 1 = Roll angle error = (desired roll 
– current roll) in degrees. Input 2 = Roll rate in deg/s. 
Output = Roll control (motor differential left vs right). 

Each rule’s activation is min(𝜇𝑒𝑟𝑟𝑜𝑟, 𝜇𝑟𝑎𝑡𝑒)  based on its 
input memberships. 

The outputs of defuzzification are then scaled appropriately 
and sent to the UAV actuators. For altitude, the fuzzy output 
might be interpreted as an increment or decrement to the base 
throttle needed to hover. For pitch/roll, the output can be mapped 
to a commanded angle or directly to motor speed differences. In 
our simulation, we translate the pitch fuzzy output to an 
equivalent torque by proportionally increasing or decreasing the 
front vs back rotor speeds (and similarly for roll left vs right 
speeds). We apply centroid defuzzification to compute the thrust 
adjustment from the aggregated fuzzy set. 

1) Controller tuning: The fuzzy controllers have many 

parameters (membership shape, rule consequents), but they 

were tuned based on intuition and some manual trial in 

simulation. A key advantage is that unlike PID gains that might 

need retuning if weight changes, the fuzzy logic inherently 

handles moderate changes: for example, if the drone gets lighter 

(so same throttle yields more acceleration), the altitude fuzzy 

will see a greater error change for a given throttle, and its rules 

(which depend on error change) will naturally adjust output 

sooner to avoid overshoot. This contributes to robustness 

against payload variation. In Section “Results,” we will see 

how the fuzzy controllers perform on their own and in concert 

with the agent. Overall, the fuzzy controllers guarantee that for 

small set point changes, the system responds in a well-damped 

manner with minimal overshoot. They enforce constraints like 

avoiding excessive tilt or throttle, since rules can be bounded. 

They also provide explainability: each rule can be understood 

in plain language, which is important for operator trust in an 

agricultural setting. Next, we describe how the PPO 

reinforcement learning agent is designed and how it interfaces 

with these fuzzy controllers. 

C. Learning Framework and Control Integration 

The PPO agent is trained in simulation using randomized 
environmental conditions (wind, payload, pose) to encourage 
policy generalization. Each training episode simulates a full 
mission. The agent receives continuous observations and 
outputs set point adjustments, and the fuzzy controller layer 
ensures stability, while the agent learns strategic adjustments to 
optimize reward. 

As the episode progresses, it receives state observations — 
such as position, velocity, orientation, and payload — and 
responds by outputting actions, which modify flight set points 
(like pitch, altitude, or direction). These actions do not directly 
command the motors. Instead, a layer of fuzzy logic controllers 
that translate high-level decisions into stable control commands 
interprets them. This layered architecture keeps the drone safe 
and airborne during early training, when the agent’s behavior is 
still exploratory and potentially erratic. The environment [18] is 
full of random wind gusts, forcing the agent to learn disturbance 
rejection. Over time, it begins to uncover useful patterns. 

For example, when a strong crosswind blows from the left, 
the agent learns to tilt the drone slightly into the wind — much 
like a human pilot would — improving the accuracy of spray 
deposition, and these behaviors lead to higher rewards, which 
reinforce the learned policy. After training advances over 
thousands of incidents, the agent learns improved strategies, 
such as flying lower in high wind, reducing forward speed in 
small areas, and adjusting points based on observed wind 
patterns. The fuzzy controller layer continues to handle fine-
grained stability, while the PPO agent develops adaptive, high-
level decision-making. 

After training, the PPO policy is deployed on the actual UAV 
system. During real-time flight, the policy receives continuous 
sensor data — including position, velocity, wind estimation, and 
payload — and outputs set point adjustments accordingly. 
Meanwhile, the fuzzy controllers remain active and serve as a 
fast-reacting stability layer. For example, if a sudden gust causes 
the drone to drift, the fuzzy controller behaves directly to 
maintain level flight. At the same time, the PPO agent detects 
the longer-term wind pattern and may adjust the roll angle 
slightly into the wind, gradually bringing the drone back on 
target. 

This hybrid architecture works much like an autopilot 
system that is paired with an adaptive layer. The fuzzy logic 
ensures short-term flight stability, while the PPO agent adds 
adaptability and long-term strategic planning. Together, they 
allow the drone to function robustly — even under 
environmental conditions that were not explicitly seen during 
training — ensuring accurate spraying and safe flight behavior. 

IV. EXPERIMENTS 

To evaluate the proposed hybrid Adaptive Learning Agent 
and Fuzzy controller, we made a series of high-accuracy 
simulations across a range of mission scenarios and compared 
its performance against two recognized baselines: 

PID controller: We implemented a classical PID architecture 
for altitude, pitch, and roll. Gains were manually tuned using a 
Ziegler–Nichols-style approach followed by empirical 
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refinement to yield reasonable hover and stabilization 
performance. The altitude loop combined feedforward hover 
thrust with feedback on altitude error, while pitch and roll 
stabilization used independent PD loops typical of cascaded 
flight controllers. 

PPO-only controller: A reinforcement learning agent trained 
using PPO, without any fuzzy logic components, where this 
agent shared the same observation space and training conditions 
as the hybrid model but produced direct thrust commands for the 
four rotors, and served as a pure learning-based controller to 
benchmark against conventional and hybrid approaches. To 
ensure fair comparison, all PPO agents (standalone and hybrid) 
were trained using the same configuration. The hyperparameters 
are summarized in Table II. 

TABLE II KEY PPO HYPERPARAMETERS 

Parameter Value 

Policy / Value net layers 2 × 64 ReLU 

Learning rate 3 × 10⁻⁴ 

Discount factor (γ) 0.995 

GAE λ 0.97 

Clip ratio 0.2 

Rollout length 2048 steps 

Mini-batch size 256 

Epochs per update 10 

Reward normalization Yes (running mean/σ) 

A. Experimental Design 

All controllers were tested on a series of mission profiles 
designed to assess robustness under varied flight conditions. 
Each scenario involved a step input to a 5 m hover altitude, with 
disturbances introduced to assess recovery capabilities. Table III 
summarizes the experimental conditions. 

TABLE III EXPERIMENTAL SCENARIO MATRIX 

Scenario 

ID 

Mission 

Type 

Initial 

Payload 

Wind 

Profile 

Episode 

Length (s) 

# 

Runs 

S-H 
Hover 

(baseline) 

100% 

(1.0 kg) 

Calm 

(≤ 0.5 m/s) 
6 30 

S-G5 
Hover + 

gust 
100% 

Lateral 

gust 5 m/s 

@ t = 3 s 

(0.1 s 

impulse) 

6 20 

S-P+15 

Hover 

(heavy 

payload) 

115% Calm 6 20 

S-W10 

Hover + 

steady 

wind 

100% 

Constant 

10 m/s 

cross-

wind 

6 20 

Controllers were assessed on overshoot, settling time, RMS 
error, drift compensation, and energy usage. Table IV provides 
a summary of baseline performance under scenario S-H. 

TABLE IV AGGREGATED PERFORMANCE METRICS (SCENARIO S-H) 

Controller 

Overshoot 

(% of 5 m 

step) 

Settling 

Time 

(s, ±5 

%) 

Steady-

State 

RMS 

Altitude 

Error (m) 

Energy 

Usage 

(% 

PID) 

Spray 

Accuracy 

(% 

coverage) 

PID 14.0 % 4.5 0.20 100 % 87 

PPO-only 7.8 % 2.9 0.15 80 % 92 

Hybrid 2.2 % 1.6 0.08 75 % 97 

B. Disturbance Recovery Analysis 

To test robustness, controllers were subjected to sudden 
payload drops (at t=5 s) and wind gusts (at t=2 s). As shown in 
Fig. 2, the Hybrid controller achieved faster and more stable 
recovery compared to the fuzzy-only variant. 

 
(a) Altitude Error after Payload Drop at t=5s 

 
(b) Altitude Error after Wind Gust at t=5s 

Fig. 2. Altitude and attitude error recovery (a) Altitude error after payload 

Drop (b) Attitude error after wind gust. 

C. Energy Profile Comparison 

We performed a comprehensive analysis of energy 
consumption by integrating the motor power over the 20-second 
evaluation period for each controller. Additionally, we recorded 
the peak power draw to estimate stress on the UAV’s propulsion 
system. 

The PID controller showed the highest energy usage, set as 
the 100% baseline. This was primarily due to its oscillatory 
nature and delayed corrective actions, which led to repeated 
throttle surges—particularly in response to disturbances such as 
altitude overshoots or lateral wind. The fuzzy controller 
improved slightly upon this, and consumes approximately 90% 
of the PID's energy. Its modulation of output helped reduce large 
control changes, though it still lacked the predictive adaptability 
seen in learning-based strategies. 

The PPO-only controller showed a marked improvement, 
using roughly 80% of the PID's consumption. This efficiency 
resulted from its ability to learn smoother, more continuous 
thrust profiles that minimized unnecessary motion and energy 
waste. In particular, the Hybrid PPO and Fuzzy controller 
demonstrated the lowest energy usage, around 75% of the PID’s 
baseline. This gain is because of the PPO’s optimal policy 
learning, which avoided overcorrection, and the fuzzy logic 
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layer’s damping of extreme control signals. Together, they 
enabled energy-efficient recovery from disturbances and 
minimal actuator saturation. 

Fig. 3 plots the controllers’ power usage. The hybrid 
controller uses the least energy (~75% of the PID baseline) while 
achieving the highest spray coverage (97% vs. 87% for PID). 
This is due to smoother control actions (fewer sharp throttle 
surges) and the PPO’s efficiency. The energy savings are 
essential for battery-powered UAVs. Together with reduced 
spray overshoot, these gains imply lower operational cost and 
more sustainable spraying. 

 

Fig. 3. Cumulative Energy consumption. 

Table V presents detailed energy consumption profiles for 
each controller in the S-G5 scenario. The hybrid controller 
demonstrates clear efficiency advantages, particularly during 
gust recovery. 

TABLE V ENERGY-PROFILE BREAKDOWN (SCENARIO S-G5) 

Phase 
Duration 

(s) 

PID 

(J) 

PPO-only 

(J) 

Hybrid 

(J) 

Take-off (0–2 s) 2 340 290 250 

Pre-gust (2–3 s) 1 120 105 100 

Gust Recovery (3–6 s) 3 460 380 330 

Total 6 920 775 680 

D. Spray Accuracy Modeling 

Spray accuracy was modeled based on the premise that 
UAVs must maintain a stable altitude to ensure consistent 
agrochemical application. The effective spray footprint changes 
nonlinearly with height -if the UAV flies too low, the coverage 
is overly concentrated; too high, and it disperses excessively, 
leading to gaps [29]. 

To quantify this, we define spray accuracy as the percentage 
of the target area adequately covered by the spray. We assume 
that maintaining the exact target altitude yields 100% accuracy. 
For each 0.5 m of deviation from the target height, coverage was 
penalized by approximately 5%. 

This relationship was calibrated such that: 

• m RMS error → 100% coverage 

• 0.20 m RMS error → ~90% coverage 

• 0.50 m RMS error → ~75% coverage 

Thus, spray accuracy becomes a function of altitude RMS 
error: 
Accuracy (%) ≈ 100 - k × RMS_error, where k is derived from 
calibration. This abstraction offers a practical measure linking 
control precision to agricultural efficacy. 

E. Prior Work Benchmark 

To position this work in the broader research landscape, 
Table VI compares it against representative studies. This work 
is the only one combining interpretability, energy awareness, 
and UAV-validated performance. 

TABLE VI  PRIOR WORK BENCHMARK 

Reference Domain 
Control 

Method 
Strengths Weaknesses 

Koch et 

al., 2019 

Quadrotor 

hover 

PPO 

(end-to-

end) 

Fast 

learning, no 

overshoot 

No 

interpretability, 

no payload test 

Xia et al., 

2024 

Target 

interception 

SAC + 

FIS 

Fastest 

capture, 

smooth 

control 

No energy 

profiling 

Kuo et 

al., 2025 

AGV path 

tracking 

PPO + 

Fuzzy 

Reduced 

tracking 

error 

Not UAV-

tested 

This work 

Precision 

spraying 

UAV 

Mamdani 

FIS + 

PPO 

Best energy 

and control, 

interpretable 

Hardware test 

pending 

F. Feasibility for Real-World Implementation 

Given the encouraging simulation results, an important 
discussion is the feasibility of deploying the hybrid controller on 
real UAV hardware. Several considerations come into play: 

• Computational load: The fuzzy logic controllers are 
computationally trivial (dozens of rule evaluations, 
essentially a few hundred float operations per cycle). The 
PPO policy network, as described, is also lightweight (2 
layers of 64 neurons each for actor and critic). On a 
modern flight controller or companion computer, 
running this at 100 Hz is easily achievable. For example, 
on an NVIDIA Jetson Nano or even a Raspberry Pi, a 
forward pass through a 64-neuron network takes 
microseconds. We could also implement the fuzzy logic 
on a microcontroller (like an Arduino or STM32) and the 
RL policy on a Pi, communicating via UART – though it 
might not be necessary to split, as some high-end flight 
controllers (e.g. running PX4 with Snapdragon or RasPi 
Compute Module) could handle both. Therefore, real-
time execution is feasible. 

• Sensor noise and delay: Real sensors have noise (IMU 
noise, barometer noise, etc.) and there are delays in state 
estimation. Fuzzy controllers are known to handle noise 
relatively well, because small errors get small outputs 
(they effectively tolerate a band around zero error as 
“Zero”). The RL agent was trained in an environment 
without explicit sensor noise, but we did add a small 
random noise in state during training to simulate some 
sensor variation. In real deployment, we might use a 
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Kalman filter to estimate altitude and angles, which adds 
a bit of delay. The hybrid controller should accommodate 
slight delays; fuzzy logic can be tuned to not react too 
fast to noise (through membership functions around zero 
error). Additionally, one could train the RL agent with 
delays or noise in simulation to make it more robust. 
Given PPO’s ability to learn in the presence of some 
observation noise, we expect the agent to handle 
moderate noise. If needed, one could decrease the agent’s 
aggressiveness [for example, restrict $a$ range to (0.8, 
1.2)] so it doesn’t over-amplify any noisy measurement 
changes. Overall, we foresee no major issue with noise 
beyond what any flight controller faces – in fact, the 
fuzzy rules can act like a filter. 

• Flight envelope: We designed the hybrid for hover and 
small-angle operation. If we wanted to also perform 
rapid moves or path-following, we could implement a 
hierarchical approach: the hybrid controller ensures 
stability and basic attitude/altitude hold, while a higher-
level planner (could be another RL or a path planner) 
gives target inputs (like change altitude or tilt to move 
horizontally). Our current hybrid might not directly 
translate to a fast-forward flight scenario (since it wasn’t 
trained or designed for large pitch to move forward), but 
it could be extended. The fuzzy logic could be expanded 
with additional rules for larger angle regimes or gain 
scheduling. The RL agent could also be retrained on a 
broader envelope. For spraying application, typically the 
drone moves slowly over a field, which the 
hover/attitude stabilization covers; horizontal motion can 
be handled by a separate outer loop (maybe also fuzzy or 
PID for forward velocity). 

• Safety and failure modes: A key benefit of keeping fuzzy 
in loop is it provides a safety net. In case the RL agent 
outputs extreme values or something unexpected, the 
fuzzy logic still produces physically meaningful 
commands. In our tests, even if 𝑎𝑇 went to its max of 2.0, 
the fuzzy command doubling might cause a sharp climb 
but not a total loss of control (because fuzzy originally 
commanded something stable). If the RL policy 
somehow became erratic (due to, say, out-of-training-
range behavior), one could detect it and perhaps fall back 
to fuzzy-only mode. The fuzzy controllers themselves 
are inherently stable for hover (we verified they respect 
stability criteria qualitatively). Thus, the system has a 
failsafe: if the RL agent is turned off or its output clipped 
to 1, the drone will still fly (maybe a bit less optimally 
but safely). This is a huge advantage for real-world 
certification. Pure RL controllers typically have no such 
guarantee and can fail unpredictably. Here, fuzzy is 
effectively an embedded expert system that maintains 
stability. 

• Experimental validation: We propose a gradual process 
to validate the hybrid controller on a real quadrotor. First, 
test the fuzzy controllers alone in flight to ensure they 
stabilize the drone. Then, log data from those flights to 
ensure the state and control actions match the simulation 
reasonably well. Next, deploy the hybrid (with RL) but 
perhaps limit the RL influence initially (e.g., restrict $a$ 

to [0.9, 1.1]) while closely monitoring telemetry. We can 
then widen the range as confidence grows. Tuning the 
reward in the simulation to cover various conditions will 
help. Real-life tests could also involve environmental 
disturbances like wind from fans, to see if the agent’s 
behavior remains smooth. Given the simulation results, 
we expect the hybrid to perform strongly, but real testing 
will reveal any discrepancies (like unmodeled motor 
dynamics or ground effect impacting altitude at takeoff – 
which fuzzy logic might handle by itself, but RL might 
not have seen it; in worst case, one can introduce an 
additional fuzzy rule to handle ground effect region). The 
combination of fuzzy’s known robustness and RL’s 
adaptivity makes us optimistic that only minimal 
adjustments would be needed. Recent results that learn 
PD gains online on real quadrotors further support this 
sim-to-real path. 

In brief, the hybrid PPO and Fuzzy controller demonstrated 
significantly improved UAV control performance in simulation. 
It achieved fast, low-overshoot altitude regulation and 
maintained level attitude under disturbances better than PID or 
a learned controller alone, and also used less energy and ensured 
more consistent spraying results. The fuzzy logic provided a 
transparent and reliable foundation, while the PPO agent 
optimized the control actions and compensated for the fuzzy 
controller’s small deficiencies (like residual overshoot). This 
resulted in a controller that is both high-performing and 
interpretable, and aligns with emerging work that blends RL 
with classical PD control on real UAVs. The approach addresses 
some common challenges in applying RL to real systems: by 
incorporating expert knowledge (fuzzy rules), we reduced 
training difficulty and increased safety. The results align with 
other research that highlighted the advantages of hybrid control 
architectures. 

V. CONCLUSION 

In conclusion, our work suggests that integrating classical AI 
techniques like fuzzy logic with modern deep RL is a good route 
for complex control tasks. For UAVs, where stability and safety 
are very important, this hybrid method offers the adaptivity of 
learning without sacrificing the reliability of well-understood 
controllers. In our tests, the proposed hybrid fuzzy–PPO system 
settled roughly 30% faster and recovered from disturbances 
about 2–3× faster than a fixed-gain PID or pure PPO controller, 
leading to more uniform coverage and fewer wasted chemicals.  
Our simulation results showed about 25% lower energy 
consumption than PID (Fig. 3), an essential factor for battery-
powered drones. Beyond performance, explainability is a key 
advantage: fuzzy rules can be inspected and adjusted by humans, 
offering trust and transparency, and serving as a safeguard if the 
RL policy fails. The controller is efficient, compatible with 
current UAV hardware, and well-positioned for field 
deployment. Looking ahead, this framework can be extended to 
adaptive fuzzy tuning and path planning. 

Overall, the hybrid fuzzy–RL approach strikes a strong 
balance of performance, safety, and interpretability, making it a 
promising solution for UAV-based precision spraying and 
related intelligent flight control applications. 
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