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Abstract—Urban flash floods pose a critical threat to rapidly 

growing cities in India, where unplanned development, climate 

variability, and inadequate drainage amplify risks. Guwahati, in 

Northeast India, experiences recurrent inundation during 

monsoons, disrupting livelihoods and damaging infrastructure. 

This study presents an integrated IoT and AI-enabled framework 

for urban flood monitoring and prediction. A LoRa-based IoT 

sensor network was deployed to capture localized hydrological 

and meteorological parameters, overcoming the limitations of 

coarse weather APIs. Rainfall forecasting was implemented at the 

edge layer using Random Forest, XGBoost, CatBoost, and K-

Nearest Neighbors, fused through a fuzzy logic model that 

achieved 92.4% accuracy, surpassing individual classifiers. In 

parallel, a computer vision pipeline detected drainage blockages 

from geotagged user images, with EfficientNetB0-U-Net achieving 

~91% accuracy, outperforming ResNet50, InceptionV3, and 

MobileNetV2. By combining rainfall prediction, IoT sensing, and 

blockage detection, the proposed framework delivers a holistic, 

low-cost, and scalable early warning system, marking a novel 

contribution toward resilient urban flood management in 

resource-constrained settings. 
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I. INTRODUCTION 

Natural hazards such as floods, tsunamis, earthquakes, and 
storms continue to pose significant threats worldwide, affecting 
human lives, resources, and infrastructure [1]. In the absence of 
effective monitoring and mitigation strategies, these hazards can 
escalate into full-scale disasters that disrupt urban life, damage 
infrastructure, and impede economic growth [2], [3]. Among 
natural hazards, floods are the most recurrent, accounting for 
nearly 41% of all reported disasters in the past decade [4]. Flash 
floods, in particular, have become increasingly destructive in 
urban settings. In India, such events now occur throughout the 
year, driven by excessive rainfall, rising water levels, and 
atmospheric dynamics that lead to intense precipitation [5]. 

 Urban centers, while functioning as economic hubs, face 
heightened flood vulnerability due to rapid population growth, 
unsustainable land use, and inadequate waste and sewage 
management. For instance, Guwahati in Assam—located along 
the Brahmaputra and its tributary Bharalu—regularly 
experiences severe inundation in low-lying areas such as Anil 

Nagar and Zoo Road during the monsoon season, disrupting 
livelihoods and causing economic losses [6]. Land reclamation 
near water bodies has further aggravated seasonal flooding 
challenges, delaying urban development for extended periods. 
Although cities like Mumbai have relatively advanced flood 
warning and evacuation systems [7], most Indian cities, 
including Delhi, Bangalore, and Kolkata, lack such 
mechanisms. 

Recent advances in the Internet of Things (IoT) have 
demonstrated potential for disaster monitoring and 
management. By integrating sensors, communication systems, 
and data analytics, IoT can enable real-time monitoring of 
hydrological parameters. However, large-scale deployment of 
IoT-based flood management systems remains constrained by 
high costs, integration complexities, limited adaptability to 
diverse flood scenarios, and challenges in decision-making. 
Despite these issues, IoT has already shown value in healthcare, 
defense, and disaster response. When coupled with artificial 
intelligence (AI), data collected from mobile devices, 
environmental sensors, and satellites can be transformed into 
actionable insights for flood prediction and mitigation. 

A critical but often underexplored factor in urban flash 
flooding is drainage and culvert blockage. Even in well-
designed drainage systems, the accumulation of debris such as 
boulders, vegetation, and solid waste can drastically reduce flow 
capacity, leading to localized inundation. Brooks [12], through 
scaled laboratory models and field observations, demonstrated 
that culvert inlets are the primary deposition points for boulders 
and emphasized the need for structural modifications to mitigate 
blockage. Building on this, Iqbal et al. [13] investigated 
blockage mechanisms under varying debris types, orientations, 
and flow conditions, highlighting how hydraulic blockage 
intensifies during dynamic flood hydrographs. More recently, 
Iqbal et al. [14] introduced a computer vision-based approach to 
automate culvert blockage detection, testing multiple CNN 
models on real-world datasets. While NASNet achieved the 
highest accuracy (85%) and MobileNet demonstrated faster 
inference, limitations such as background clutter and simplified 
labelling criteria constrained performance. These studies 
underscore the importance of integrating blockage detection into 
urban flood management frameworks. Manual inspection 
remains labor-intensive and reactive, whereas AI-driven image-
based classification provides a scalable solution for real-time 
monitoring. 
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The North-Eastern region of India is particularly vulnerable, 
with Guwahati witnessing repeated instances of urban flooding 
in recent years [8]. While complete prevention of floods may not 
be feasible, adopting advanced technologies such as IoT and AI 
can significantly reduce their adverse impacts [9], [10]. IoT 
networks equipped with real-time sensing and analytics can 
provide both visual and sensor-based data, thereby enhancing 
early detection and timely warnings [4], [11]. 

The remainder of this paper is structured as follows. 
Section II presents a review of existing literature on IoT-based 
flood monitoring, machine learning for rainfall prediction, and 
computer vision approaches for blockage detection. Section III 
details the proposed methodology, including the study area, 
overall system architecture, IoT framework design, rainfall 
prediction framework, and blockage detection pipeline. 
Section IV discusses the results and experimental evaluations, 
highlighting both quantitative metrics and qualitative analyses. 
Section V concludes the paper with key findings and outlines 
potential directions for future research. 

Unlike most existing studies that focus either on rainfall 
prediction or hydrological monitoring in isolation, this work 
proposes a holistic urban flood management framework that 
integrates three critical components: 1) a LoRa-based IoT 
network for real-time sensing of water levels and meteorological 
parameters, 2) an edge-deployed rainfall prediction system 
using machine learning with fuzzy fusion for improved 
accuracy, and 3) a computer vision–based deep learning 
approach for detecting blockages in drainage systems. To the 
best of our knowledge, this is the first research effort tailored to 
Guwahati city, which combines IoT and AI at both the sensing 
and infrastructure levels to provide a scalable, low-cost, and 
real-time flash flood early-warning system. 

II. LITERATURE REVIEW 

Floods are among the most destructive natural disasters 
worldwide, responsible for significant economic losses, 
ecological disruption, and fatalities [18], [19]. In India, their 
frequency has risen steadily due to climate change, unplanned 
urbanization, and population pressure [15]–[17]. According to 
the Global Climate Risk Index 2021, India ranks seventh among 
the most disaster-prone nations [16]. Between 1990 and 2020, 
floods accounted for more than half of the country’s climate-
related disasters [16], affecting millions of people each year. 

Urban flooding, unlike traditional riverine floods, results 
primarily from excessive surface runoff in densely built 
environments where impermeable surfaces and inadequate 
drainage limit water absorption [20], [21]. This phenomenon is 
often described as a “hidden challenge” due to limited data 
availability and its localized, rapid-onset nature [4]. Unregulated 
settlement growth, inefficient waste management, and 
encroachment on natural drainage channels have intensified the 
vulnerability of Indian cities to flash floods [22]–[24]. Short-
lived but high-intensity convective storms can overwhelm urban 
drainage capacity, leading to sudden waterlogging without prior 
warning [25]–[30]. Major Indian cities such as Mumbai, Delhi, 
Chennai, Hyderabad, and Surat have witnessed repeated urban 

flood events in recent decades, highlighting the growing severity 
of the problem [7]. 

The Northeastern Region (NER) is particularly vulnerable, 
with Guwahati city serving as a stark example. Positioned on the 
banks of the Brahmaputra River and its tributary, the Bharalu, 
Guwahati experiences frequent inundation in low-lying 
localities such as Anil Nagar and Zoo Road. These events are 
aggravated by rapid urban sprawl, poor drainage maintenance, 
and intense monsoonal rainfall [31], [8]. Reports describe 
floodwaters submerging key government establishments such as 
the State Assembly Secretariat, with some neighborhoods 
reporting waist-to-neck-deep water levels [8], [32]. Such 
recurring floods not only cause economic and infrastructural 
damage but also disrupt essential services and daily life. 

Although complete prevention of urban floods is infeasible, 
their impacts can be mitigated through early-warning systems, 
efficient drainage monitoring, and integration of modern 
technologies [9]. Against this backdrop, researchers have 
explored IoT-based sensing, machine learning, and computer 
vision as emerging tools for real-time flood detection, 
prediction, and mitigation. The following sections review 
existing literature across three domains most relevant to this 
study: IoT-based flood monitoring frameworks, machine 
learning for rainfall and flood prediction, and computer vision 
for blockage detection in urban drainage systems. 

A. IoT-Based Approaches for Urban Flood Monitoring 

The Internet of Things (IoT) has been recognized as a 
transformative technology for environmental monitoring and 
disaster preparedness. By deploying water-level, rainfall, 
humidity, and flow sensors, IoT frameworks enable continuous, 
high-resolution data acquisition [4], [10], [11], [33]-[35]. 
LoRa/LoRaWAN has been widely adopted for its long-range, 
low-power communication capabilities, making it suitable for 
flood-prone or low-connectivity areas [36], [37]. Several studies 
have demonstrated IoT-based systems for flood monitoring and 
risk mitigation: Arshad et al. [38] emphasized the importance of 
IoT sensors for evacuation planning; Yang and Chang [39] 
integrated IoT and ML for regional inundation prediction; Li et 
al. [40] applied IoT with GIS for subway flood monitoring; Vitry 
et al. [41] introduced FloodX, combining alternative sensors and 
computer vision; and Soh et al. [42] developed an IoT-cloud 
system using image processing for severity assessment. More 
recently, Samikwa et al. [43] designed lightweight AI 
algorithms deployable on edge devices like Raspberry Pi. 

Complementary to these, Bakhsh et al. [83] developed a 
flood forecasting model that integrates Wireless Sensor 
Networks (WSN), GIS, and Artificial Neural Networks (ANN). 
Their approach demonstrated that WSN-based solutions are not 
only cost-effective but also suitable for developing countries, 
though accuracy improvements remain necessary. Extending the 
scope from monitoring to prevention, Muniandy et al. [89] 
proposed an IoT-enabled flood prevention system capable of 
autonomously regulating river water flow and quality through 
real-time sensor networks. Their framework emphasizes 
preventive strategies, aligning with the Sustainable 
Development Goals (SDGs) on water management and climate 
resilience. 
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B. Machine Learning for Rainfall and Flood Prediction 

Climate change has intensified rainfall variability, 
significantly increasing the frequency and severity of flash 
floods worldwide [44]–[58]. This challenge is particularly acute 
in South Asia, where the Northeast region of India experiences 
highly erratic precipitation patterns driven by its complex 
topography and monsoon dynamics. States such as Assam and 
Meghalaya are especially vulnerable, receiving some of the 
heaviest rainfall globally and experiencing recurrent flood 
events that disrupt infrastructure, livelihoods, and ecosystems 
[50]–[56]. Traditional forecasting approaches based on 
statistical correlations or hydrological models have made 
important contributions but often fail to capture the nonlinear, 
localized, and rapidly evolving dynamics of flash floods. Their 
reliance on historical datasets with coarse spatial and temporal 
resolution limits their ability to predict sudden high-intensity 
rainfall bursts, which are increasingly common under climate 
change. 

Machine learning (ML) has emerged as a promising 
alternative because of its ability to model complex nonlinear 
relationships between environmental variables. Early 
applications in flood prediction applied supervised models such 
as Random Forests (RF), Support Vector Machines (SVM), and 
Artificial Neural Networks (ANN), which demonstrated 
stronger predictive accuracy compared to conventional 
regression and statistical models [61]–[64]. Ensemble methods 
have further improved robustness, enabling the integration of 
multiple weak learners to achieve higher accuracy across diverse 
geographies. Yang et al. [59] employed ensemble models for 
summer rainfall prediction in China, while Basha et al. [60] 
conducted a comparative analysis of deep learning and 
conventional ML, showing that deep models such as Long 
Short-Term Memory (LSTM) networks consistently 
outperformed classical algorithms. Similarly, Anochi et al. [65] 
applied ML techniques to South America, and Zhang and Ye 
[66] benchmarked 21 algorithms globally, both studies 

confirming ML’s superiority over general circulation and 
climatological models in precipitation forecasting. 

Recent works have expanded this field by exploring hybrid 
architectures and intelligent decision-support systems. Ali et al. 
[86] applied deep learning models—LSTM, Bi-LSTM, and 
Deep Recurrent Neural Networks (DRNN)—to predict floods in 
Malaysia. Their results showed that DRNN, enhanced with layer 
normalization and Leaky ReLU activation, provided the highest 
predictive accuracy and required less training time compared to 
LSTM and Bi-LSTM, making it more suitable for real-time 
applications. Complementing this purely data-driven approach, 
Marouane [80] introduced a distributed flood early warning 
framework using Multi-Agent Systems (MAS) and the Anytime 
Algorithm. By integrating GIS, hydrodynamic, and remote 
sensing data, this system reduced forecasting response times 
nearly fivefold, demonstrating the importance of intelligent 
architectures for real-time disaster management. Similarly, Md 
Rashid et al. [82] extended MAS-based frameworks by 
combining them with Case-Based Reasoning (CBR) to develop 
a Flood Early Warning and Response System (FEWRS). This 
framework not only improved technical accuracy but also 
explicitly considered socio-economic, environmental, and 
governance aspects of flood management, highlighting the need 
for community-centered resilience strategies. 

Taken together, these studies show a clear evolution from 
statistical and rule-based approaches toward deep learning, 
hybrid, and agent-based frameworks for rainfall and flood 
prediction. However, key limitations remain: most ML models 
still rely on historical or localized datasets that do not fully 
capture sudden extreme events, computationally intensive deep 
learning approaches often hinder real-time deployment in 
resource-limited settings, and socio-technical integration into 
governance structures is still in its infancy. These gaps point 
toward the necessity of developing lightweight, real-time AI–
IoT systems that combine efficient ML models with sensor-
based data acquisition, ultimately ensuring scalable, accurate, 
and actionable flood prediction for vulnerable regions. 

TABLE I.  IOT AND ML-BASED APPROACHES FOR FLOOD/RAINFALL PREDICTION (SELECTED WORKS) 

Reference # Methods Used IoT Device Accuracy/Results Key Insights / Limitations 

[78] Neuro-Fuzzy + LSTM + GA 
DPS310, DHT22, Rain 

sensor 
92.9% (Hybrid) 

Advanced hybrid ML; no field IoT 

validation. 

[77] BiLSTM, LSTM, ARIMA Weather sensors BiLSTM: 92% Accurate but resource-intensive. 

[69] Logistic Regression DHT-11 92% Lightweight, but scalability limited. 

[68] DT, RF, Naïve Bayes DHT-11, BMP-180 DT: 95%, NB: 83% 
Focused accuracy; lacks real-world  

validation. 

[67] LR, SVM, RF, DT DHT-11, BMP-180 Up to 95% (DT) Small-scale IoT testbed. 

[71] LSTM + PSO NA 94% Deep learning, computationally heavy. 

[70] MLR, Logistic Regression Arduino + LM35 ~81% Low-cost but limited accuracy. 

[74] SVM, KNN, ANN, DNN GPS-enabled IoT devices ANN: 89% Integrated sensors; energy concerns. 

[73] KNN, DT, RF, LR IoT weather station RF error: 0.083 IoT–ML integration; localized only. 

[72] ANN variants (FFNN, RNN, ENN) NA MAE: 0.54 (ENN best) Neural nets effective; no IoT link. 
 

The works presented in Table I demonstrate the steady 
evolution of IoT and machine learning applications for flood and 
rainfall prediction. Early studies primarily relied on simple 
statistical and regression models [75], but more recent works 

have shifted towards neural networks, deep learning, and hybrid 
architectures [77], [78], [76]. Distributed and agent-based 
frameworks [80], [92] have further advanced the field by 
improving decision-making and integrating governance 
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perspectives, while IoT-driven monitoring and prevention 
solutions [99], [112] highlight the move toward practical, cost-
effective deployment. Despite these advances, most frameworks 
remain constrained to localized datasets, simulation-based 
validation, or resource-intensive models, underscoring the need 
for lightweight, field-deployable AI-IoT systems that integrate 
hydrological sensing with infrastructure monitoring. 

C. Computer Vision for Blockage Detection in Urban 

Drainage Systems 

Blockages in culverts and drainage channels are a critical yet 
underexplored factor in urban flooding, as even well-designed 
drainage systems can fail when debris accumulation reduces 
their flow capacity. Unlike hydrological or rainfall-based causes 
of flooding, blockage issues often arise from localized debris 
such as vegetation, sediments, plastics, and boulders, which can 
obstruct culvert inlets or narrow drainage passages. Early 
investigations by Balkham et al. [79] addressed this problem 
through a risk-based framework in the United Kingdom, 
providing local-scale guidelines for blockage management, 
while Kramer et al. [81] extended this line of work by 
introducing mathematical models and laboratory-scale 
experiments to quantify the effects of different debris types and 
alignments. Although valuable, these approaches were often 
limited by oversimplification, with restricted applicability to 
real-world conditions. Field-supported laboratory evidence by 
Brooks [12] later confirmed that culvert inlets are the primary 
points of debris deposition, particularly boulders, thereby 
validating the vulnerability of structural entry points during 
intense flows. 

With the advent of advanced computing, researchers shifted 
toward AI-driven solutions for blockage assessment. Iqbal et al. 
[13] proposed computer vision methods using convolutional 
neural networks (CNNs) to automate blockage classification, 
testing architectures such as NASNet, MobileNet, and others on 
real-world and laboratory datasets. Their results demonstrated 
that NASNet achieved the highest accuracy of around 85%, 
while MobileNet provided faster inference speeds, making it 
suitable for near-real-time applications. In a follow-up study, 

Iqbal et al. [14] extended this work by integrating CNN-
extracted features into regression models such as Artificial 
Neural Networks (ANNs) to predict hydraulic blockage, thereby 
attempting to link visual blockage data with quantitative 
hydrological behavior. This represented a significant step 
forward, as it bridged the gap between visual inspection and 
hydraulic modeling. 

Despite these advances, challenges remain. Computer vision 
models often struggle with background clutter, varying 
illumination, occlusion of culvert openings, and the scarcity of 
high-quality, annotated datasets. Furthermore, most existing 
approaches have been validated only in laboratory conditions or 
using limited synthetic datasets, raising concerns about their 
robustness in complex real-world environments. Another 
critical gap is the lack of integration between image-based 
blockage detection systems and IoT sensor networks, which 
could enable holistic urban flood monitoring by combining 
hydraulic, meteorological, and infrastructural indicators. 
Addressing these challenges through the development of 
scalable, data-rich, and integrated AI–IoT frameworks is 
essential for achieving reliable and proactive blockage detection 
in urban flood management. 

As shown in Table II, research on blockage detection in 
culverts and drainage systems has advanced from conceptual 
risk frameworks [79], [81] to AI-driven visual recognition 
methods [13], [14]. More recent contributions employ deep 
learning pipelines, including segmentation-classification 
approaches and semantic segmentation architectures such as 
SHARP-Net. Despite notable improvements in accuracy, most 
of these studies remain limited to controlled laboratory 
experiments or narrowly scoped datasets (e.g. ICOB, VHD, S-
BIRD). Real-world deployment challenges—including 
background clutter, occlusions, lighting variability, and lack of 
integration with IoT sensor networks—remain largely 
unresolved. These limitations highlight a critical research gap: 
the need for a scalable and integrated system that combines IoT-
based sensing with image-based blockage detection for 
comprehensive urban flood monitoring. 

TABLE II.  COMPUTER VISION AND ML APPROACHES FOR BLOCKAGE DETECTION (SELECTED WORKS) 

Reference # Methods Used Dataset Accuracy/Results Key Insights / Limitations 

[86] SHARP-Net (semantic segmentation) Culvert-Sewer, DeepGlobe IoU: 94.7% Struggles under occlusion. 

[87] Siamese NN + Binary classifier 80k UK trash screen images Acc: 91%, AUC: 0.98 
Needs hydro model 

integration. 

[88] Logistic Regression Trash screen CCTV 88% Dataset bias (80% blocked). 

[85] YOLOv5 S-BIRD sewer dataset mAP 96.3% Sewer-focused, not culverts. 

[84] KNN, ANN, SVR, 1D-CNN HBD dataset ANN: R² = 0.95 
Strong prediction; lab-scale 

only. 

[14] ANN + MobileNet features Lab culvert dataset R² = 0.7855 
Weak link visual ↔  

hydraulic. 

[13] CNNs (NASNet, MobileNet, etc.) ICOB, VHD, SIC NASNet: 85%, MobileNet: 78% Clutter & labeling issues. 

[12] Lab + field blockage study Culvert inlet models Inlets = primary deposition Focused only on boulders. 

[81] Mathematical model + experiments Lab culvert debris tests 
Showed debris type/alignment 

effects 

Simplified; lacked real-

world validation. 

[79] Risk-based blockage framework Field data (UK culverts) Guidelines for blockage mgmt. 
Early risk framework; no 

automation. 
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III. PROPOSED METHODOLOGY 

A. Study Area 

The study was conducted in Anil Nagar and Zoo Road 
localities of Guwahati City, Assam, India, one of the most flood-
prone urban centers in Northeast India. Guwahati lies along the 
Bharalu River, a tributary of the Brahmaputra, and experiences 
a humid subtropical climate with intense monsoonal rainfall 
(June–September). Anil Nagar, a densely populated residential 
and commercial zone with low-lying terrain, frequently suffers 
from flash floods due to inadequate drainage and rapid 
urbanization. Heavy rainfall causes sharp rises in water levels, 
leading to recurrent inundation, waterlogging, and economic 
losses. For this study, a pilot area in Kamrup Metropolitan 
District was selected to test the proposed IoT- and vision-based 
flood monitoring system. The selected sites are shown in Fig. 1. 

 
Fig. 1. Study area map: Anil Nagar in Kamrup Metro District. 

B. Overall Architecture 

The overall process flow of the proposed methodology is 
illustrated in Fig. 2. The framework integrates IoT-based 
sensing, machine learning-driven rainfall prediction, and 
computer vision-based blockage detection into a unified flood 
monitoring and early warning system. 

A LoRa-based IoT network was deployed across the study 
area using two types of devices—water sensing nodes and base 
stations. Water sensing nodes monitor drainage water levels, 
while base stations collect meteorological parameters such as 
rainfall, temperature, and air pressure. These devices transmit 
real-time data wirelessly for further processing. 

The acquired IoT data, along with historical datasets from 
external APIs, are pre-processed and analyzed using multiple 
machine learning algorithms for rainfall prediction. Their 
outputs are refined through a fuzzy logic-based fusion 
framework, which demonstrated superior accuracy compared to 
individual classifiers. By executing these tasks at the edge, the 
system achieves low latency, improved reliability, and reduced 
dependence on cloud-only computation. 

At the cloud layer, images of strategic canal locations where 
blockages are most likely to occur are captured and uploaded by 
users through the mobile application. The system incorporates 
geofencing, which triggers an alert when users enter blockage-

prone zones, prompting them to capture and submit images. 
Importantly, this process is designed to occur before flood 
events so that blockages can be identified proactively when 
rainfall is predicted, thereby minimizing reliance on user activity 
during emergencies. Once uploaded, these images are processed 
on the server using computer vision-based deep learning models 
to detect and classify blockages. By integrating blockage 
detection results with rainfall forecasts and IoT-based 
monitoring data, the cloud layer enables a comprehensive flash 
flood prediction and early warning system for the selected 
localities. 

Finally, the mobile application and web dashboard provide 
stakeholders with real-time visualizations, alerts, and decision-
support tools. The app displays live water levels, rainfall 
forecasts, and blockage alerts, while also offering geofencing-
based warnings and safe-route suggestions. The dashboard 
aggregates all information, ensuring that authorities and citizens 
have timely access to actionable flood intelligence. 

 

Fig. 2. Overall architecture of the proposed work. 

C. IoT Framework and Hardware Design 

The IoT framework was designed to provide real-time 
monitoring of drainage water levels and meteorological 
parameters within the study area. The system comprises two 
main devices: water sensing nodes and base stations. 

The water sensing nodes are compact instruments deployed 
along roadside drains and low-lying urban locations to detect 
potential flash flood events. Each node is equipped with a 
contact-type water level sensor, enclosed within PVC pipes 
positioned 200 cm apart for accurate depth measurements. To 
enable reliable communication in flood-prone environments, the 
nodes employ LoRa transceivers, which facilitate real-time data 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 9, 2025 

494 | P a g e  
www.ijacsa.thesai.org 

transmission across long ranges. Unlike conventional IoT 
devices dependent on internet access, this system remains 
operational even during disasters when internet connectivity is 
disrupted, thereby ensuring uninterrupted flood monitoring. 
Designed for autonomous operation, the nodes are powered by 
rechargeable battery packs integrated with solar panels, 
eliminating dependence on conventional power supplies. This 
ensures continuous functionality even during prolonged power 
outages, often associated with flood scenarios. 

The base stations, developed using Raspberry Pi 4 boards, 
serve as gateways for aggregating data from multiple sensing 
nodes. In addition to LoRa receivers, they are equipped with 
BMP180 pressure sensors, tipping rain gauges, anemometers, 
and temperature–humidity sensors, enabling on-site weather 
monitoring. These parameters were purposely included because 
relying solely on weather APIs can be misleading, as such 
services typically provide averaged values over large geographic 
areas. In reality, micro-climatic variations in parameters such as 
rainfall, wind speed, and humidity can occur within ranges as 
small as 4–5 km. For flash flood predictions, localized rainfall 
data is particularly critical, since heavy rainfall may occur in one 
neighborhood while an adjacent area just 2 km away remains 
unaffected. The incorporation of direct measurements at the base 
stations, therefore, ensures high-resolution, site-specific 
meteorological data, significantly improving the accuracy of the 
overall flood monitoring and prediction system. 

This hardware architecture, integrating low-power LoRa 
communication with solar-powered autonomy and localized 
weather sensing, establishes a scalable, resilient, and energy-
efficient flood monitoring system suitable for deployment in 
vulnerable urban environments. Fig. 3 illustrates the deployment 
of IoT sensors in the study area, showing the placement of water 
sensing nodes and base stations across critical flood-prone 
locations. 

 
Fig. 3. Deployment of nodes and base stations. 

D. Edge-Based Rainfall Prediction Using Machine Learning 

Fusion 

Accurate rainfall prediction is essential for flash flood 
forecasting, as localized precipitation patterns often determine 
the severity of inundation. In this study, rainfall prediction was 
developed by integrating historical meteorological datasets with 
real-time IoT sensor data collected from the deployed 
framework in the study area. Ten years of historical data were 
obtained from the Indian Meteorological Department (IMD) and 
the NASA POWER database, covering rainfall, temperature, 
humidity, and pressure parameters. These datasets were merged 

with on-site measurements from IoT base stations to provide 
both temporal depth and spatial specificity, addressing 
limitations of weather APIs that only provide coarse, area-wide 
averages. As the IoT base stations continue to record location-
specific data, the dataset will grow continuously, enabling future 
retraining of the models. This evolving dataset is expected to 
improve predictive accuracy and adaptability, including 
unprecedented rainfall patterns that may arise due to climate 
change. 

The complete dataset comprised 91,991 instances with seven 
features (six independent variables and one dependent variable). 
Pre-processing involved three major steps: 1) cleaning, where 
missing values were handled using mean imputation; 
2) normalization, which standardized feature ranges; and 3) 
splitting, where the dataset was divided into training and testing 
subsets in an 80:20 ratio. These steps enhanced the classifiers’ 
ability to learn effectively and minimized bias. 

Four machine learning algorithms were evaluated for rainfall 
prediction: Random Forest (RF), Extreme Gradient Boosting 
(XGBoost), Categorical Boosting (CatBoost), and K-Nearest 
Neighbors (KNN). These models were iteratively optimized 
during both training and testing to capture the nonlinear and 
multivariate patterns of rainfall events. To further improve 
reliability, the outputs from individual classifiers were passed 
through a fuzzy logic-based fusion framework. Rather than 
assigning rainfall into discrete categories, the fuzzy layer refines 
the combined outputs of multiple models to increase prediction 
probability and confidence. A decision matrix (Table III) was 
designed to integrate model outputs into a unified outcome. 

TABLE III.  INPUT INTO THE FUZZY LAYER FOR THE PROPOSED MODEL 

Individual Model Prediction Rainfall 

Prediction RF XGBoost CatBoost KNN 

Yes Yes Yes Yes Yes 

Yes Yes Yes No Yes 

Yes Yes No Yes Yes 

Yes Yes No No Yes 

Yes No Yes Yes Yes 

Yes No Yes No Yes 

Yes No No Yes Yes 

Yes No No No No 

No Yes Yes Yes Yes 

No Yes Yes No No 

No Yes No Yes No 

No Yes No No No 

No No Yes Yes No 

No No Yes No No 

No No No Yes No 

No No No No No 

A key feature of this work is that the machine learning 
models and the fuzzy fusion framework were deployed on 
Raspberry Pi devices at the edge layer. This deployment enables 
on-site rainfall prediction with low latency, reducing 
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dependence on cloud servers and ensuring functionality even in 
disaster scenarios where internet connectivity may be disrupted. 
Edge-level prediction thus allows the system to provide faster 
and more reliable early warnings, an essential requirement for 
flash flood-prone urban environments. Moreover, the 
architecture has been designed in a modular manner, allowing 
additional nodes, base stations, or processing units to be 
integrated seamlessly. This modularity supports future 
scalability to larger urban areas or more complex drainage 
networks without fundamentally altering the core framework, 
thereby making the system adaptable for broader deployment. 

The experimental results demonstrated that the fuzzy fusion 
model consistently outperformed standalone classifiers, 
producing more stable and accurate rainfall forecasts while 
reducing false positives. As illustrated in Fig. 4, by combining 
IoT-based observations, historical meteorological records, and 
intelligent fusion of multiple classifiers at the edge, this rainfall 
prediction module forms a critical component of the proposed 
framework, directly supporting an integrated flash flood early 
warning system for Guwahati’s vulnerable localities. 

 
Fig. 4. Workflow of the rainfall prediction framework integrating IoT data 

and historical meteorological datasets. The figure illustrates data pre-

processing, machine learning classification (RF, XGBoost, CatBoost, KNN), 

and fuzzy logic-based fusion, all deployed on Raspberry Pi devices at the edge 

layer to enable real-time, low-latency rainfall prediction and early warning. 

E. Computer Vision–Based Blockage Detection 

Blockages in urban drainage canals significantly reduce 
hydraulic capacity and are among the leading causes of flash 
flooding in Guwahati. To address this, a computer vision-based 
blockage detection module was developed and integrated into 
the proposed framework. A custom dataset comprising 1,130 
high-resolution images of drainage canals and outlets was 
collected from strategic locations within the Anil Nagar and Zoo 
Road localities. Images were captured using smartphone 
cameras (Realme 9 Pro 5G) under varying lighting and 
environmental conditions to represent real-world variability. 
Each image, originally sized at 3468 × 4624 pixels, was resized 
to 1920 × 2560 pixels and then divided into non-overlapping 
patches of 512 × 512 pixels, yielding a total of 16,950 samples 
for training and evaluation. The dataset was annotated using the 
CVAT (Computer Vision Annotation Tool), where each patch 
was manually segmented into four classes (Table IV): 

TABLE IV.  SEGMENTATION CLASS LABLES 

Sl. No. Class Color Labels 

1 Water #33DDFF 

2 Boundary #B83DF5 

3 Blockage #FF6A4D 

4 Background #000000 

The careful assignment of these classes ensured that canal 
regions, potential obstruction zones, and their surroundings were 
distinctly represented, enabling the model to effectively learn 
spatial differences between clear flow areas and blocked 
sections. Fig. 5 shows sample annotated images, where the 
original canal image is placed on the left and the corresponding 
segmentation mask on the right, highlighting the four defined 
classes. 

   

  

  

Fig. 5. Sample dataset images with annotations. Left: original canal images. 

Right: annotated segmentation masks showing four classes (Water, Boundary, 

Blockage, Background). 

The original images were captured at a high resolution of 
3468 × 4624 pixels. Due to computational resource limitations, 
they were first resized to 1920 × 2560 pixels and subsequently 
divided into patches of 512 × 512 pixels, producing a total of 
16,950 samples. This approach preserved greater global context 
compared to lower-resolution alternatives, while ensuring 
manageable input sizes for the models. The resulting patches 
were normalized and augmented using random rotation, 
brightness adjustment, flipping, and noise injection. The dataset 
was then split into 70% training, 15% validation, and 15% 
testing subsets. 
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For segmentation, four deep learning models were trained 
and evaluated to identify blockages: a U-Net with 
EfficientNetB0 backbone, a U-Net with ResNet50 backbone, a 
U-Net with InceptionV3 backbone, and a U-Net with 
MobileNetV2 backbone. The U-Net framework was selected for 
its strong performance in semantic segmentation, while the 
different backbones were used to investigate trade-offs in feature 
representation, computational efficiency, and accuracy. All 
models were trained under identical conditions to ensure fair 
comparison. 

As shown in Fig. 6, the encoder backbone incorporates 
MBConv blocks, where each block first expands the number of 
channels using 1×1 convolutions, denoted as Ex(.) in Eq. (3). 
This is followed by a Depthwise Convolution D(.) and 
refinement using a Squeeze-and-Excitation attention module 
Se(.). Finally, another set of 1×1 convolutions, represented as 
Cn(.), compresses the channel count back, forming the well-
known “inverted bottleneck” structure. Residual connections are 
integrated to improve gradient propagation and training 
stability. 

 
Fig. 6. Illustration of the MBConv block and skip connection mechanism 

used in the encoder–decoder of U-Net backbones. 

The decoder mirrors this design, with upsampling operations 
that reconnect to the encoder via skip connections. Eq. (3) and 
(4) describe the feature propagation in the encoder and decoder 

stages. Here, 𝑋𝐸𝑛 
𝑖 denotes the feature map produced by the 

𝑖𝑡ℎMBConv encoder block, while XDe 
j

and XEn
j

 represent the 

feature maps from the 𝑗𝑡ℎ decoder and encoder blocks, 
respectively. Skip connections are combined using the CBAR(.) 
function, which merges the encoder’s feature map with the 
upsampled feature map from the preceding decoder block. The 
merged output is then processed through a 3×3 convolution 
(C3×3(.)), batch normalization (BN(.)), an activation function 
δ(.), and a residual connection, as expressed in Eq . (5). This 
design ensures better gradient flow, higher feature reuse, and 
robust segmentation performance. 

All models were implemented in TensorFlow 2.10 and 
trained using an Nvidia RTX 3080 GPU (10,496 CUDA cores, 
10GB GDDR6X memory). Training was performed for 100 
epochs with a batch size of 16, using the Nadam optimizer 

(learning rate = 0.001). A hybrid loss function combining Dice 
Loss and Focal Loss was applied to maximize segmentation 
overlap and address class imbalance. 

Once deployed on the cloud server, the trained models 
process geotagged images uploaded via the mobile application. 
When a user enters a geofenced high-risk drainage zone, the 
application prompts them to capture and submit canal images. 
The models then classify the canal as “blocked” or “clear”. 
Hosting the computer vision models on the cloud ensures not 
only centralized processing but also inherent scalability, as 
elastic computing resources can accommodate larger datasets 
and concurrent image submissions from wider geographical 
areas. The comparative performance of the four segmentation 
approaches is presented in the Results and Discussion section. 

XEn
i = Cn (Se(D (Ex(XEn

i−1)))) + XEn
i−1          () 

X
De
j

= CBAR (concat (X
En
j

,U(X
De
j−1

)))          () 

CBAR(X) = δ(BN(C3X3(X)) + X              () 

IV. RESULTS AND DISCUSSION 

A. IoT Deployment and Field Validation 

The proposed IoT framework was deployed in Anil Nagar 
and Zoo Road localities of Guwahati, with 10 water sensing 
nodes and 2 base stations strategically placed along drainage 
channels and flood-prone areas. Each water sensing node was 
equipped with LoRa transceivers and solar-powered batteries, 
while the base stations collected supplementary meteorological 
parameters, including rainfall, temperature, humidity, and wind 
speed. 

To ensure real-world practicality, the proposed framework 
employs solar-powered sensing nodes equipped with 7500 mAh 
lithium-ion battery packs that are continuously recharged during 
the day by integrated solar panels. This design ensures 
uninterrupted operation even during prolonged cloudy or rainy 
conditions, thereby addressing energy constraints often faced by 
IoT systems. Coupled with low-power LoRa communication 
modules, the nodes achieve efficient energy usage and reliable 
data transmission. The hardware requirements remain modest, 
with commodity sensors and Raspberry Pi-based edge nodes 
keeping costs affordable for larger deployments. The modular 
architecture further supports integration of heterogeneous 
devices, enabling scalability in dense urban environments. Fault 
tolerance and data reliability are enhanced through redundant 
data logging at both node and base-station levels, ensuring 
continuity of operations even in cases of sensor malfunction or 
communication disruptions. 

To validate the field data, real-time sensor outputs were 
compared with the NASA POWER API and Indian 
Meteorological Department datasets. The results showed a high 
degree of consistency, with local rainfall measurements aligning 
closely with API estimates but offering finer spatial granularity. 
This confirmed that localized sensors captured micro-climatic 
variations more effectively than coarse-resolution APIs, a 
critical factor for flash flood prediction in Guwahati, where 
rainfall can vary significantly within 2–3 km. 
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A representative comparison between IoT-based rainfall 
measurements and NASA POWER API values for a sample 
week in July 2023 is presented in Table V. The results highlight 
that IoT sensors captured short-duration rainfall bursts and 
localized variations which were not fully reflected in API data, 
demonstrating the added value of in-situ measurements for 
urban flood forecasting. 

TABLE V.  VALIDATION OF SENSOR DATA FROM THE ZOO ROAD BASE 

STATION AGAINST NASA POWER API VALUES (10–16 JULY 2023) 

Date 
IoT Sensor 

Rainfall (mm) 

NASA POWER 

API (mm) 

Difference 

(mm) 

10-Jul-23 54.2 52.8 1.4 

11-Jul-23 12.6 11.9 0.7 

12-Jul-23 0 0 0 

13-Jul-23 38.7 40.1 –1.4 

14-Jul-23 22.1 23.3 –1.2 

15-Jul-23 5.8 6.4 –0.6 

16-Jul-23 47.5 46.2 1.3 

During the 2023 monsoon season, the deployed network 
successfully detected rapid increases in water levels along the 
Bharalu tributary, providing early indications of waterlogging in 
Anil Nagar. As illustrated in Fig. 7, the water sensing nodes 
captured a clear rise in drainage levels, validating the 
effectiveness of the deployed sensors. These results demonstrate 
the reliability of the IoT network for continuous monitoring, 
even under adverse weather conditions, and its capacity to 
generate high-resolution hydrological datasets essential for 
predictive modeling. 

 
Fig. 7. Rise in water levels as depicted by the water sensing nodes 

B. Rainfall Prediction Performance 

The time series data of weather parameters were analyzed 
for the development of the rainfall prediction system. Datasets 
were obtained from the Indian Meteorological Department (two 
years) and NASA POWER (ten years) for Guwahati city. 
Several classification algorithms, including Random Forest 
(RF), XGBoost, CatBoost, and K-Nearest Neighbors (KNN), 
were tested to evaluate their predictive performance. 

During the testing phase, the Random Forest (RF) model 
correctly classified 8094 out of 9261 negative instances and 
8213 out of 9138 positive instances, yielding an accuracy of 
88.6% with a miss rate of 11.4%. The comparison between 
expected and actual outcomes is shown in Fig. 8. The XGBoost 

model produced similar results, with 8103 negatives and 8134 
positives classified correctly, corresponding to an accuracy of 
88.2% and an 11.8% miss rate, as illustrated in Fig 9. In 
comparison, CatBoost achieved the best standalone 
performance, predicting 8241 negatives and 8231 positives, 
resulting in an accuracy of 89.5% and a 10.5% miss rate, as 
shown in Fig 10. By contrast, the KNN model exhibited weaker 
performance, with 7213 negatives and 7311 positives correctly 
classified, yielding 78.9% accuracy and a 21.1% miss rate, as 
depicted in Fig. 11. 

 
Fig. 8. Statistical analysis for the random forest model 

   
Fig. 9. Statistical analysis for a  random XGBoost model 

  
Fig. 10. Statistical analysis for the CatBoost model 

     

Fig. 11. Statistical analysis for the K-Nearest Neighbor model 

 
Fig. 12. Statistical analysis for the proposed fusion model 
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Subsequently, the outputs of all classifiers were integrated 
using the proposed fuzzy fusion framework. This system 
processed the test data by considering actual class labels 
alongside predictions from individual classifiers. The fuzzy 
model identified 8347 negatives (out of 9216) and 8652 
positives (out of 9138), achieving an overall accuracy of 92.4% 
with a miss rate of 7.6%, as illustrated in Fig. 12. This 
demonstrates the advantage of the fusion approach in reducing 
false classifications and improving robustness compared to 
standalone models. 

A detailed summary of training and testing results across all 
models, along with the fuzzy fusion framework, is presented in 
Table VI. Notably, the fused system consistently outperformed 
the four individual classifiers, confirming its effectiveness in 
rainfall prediction. Furthermore, Table VI also includes a 
comparative evaluation against previously reported rainfall 
prediction approaches, highlighting the superior accuracy and 
reduced miss rate of the proposed methodology. 

TABLE VI.  COMPARISON OF MACHINE LEARNING MODELS AND FUZZY 

FUSION FRAMEWORK FOR RAINFALL PREDICTION 

Model Accuracy (%) Miss Rate Remarks 

Random 

Forest (RF) 
88.6 0.14 

Strong generalization, 

moderate error rate 

XGBoost 88.2 0.12 

Effective but prone to 

overfitting with small 

samples 

CatBoost 89.5 0.1 
Best standalone 

classifier 

KNN 78.9 0.21 
Sensitive to noise, 

weakest performance 

Fuzzy Fusion 92.4 0.08 

Highest accuracy, 

reduced false 

predictions 

C. Blockage Detection via Deep Learning 

The efficacy of various deep learning architectures was 
evaluated for the task of blockage detection in canal networks. 
Four models, like U-Net with EfficientNetB0 backbone, U-Net 
with ResNet50 backbone, U-Net with InceptionV3 backbone, 
and U-Net with MobileNetV2 backbone were trained and tested 
on a dataset of 1,130 high-resolution images (3468 × 4624 
pixels) annotated into blockage and non-blockage classes. To 
address computational constraints and increase the effective 
dataset size, the images were resized to 1920 × 2560 pixels and 
divided into non-overlapping 512 × 512 patches, resulting in 
16,950 samples. These patches were normalized and augmented 
to enhance robustness and variability. Model training was 
conducted in a high-performance GPU environment (NVIDIA 
RTX 3080), enabling efficient parallel computation and 

accelerated convergence. The performance of the models was 
evaluated using standard metrics, including Jaccard’s coefficient 
(IoU), mean Intersection-over-Union (mIoU), Dice coefficient, 
pixel accuracy, precision, and error rate. The U-Net with 
EfficientNetB0 backbone achieved the best results, with a pixel-
wise accuracy of 91%, Dice score of 86%, and mIoU of 78%. 
This superior performance can be attributed to EfficientNet’s 
inverted bottleneck blocks and squeeze-and-excitation modules, 
which provided effective feature extraction while retaining 
spatial details through U-Net’s skip connections. The 
combination allowed the model to segment small or irregular 
blockages with higher precision than other backbones. 

IoU =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁 
                              () 

mean IoU =
1

𝑁
∑

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖

𝑁
𝑖=1                    () 

Dice =
2⋅𝑇𝑃

2⋅𝑇𝑃+𝐹𝑃+𝐹𝑁
                           () 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                   () 

Error Rate =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                 () 

The terms TP, TN, FP, and FN represent true positive, true 
negative, false positive, and false negative, respectively, and are 
fundamental in understanding the performance of classification 
models. 

The ResNet50 backbone ranked second, with an accuracy of 
85%. Its deep residual connections supported robust feature 
extraction and strong generalization, but the absence of 
symmetric skip connections in its native architecture limited 
precise boundary reconstruction. InceptionV3 achieved 72% 
accuracy, leveraging multi-scale convolutional kernels for 
contextual understanding but failing to produce sharp pixel-wise 
predictions due to the lack of a dense decoder path. At the lower 
end, MobileNetV2 achieved only 65% accuracy, reflecting its 
limited representational power as a lightweight architecture 
optimized for efficiency rather than dense segmentation. 

Dataset characteristics also influenced performance. The 
modest dataset size (1130 images) and class imbalance, where 
blockage pixels formed only a small fraction of each image, 
caused models to be biased toward background predictions. 
Manual annotations introduced additional variability, 
particularly in ambiguous regions such as shadows or partially 
submerged debris. While EfficientNetB0-U-Net was relatively 
robust to such noise, MobileNetV2 and InceptionV3 were more 
affected. Resizing high-resolution images to 512 × 512 patches 
also led to loss of fine details, reducing the ability of weaker 
backbones to detect small debris. 

TABLE VII.  COMPARATIVE ANALYSIS OF EXISTING CLASSIFICATION MODELS WITH THE SEGMENTATION-BASED MODELS 

Model Pixel Accuracy Mean IOU Dice Coefficient Precision Recall 

MobileNetV2 65% 40% 55% 58% 52% 

InceptionV3 72% 50% 63% 65% 60% 

ResNet-50 85% 68% 78% 80% 75% 

EffecientNetB0 91% 78% 86% 88% 85% 
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Training and validation accuracy curves over 100 epochs 
(Fig. 13) show that the EfficientNetB0-U-Net achieved smooth 
convergence, with training accuracy reaching ~93% and 
validation accuracy ~90%, indicating minimal overfitting. 
ResNet50 also demonstrated stable learning, converging around 
87% training accuracy and 84% validation accuracy. 
InceptionV3 showed slower convergence, plateauing at ~73% 
training accuracy and ~70% validation accuracy, while 
MobileNetV2 displayed severe overfitting, with training 
accuracy climbing to ~66% but validation accuracy stagnating 
at ~30%. These trends are further supported by the comparative 
results summarized in Table VII, which highlight the superior 
performance of EfficientNetB0-U-Net over the other 
backbones. 

  

 

Fig. 13. Training and validation accuracy curves over 100 epochs for the four 

models: Top Left – MobileNetV2-U-Net; Top Right – InceptionV3-U-Net; 

Bottom Left – ResNet50-U-Net; Bottom Right – EfficientNetB0-U-Net 

Loss curves: Fig. 14 further confirms these observations. 
EfficientNetB0-U-Net and ResNet50 showed steadily declining 
training and validation loss with minimal divergence, reflecting 
robust learning. InceptionV3’s validation loss exhibited early 
instability with sharp spikes before stabilizing, while 
MobileNetV2 showed highly erratic validation loss throughout, 
indicating poor generalization. 

  

  
Fig. 14. Training and validation Loss curves over 100 epochs for the four 

models: Top Left – MobileNetV2-U-Net; Top Right – InceptionV3-U-Net; 

Bottom Left – ResNet50-U-Net; Bottom Right – EfficientNetB0-U-Net 

Sample qualitative outputs (Fig. 15–18) further reinforce the 
quantitative findings. To examine model performance under 
different conditions, three representative test images were 
chosen, corresponding to low, moderate, and high blockage 
levels. Predictions were then generated using four models—
MobileNetV2-U-Net (Fig. 15), InceptionV3-U-Net (Fig. 16), 
ResNet50-U-Net (Fig. 17), and EfficientNetB0-U-Net 
(Fig. 18)—and compared against their respective ground truth 
masks. 

 

 

 
Fig. 15. Predicted segmentation outputs using MobileNetV2-U-Net. Top: low 

blockage; Middle: moderate blockage; Bottom: high blockage, shown 

alongside ground truth masks. 

 

 

 
Fig. 16. Predicted segmentation outputs using InceptionV3-U-Net. Top: low 

blockage; Middle: moderate blockage; Bottom: high blockage, shown 

alongside ground truth masks. 
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Fig. 17. Predicted segmentation outputs using ResNet50-U-Net. Top: low 

blockage; Middle: moderate blockage; Bottom: high blockage, shown 

alongside ground truth masks. 

 

 

 
Fig. 18. Predicted segmentation outputs using EfficientNetB0-U-Net. Top: 

low blockage; Middle: moderate blockage; Bottom: high blockage, shown 

alongside ground truth masks. 

Among these, EfficientNetB0-U-Net consistently produced 
segmentation maps that most closely resembled the ground 
truth. It excelled at detecting small debris, partial blockages, and 
irregular boundary regions, which are often the most challenging 
to segment in real-world canal imagery. This effectiveness can 
be attributed to the synergy of EfficientNet’s inverted bottleneck 
blocks with U-Net’s skip connections, which preserved fine 
spatial details while also capturing high-level contextual 
features. The ResNet50-U-Net also performed strongly, 
especially in delineating larger blockage regions and textured 

surfaces. However, its predictions often showed less precise 
boundaries, with minor leakage into canal walls or surrounding 
vegetation. InceptionV3-U-Net, by contrast, generated 
noticeably coarser maps, often blurring blockage boundaries and 
underestimating severity when debris overlapped with shadows 
or reflections. These limitations highlight the advantage of 
EfficientNetB0-U-Net for this task. 

The weakest results were observed with MobileNetV2-U-
Net, which frequently misclassified debris and garbage as 
background. While the architecture is computationally efficient 
and well-suited for edge devices, its reduced representational 
power significantly limited its performance in this task. 
Segmentation maps were often incomplete, failing to highlight 
subtle obstructions, and in many cases, the model ignored 
partially submerged or fine-structured debris entirely. This 
outcome underscores the trade-off between efficiency and 
accuracy: while MobileNetV2 is attractive for deployment in 
low-resource environments, it is not well-suited for applications 
requiring precise spatial resolution. 

 

 
Fig. 19. Centralized dashboard (top) displaying sensor data, rainfall 

predictions, and visualizations, and mobile application (bottom) showing 

flooded areas, and emergency alerts. 

A centralized dashboard and companion mobile application 
were developed to strengthen integration with existing flood 
management practices, as illustrated in Fig. 19 (dashboard at the 
top and mobile app at the bottom). The dashboard provides two 
modules: Node, showing individual sensor data, and Base 
Station, displaying aggregated meteorological parameters and 
water levels along with insights into potential flash flood events. 
Interactive visualizations, including a meteogram and a daily 
water level graph, further support decision-making. 
Complementing this, the mobile app integrates Google Maps to 
mark flooded zones, suggest alternate safe routes, and deliver 
emergency alerts, weather updates, and user reporting services. 
Together, these tools ensure that the predictive outputs of the 
framework can be translated into actionable information for both 
authorities and the community, thereby addressing the challenge 
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of integrating novel technologies with real-world flood 
management infrastructure. 

V. CONCLUSION AND FUTURE WORKS 

This research presented a comprehensive framework for 
urban flood monitoring and prediction, integrating IoT sensing, 
edge-based machine learning, and computer vision techniques. 
The system was deployed and validated in flood-prone localities 
of Guwahati, Assam (Anil Nagar and Zoo Road), demonstrating 
its ability to provide real-time rainfall forecasting, drainage 
monitoring, and blockage detection. The LoRa-based IoT 
network ensured reliable data transmission even in disaster 
scenarios, while the edge-deployed machine learning models, 
enhanced with fuzzy fusion, achieved higher prediction 
accuracy compared to standalone classifiers. Additionally, the 
use of deep learning–based semantic segmentation models 
enabled effective identification of blockages in drainage 
systems, a critical but often overlooked factor in urban flooding. 

The results confirmed that the EfficientNetB0-U-Net 
outperformed other backbones for blockage detection, while the 
fuzzy fusion framework consistently improved rainfall 
prediction reliability. Together, these contributions advance the 
state of real-time, low-cost, and scalable flood monitoring 
systems, offering a practical tool for urban disaster preparedness 
in data-scarce and resource-constrained environments. 

Despite these advances, several limitations remain. The 
dataset size for blockage detection was modest, and 
environmental variability (lighting, occlusion, and reflections) 
posed challenges to generalization. Rainfall prediction relied 
partly on historical datasets, which may not fully capture 
extreme short-duration rainfall events. Furthermore, integration 
of IoT networks with governance and community-level 
decision-making remains limited. 

Although the system showed promising results, there is 
scope for further improvement and extension in future research. 

• Expanding datasets through larger-scale image collection 
campaigns and crowdsourced contributions to improve 
the robustness of blockage detection models. 

• Enhancing model generalization using advanced data 
augmentation, transfer learning, and multimodal fusion 
(combining IoT, imagery, and satellite data). 

• Integration with Decision-Making Systems: Extend the 
framework to cover multiple urban localities with varied 
topographies and drainage infrastructures, alongside 
developing stronger links with municipal authorities and 
community-based early warning systems. This will 
ensure that model outputs not only generalize across 
different contexts but also translate into actionable flood 
preparedness measures. 

• Evaluation of IoT system performance under extreme 
weather conditions, such as heavy rainfall and strong 
winds, to ensure reliability during severe flood events. 

ACKNOWLEDGMENT 

The funding and assistance from the “North Eastern Space 
Applications Centre (NESAC), Department of Space, 

Government of India, Umiam, Meghalaya” were crucial in  
allowing us to carry out this study, and we are very thankful to 
them. 

REFERENCES 

[1] A. Gregory Jonathan N. ,Arnold,Margaret,Buys,Piet,Chen, Robert S. 

,Deichmann,Uwe Klaus,Dilley, Maxx,Kjevstad, Oddvar,Lerner-Lam, 

Arthur L. ,Lyon, Bradfield,Yetman, “Natural disaster hotspots: A global 

risk analysis,” World Bank. Accessed: Jul. 02, 2025. [Online]. Available: 

https://documents.worldbank.org/en/publication/documents-

reports/documentdetail/en/621711468175150317 

[2] CRED, “EM-DAT - The international disaster database.” Accessed: Jul. 

02, 2025. [Online]. Available: https://www.emdat.be/ 

[3] “Flood mapping and flood dynamics of the Mekong Delta: ENVISAT -

ASAR-WSM based time series analyses.” Accessed: Jul. 02, 2025. 

[Online]. Available: 

https://www.researchgate.net/publication/236029131_Flood_mapping_a

nd_flood_dynamics_of_the_Mekong_Delta_ENVISAT-ASAR-

WSM_based_time_series_analyses 

[4] “A comparison of selected global disaster risk assessment results | Natural 

Hazards.” Accessed: Jul. 02, 2025. [Online]. Available: 

https://link.springer.com/article/10.1007/s11069-008-9272-0 

[5]  K. Hansson, M. Danielson, and L. Ekenberg, “A framework for 

evaluation of flood management strategies,” J. Environ. Manage., vol. 86, 

no. 3, pp. 465–480, Feb. 2008, doi: 10.1016/j.jenvman.2006.12.037. 

[6]  T. Tingsanchali, “Urban flood disaster management,” Procedia Eng., vol. 

32, pp. 25–37, Jan. 2012, doi: 10.1016/j.proeng.2012.01.1233. 

[7]  “Urban Floods in India,” ResearchGate. Accessed: Jul. 02, 2025. 

[Online]. Available: 

https://www.researchgate.net/publication/326441140_Urban_Floods_in_

India  

[8]  “8 Dead, 1 Missing After Flash Floods in Guwahati, Assam – FloodList.”  

Accessed: Jul. 04, 2025. [Online]. Available: 

https://floodlist.com/asia/flash-floods-guwahati-assam 

[9]  J. D. Miller and M. Hutchins, “The impacts of urbanisation and climate 

change on urban flooding and urban water quality: A review of the 

evidence concerning the United Kingdom,” J. Hydrol. Reg. Stud., vol. 12, 

pp. 345–362, Aug. 2017, doi: 10.1016/j.ejrh.2017.06.006. 

[10]  S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A Vision of IoT: 

Applications, Challenges, and Opportunities With China Perspective,” 

IEEE Internet Things J., vol. 1, no. 4, pp. 349–359, Aug. 2014, doi: 

10.1109/JIOT.2014.2337336. 

[11]  D. Amaxilatis et al., “Advancing Experimentation-as-a-Service Through 

Urban IoT Experiments,” IEEE Internet Things J., vol. 6, no. 2, pp. 2563–

2572, Apr. 2019, doi: 10.1109/JIOT.2018.2871766. 

[12]  Johannes Andreas Brooks, “Culvert Blockage Caused by Boulders in the 

Western Cape and the Development of Mitigation Measures: Physical 

Model Study”, [Online]. Available: 

https://scholar.sun.ac.za/bitstream/10019.1/108286/2/brooks_culvert_20

20.pdf 

[13]  “A Scaled Physical Model Study of Culvert Blockage Exploring Complex 

Relationships Between Influential Factors: Australasian Journal of Water 

Resources: Vol 27 , No 1 - Get Access.” Accessed: Aug. 14, 2025. 

[Online]. Available: 

https://www.tandfonline.com/doi/full/10.1080/13241583.2021.1996679 

[14]  “Automating Visual Blockage Classification of Culverts with Deep 

Learning.” Accessed: Aug. 14, 2025. [Online]. Available: 

https://www.mdpi.com/2076-3417/11/16/7561 

[15] D. Eckstein, M.-L. Hutfils, and M. Winges, Global Climate Risk Index 

2019. Bonn: Germanwatch, 2019. 

[16] A. Patankar, “Impacts of natural disasters on households and small 

businesses in India,” Social Science Research Network, Rochester, NY, 

Dec. 23, 2019. doi: 10.2139/ssrn.3590902. 

[17] H. Ali, P. Modi, and V. Mishra, “Increased flood risk in Indian sub -

continent under the warming climate,” Weather Clim. Extrem., vol. 25, p. 

100212, Sep. 2019, doi: 10.1016/j.wace.2019.100212. 

[18] “India’s Water Crisis: Challenges, Solutions and Barriers,” ResearchGate. 

Accessed: Jul. 7, 2025. [Online]. Available: 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 9, 2025 

502 | P a g e  
www.ijacsa.thesai.org 

https://www.researchgate.net/publication/368363874_India 's_Water_Cri

sis_Challenges_Solutions_and_Barriers 

[19] “Hydrometeorological aspects of floods in India,” Natural Hazards. 

Accessed: Jul. 7, 2025. [Online]. Available: 

https://link.springer.com/article/10.1023/A:1021199714487 

[20] A. K. Gupta and S. S. Nair, “Urban floods in Bangalore and Chennai: Risk 

management challenges and lessons for sustainable urban ecology,” Curr. 

Sci., vol. 100, no. 11, pp. 1638–1645, 2011. 

[21] H. Nguyen, M. Babel, S. Weesakul, and N. Tripathi, “An artificial neural 

network model for rainfall forecasting in Bangkok, Thailand,” Hydrol. 

Earth Syst. Sci., vol. 13, pp. 1413–1425, Aug. 2009, doi: 10.5194/hess-

13-1413-2009. 

[22] S. H. A. Jarah, B. Zhou, R. J. Abdullah, Y. Lu, and W. Yu, “Urbanization 

and urban sprawl issues in city structure: A case of the Sulaymaniah Iraqi 

Kurdistan Region,” Sustainability, vol. 11, no. 2, Art. 485, Jan. 2019, doi: 

10.3390/su11020485. 

[23] I. Awakimjan, “Urban flood modelling: Recommendations for Ciudad 

Del Plata.” Accessed: Jul. 7, 2025. [Online]. Available: 

https://essay.utwente.nl/68990/ 

[24] Z. Ahmed and D. R. M. Rao, “Urban flooding – Case study of 

Hyderabad,” Int. J. Eng. Res. Appl., vol. 2, pp. 1–6, 2013. 

[25] S. G. Sabogal, N. van de Giesen, and M. ten Veldhuis, “Can urban pluvial 

flooding be predicted by open spatial data and weather data?,” Environ. 

Model. Softw., vol. 85, pp. 156–171, 2016, doi: 

10.1016/j.envsoft.2016.08.007. 

[26] “How does imperviousness impact the urban rainfall-runoff process under 

various storm cases?,” ResearchGate. doi: 

10.1016/j.ecolind.2015.08.041. 

[27] J. Abdullah and P. Y. Julien, “Distributed flood simulations on a small 

tropical watershed with the TREX model,” Proc. Int. Conf. 

Hydroinformatics, 2014. 

[28] J. Abdullah, N. S. Muhammad, P. Y. Julien, J. Ariffin, and A. Shafie, 

“Flood flow simulations and return period calculation for the Kota Tinggi 

watershed, Malaysia,” J. Flood Risk Manag., vol. 11, no. S2, Feb. 2018, 

doi: 10.1111/jfr3.12256. 

[29] P. T. Coulthard, R. D. Cutler, R. J. Hardcastle, and J. Hunter, “The June 

2007 floods in Hull,” Proc. Inst. Civ. Eng. Water Manag., vol. 161, no. 4, 

pp. 163–170, 2008. 

[30] W. H. M. Wan Mohtar, J. Abdullah, K. N. Abdul Maulud, and N. S. 

Muhammad, “Urban flash flood index based on historical rainfall events,” 

Sustain. Cities Soc., vol. 56, p. 102088, May 2020, doi: 

10.1016/j.scs.2020.102088. 

[31] “Flood risk and adaptation in Indian coastal cities: Recent scenarios,” 

Appl. Water Sci.. Accessed: Jul. 8, 2025. [Online]. Available: 

https://link.springer.com/article/10.1007/s13201-018-0881-9 

[32] S. Borah, “Assam: Guwahati gets a big boost in its fight against water-

logging,” EastMojo, Oct. 16, 2019. Accessed: Dec. 10, 2019. [Online]. 

Available: https://www.eastmojo.com/assam/2019/10/16/assam-

guwahati-gets-a-big-boost-in-its-fight-against-waterlogging 

[33] “Internet of Things for smart cities,” ResearchGate. doi: 

10.1109/JIOT.2014.2306328. 

[34] “IoT driven automated object detection algorithm for urban surveillance 

system in smart city,” ResearchGate. doi: 

10.35940/ijeat.F1317.0986S319. 

[35] “Data -driven solution for optimal pumping units scheduling of smart 

water conservancy,” ResearchGate. doi: 10.1109/JIOT.2019.2963250. 

[36] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide area 

networks: An overview,” IEEE Commun. Surv. Tutor., vol. 19, no. 2, pp. 

855–873, Apr. 2017, doi: 10.1109/COMST.2017.2652320. 

[37] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study of 

LPWAN technologies for large-scale IoT deployment,” ICT Express, vol. 

5, no. 1, pp. 1–7, Mar. 2019, doi: 10.1016/j.icte.2017.12.005. 

[38] B. Arshad, R. Ogie, J. Barthelemy, B. Pradhan, N. Verstaevel, and P. 

Perez, “Computer vision and IoT-based sensors in flood monitoring and 

mapping: A systematic review,” Sensors, vol. 19, no. 22, Art. 5012, Nov. 

2019, doi: 10.3390/s19225012. 

[39] “Regional inundation forecasting using machine learning techniques with 

the Internet of Things,” MDPI Water. Accessed: Jul. 9, 2025. [Online]. 

Available: https://www.mdpi.com/2073-4441/12/6/1578 

[40] “Development and application of flood control and waterlogging 

prevention intelligent monitoring system based on subway ‘one map’,” 

ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., vol. X-3/W1-

2022, pp. 93–100, 2022. Accessed: Jul. 9, 2025. [Online]. Available: 

https://isprs-annals.copernicus.org/articles/X-3-W1-2022/93/2022/ 

[41] “floodX: Urban flash flood experiments monitored with conventional and 

alternative sensors,” Earth Syst. Sci. Data, vol. 9, no. 2, pp. 657–666, 

2017. Accessed: Jul. 9, 2025. [Online]. Available: 

https://essd.copernicus.org/articles/9/657/2017/ 

[42] Z. H. C. Soh, H. S. Gan, K. Y. Wong, W. H. Yeo, and Y. C. Lai, 

“Riverbank monitoring using image processing for early flood warning 

system via IoT,” Int. J. Integr. Eng., vol. 14, no. 3, Art. 3, Jun. 2022. 

[43] E. Samikwa, T. Voigt, and J. Eriksson, “Flood prediction using IoT and 

artificial neural networks with edge computing,” in Proc. IEEE Int. Conf. 

Internet Things (iThings) / GreenCom / CPSCom / SmartData / 

Cybermatics, Nov. 2020, pp. 234–240, doi: 10.1109/iThings-GreenCom-

CPSCom-SmartData-Cybermatics50389.2020.00053. 

[44] A. Kumar, S. Nagar, and S. Anand, “Climate change and existential 

threats,” in Global Climate Change, S. Singh, P. Singh, S. 

Rangabhashiyam, and K. K. Srivastava, Eds. Elsevier, 2021, pp. 1–31. 

doi: 10.1016/B978-0-12-822928-6.00005-8. 

[45] “A review of the global climate change impacts, adaptation, and 

sustainable mitigation measures,” Environ. Sci. Pollut. Res. Accessed: 

Jul. 12, 2025. [Online]. Available: 

https://link.springer.com/article/10.1007/s11356-022-19718-6 

[46]  K. Sami, B. A. Mohsen, K. Afef, and Z. Fouad, “Hydrological Modeling 

Using GIS for Mapping Flood Zones and Degree Flood Risk in Zeuss-

Koutine Basin (South of Tunisia),” J. Environ. Prot., vol. 4, no. 12, Art. 

no. 12, Dec. 2013, doi: 10.4236/jep.2013.412161. 

[47]  Most. R. M. Zinat, R. Salam, M. A. Badhan, and A. R. Md. T. Islam, 

“Appraising drought hazard during Boro rice growing period in western 

Bangladesh,” Int. J. Biometeorol., vol. 64, no. 10, pp. 1687–1697, Oct. 

2020, doi: 10.1007/s00484-020-01949-2. 

[48]  Q. Yu, Y. Wang, and N. Li, “Extreme Flood Disasters: Comprehensive 

Impact and Assessment,” Water, vol. 14, no. 8, Art. no. 8, Jan. 2022, doi: 

10.3390/w14081211. 

[49]  B. Manandhar, S. Cui, L. Wang, and S. Shrestha, “Urban Flood Hazard 

Assessment and Management Practices in South Asia: A Review,” Land, 

vol. 12, no. 3, Art. no. 3, Mar. 2023, doi: 10.3390/land12030627. 

[50]  F. M. Underwood, “Describing long-term trends in precipitation using 

generalized additive models,” J. Hydrol., vol. 364, no. 3–4, Art. no. 3–4, 

2009. 

[51]  “Distributions of Annual Maximum Rainfall Series of North-East India | 

Request PDF.” Accessed: Jul. 23, 2025. [Online]. Available: 

https://www.researchgate.net/publication/279195087_Distributions_of_

Annual_Maximum_Rainfall_Series_of_North-East_India  

[52]  “Generalized Additive Models | 7 | Statistical Models in S | Trevor J.” 

Accessed: Jul. 23, 2025. [Online]. Available: 

https://www.taylorfrancis.com/chapters/edit/10.1201/9780203738535-

7/generalized-additive-models-trevor-hastie 

[53]  “The Unquiet River: A Biography of the Brahmaputra | Oxford 

Academic.” Accessed: Jul. 23, 2025. [Online]. Available: 

https://academic.oup.com/book/36968 

[54]  “A Historical Understanding of Assam’s Floods | Economic and Political 

Weekly.” Accessed: Jul. 23, 2025. [Online]. Available: 

https://www.epw.in/engage/article/historical-understanding-assams-

floods 

[55]  N. Jamwal, “Examining Assam’s disaster readiness after the 2022 

floods,” Dialogue Earth. Accessed: Jul. 23, 2025. [Online]. Available: 

https://dialogue.earth/en/climate/examining-assams-disaster-readiness-

after-the-2022-floods/ 

[56]  “Majuli Island and Assam’s Rivers Face Unpredictable Flooding in 

2024.” Accessed: Jul. 23, 2025. [Online]. Available: 

https://www.downtoearth.org.in/natural-disasters/assam-floods-2024-

unprecedented-timing-and-fury-grips-state 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 9, 2025 

503 | P a g e  
www.ijacsa.thesai.org 

[57]  “What’s really behind Assam’s worsening floods? | PreventionWeb.” 

Accessed: Jul. 23, 2025. [Online]. Available: 

https://www.preventionweb.net/news/india -whats-really-behind-assams-

worsening-floods 

[58]  “Sixth Assessment Report — IPCC.” Accessed: Jul. 23, 2025. [Online]. 

Available: https://www.ipcc.ch/assessment-report/ar6/ 

[59]  “Multi-Model Ensemble Prediction of Summer Precipitation in China 

Based on Machine Learning Algorithms.” Accessed: Jul. 25, 2025. 

[Online]. Available: https://www.mdpi.com/2073-4433/13/9/1424 

[60]  C. Z. Basha, N. Bhavana, P. Bhavya, and S. V, “Rainfall Prediction using 

Machine Learning & Deep Learning Techniques,” in 2020 International 

Conference on Electronics and Sustainable Communication Systems 

(ICESC), Jul. 2020, pp. 92–97. doi: 10.1109/ICESC48915.2020.9155896. 

[61]  “Study of short term rain forecasting using machine learning based 

approach | Request PDF.” Accessed: Jul. 25, 2025. [Online]. Available: 

https://www.researchgate.net/publication/336831403_Study_of_short_te

rm_rain_forecasting_using_machine_learning_based_approach 

[62]  “A novel approach for precipitation forecast via improved K -nearest 

neighbor algorithm | Request PDF,” ResearchGate, doi: 

10.1016/j.aei.2017.05.003. 

[63]  “Precipitation Forecasting in Northern Bangladesh Using a Hybrid 

Machine Learning Model.” Accessed: Jul. 25, 2025. [Online]. Available: 

https://www.mdpi.com/2071-1050/14/5/2663 

[64]  K. Ahmed, D. A. Sachindra, S. Shahid, Z. Iqbal, N. Nawaz, and N. Khan, 

“Multi-model ensemble predictions of precipitation and temperature 

using machine learning algorithms,” Atmospheric Res., vol. 236, p. 

104806, May 2020, doi: 10.1016/j.atmosres.2019.104806. 

[65]  “Machine Learning for Climate Precipitation Prediction Modeling over 

South America.” Accessed: Jul. 25, 2025. [Online]. Available: 

https://www.mdpi.com/2072-4292/13/13/2468 

[66]  Y. Zhang and A. Ye, “Machine Learning for Precipitation Forecasts 

Postprocessing: Multimodel Comparison and Experimental 

Investigation,” Nov. 2021, doi: 10.1175/JHM-D-21-0096.1. 

[67]  “Improved Numerical Weather Prediction Using IoT and Machine 

Learning | Request PDF,” in ResearchGate. doi: 10.1007/978 -981-19-

8086-2_109. 

[68]  P. Shah, Y. A, U. Khaitan, and S. Kayalvizhi, “Weather Management 

System Using Machine Learning Algorithm And IOT,” in 2023 

International Conference on Recent Advances in Electrical, Electronics, 

Ubiquitous Communication, and Computational Intelligence 

(RAEEUCCI), Apr. 2023, pp. 1–4. doi: 

10.1109/RAEEUCCI57140.2023.10134454. 

[69]  “Rainfall Forecasting System Using Machine Learning Technique and 

IoT Technology for a Localized Region.” Accessed: Jul. 26, 2025. 

[Online]. Available: 

https://www.researchgate.net/publication/366777278_Rainfall_Forecasti

ng_System_Using_Machine_Learning_Technique_and_IoT_Technolog

y_for_a_Localized_Region 

[70]  “Real-Time Rainfall Prediction System Using IoT and Machine Learning 

| SpringerLink.” Accessed: Jul. 26, 2025. [Online]. Available: 

https://link.springer.com/chapter/10.1007/978-3-031-23973-1_10 

[71]  Y. Xu et al., “Research on particle swarm optimization in LSTM neural 

networks for rainfall-runoff simulation,” J. Hydrol., vol. 608, p. 127553, 

May 2022, doi: 10.1016/j.jhydrol.2022.127553. 

[72]  “Artificial Neural Network Models for Rainfall Prediction | European 

Journal of Electrical Engineering and Computer Science.” Accessed: Jul. 

26, 2025. [Online]. Available: 

https://ejece.org/index.php/ejece/article/view/313 

[73]  “An IoT-Based Predictive Analytics for Estimation of Rainfall for 

Irrigation.” Accessed: Jul. 26, 2025. [Online]. Available: 

https://www.researchgate.net/publication/343656881_An_IoT-

Based_Predictive_Analytics_for_Estimation_of_Rainfall_for_Irrigation  

[74]  “An Intelligent Weather Prediction System Based on IOT | IEEE 

Conference Publication | IEEE Xplore.” Accessed: Jul. 26, 2025. 

[Online]. Available: https://ieeexplore.ieee.org/document/9455883 

[75]  “Low Cost IoT based Flood Monitoring System Using Machine Learning 

and Neural Networks: Flood Alerting and Rainfall Prediction | IEEE 

Conference Publication | IEEE Xplore.” Accessed: Jul. 26, 2025. 

[Online]. Available: https://ieeexplore.ieee.org/document/9074928 

[76] Ali, M. H. M., Asmai, S. A., Abidin, Z. Z., Abas, Z. A., & Emran, N. A. 

(2022). Flood prediction using deep learning models. International 

Journal of Advanced Computer Science and Applications (IJACSA), 

13(9), 972–981. 

[77] “Real-Time Rain Prediction in Agriculture using AI and IoT: A Bi-

Directional LSTM Approach - Google Search.” Accessed: Jul. 26, 2025. 

[Online]. Available: https://www.google.com/search?q=Real-

Time+Rain+Prediction+in+Agriculture+using+AI+and+IoT%3A+A+Bi

-Directional+LSTM+Approach&oq=Real-

Time+Rain+Prediction+in+Agriculture+using+AI+and+IoT%3A+A+Bi

- 

Directional+LSTM+Approach&gs_lcrp=EgZjaHJvbWUyBggAEEUYO

TIGCAEQRRg8MgYIAhBFGDzSAQkxNDA0ajBqMTWoAgiwAgHx

BT2T-laKvkmb&sourceid=chrome&ie=UTF-8 

[78]  “Development of a Secured IoT-Based Flood Monitoring and Forecasting 

System Using Genetic-Algorithm-Based Neuro-Fuzzy Network.” 

Accessed: Jul. 26, 2025. [Online]. Available: 

https://www.mdpi.com/1424-8220/25/13/3885 

[79]  “CIRIA C689 Culvert design and operation guide,” ResearchGate. 

Accessed: Aug. 14, 2025. [Online]. Available: 

https://www.researchgate.net/publication/370033204_CIRIA_C689_Cul

vert_design_and_operation_guide 

[80] Marouane, E. M. (2021). Towards a Real Time Distributed Flood Early 

Warning System. International Journal of Advanced Computer Science 

and Applications (IJACSA), 12(1), 34–41. 

[81]  “A physical model study of culvert blockage by large urban debris,” 

ResearchGate. Accessed: Aug. 14, 2025. [Online]. Available: 

https://www.researchgate.net/publication/293637298_A_physical_mode

l_study_of_culvert_blockage_by_large_urban_debris 

[82] Md Rashid, N. A., Abidin, Z. Z., & Abas, Z. A. (2024). Integrating Multi-

Agent System and Case-Based Reasoning for Flood Early Warning and 

Response System. International Journal of Advanced Computer Science 

and Applications (IJACSA), 15(12), 112–120. 

[83] Bakhsh, S. T., Basheri, M., Ahmed, N., & Shahzad, B. (2020). A flood 

forecasting model based on wireless sensor and actor networks. 

International Journal of Advanced Computer Science and Applications 

(IJACSA), 11(5), 438–446. 

[84] “Regression on Deep Visual Features using Artificial Neural Networks 

(ANNs) to Predict Hydraulic Blockage at Culverts,” ResearchGate. 

Accessed: Aug. 24, 2025. [Online]. Available: 

https://www.researchgate.net/publication/351448845_Regression_on_D

eep_Visual_Features_using_Artificial_Neural_Networks_ANNs_to_Pre

dict_Hydraulic_Blockage_at_Culverts 

[85]  R. R. Patil, R. K. Calay, M. Y. Mustafa, and S. M. Ansari, “AI -Driven  

High-Precision Model for Blockage Detection in Urban Wastewater 

Systems,” Electronics, vol. 12, no. 17, p. 3606, Jan. 2023, doi: 

10.3390/electronics12173606. 

[86]  R. Alshawi et al., “SHARP-Net: A Refined Pyramid Network for 

Deficiency Segmentation in Culverts and Sewer Pipes,” Aug. 02, 2024, 

arXiv: arXiv:2408.08879. doi: 10.48550/arXiv.2408.08879. 

[87]  R. Vandaele, S. L. Dance, and V. Ojha, “Deep learning for automated 

trash screen blockage detection using cameras: Actionable information 

for flood risk management,” J. Hydroinformatics, vol. 26, no. 4, pp. 889–

903, Apr. 2024, doi: 10.2166/hydro.2024.013. 

[88] “CCTV image‐based classification of blocked trash screens - Smith - 

2025 - Journal of Flood Risk Management - Wiley Online Library.”  

Accessed: Aug. 24, 2025. [Online]. Available: 

https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13038 

[89] Muniandy, B., Maidin, S. S., Batumalay, M., & Dhandapani, L. (2025). 

Flood Prevention System Using IoT. International Journal of Advanced 

Computer Science and Applications (IJACSA), 16(3), 77–85.

 

https://www.google.com/search?q=Real-Time+Rain+Prediction+in+Agriculture+using+AI+and+IoT%3A+A+Bi-Directional+LSTM+Approach&oq=Real-Time+Rain+Prediction+in+Agriculture+using+AI+and+IoT%3A+A+Bi-
https://www.google.com/search?q=Real-Time+Rain+Prediction+in+Agriculture+using+AI+and+IoT%3A+A+Bi-Directional+LSTM+Approach&oq=Real-Time+Rain+Prediction+in+Agriculture+using+AI+and+IoT%3A+A+Bi-
https://www.google.com/search?q=Real-Time+Rain+Prediction+in+Agriculture+using+AI+and+IoT%3A+A+Bi-Directional+LSTM+Approach&oq=Real-Time+Rain+Prediction+in+Agriculture+using+AI+and+IoT%3A+A+Bi-
https://www.google.com/search?q=Real-Time+Rain+Prediction+in+Agriculture+using+AI+and+IoT%3A+A+Bi-Directional+LSTM+Approach&oq=Real-Time+Rain+Prediction+in+Agriculture+using+AI+and+IoT%3A+A+Bi-
https://www.google.com/search?q=Real-Time+Rain+Prediction+in+Agriculture+using+AI+and+IoT%3A+A+Bi-Directional+LSTM+Approach&oq=Real-Time+Rain+Prediction+in+Agriculture+using+AI+and+IoT%3A+A+Bi-

