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Abstract—Interactive data exploration at scale remains 

constrained by 1) weak adaptability to shifting query workloads, 

2) limited and post hoc error guarantees, 3) poor scalability under 

dynamic, high-dimensional data, 4) sparse user guidance during 

query formulation, and 5) non-trivial system overheads from 

learned or probabilistic components. We propose an end-to-end, 

privacy-aware framework that dynamically forms SQL queries 

for multi-dimensional data using randomized signals derived from 

personal web usage. The method integrates: 1) on-device user 

modeling that converts browsing interactions into preference 

embeddings under local differential privacy; 2) a constrained-

randomization layer that enforces coverage and diversity to avoid 

filter bubbles while remaining responsive to user intent; 3) a 

contextual bandit policy (with optional deep reinforcement 

learning extension) that selects or completes query templates using 

signals from user profiles, session context, and data synopses; and 

4) an error-aware AQP executor combining stratified/pilot 

sampling, synopsis reuse, and confidence-interval gating with 

automatic sample escalation. This design directly addresses the 

above limitations: the bandit adapts online to workload shifts; the 

AQP layer provides pre-execution feasibility checks and per-

query error control; synopsis reuse and AB-tree–style random 

sampling maintain low latency under updates; and a guidance 

module (predictive autocompletion with information-gain scoring) 

reduces user effort while preserving exploration diversity. To 

evaluate effectiveness, we introduce a privacy-preserving training 

regimen (federated updates over DP-noised profiles) and a novel 

benchmark protocol measuring time-to-insight, error compliance 

under differential privacy, session diversity, and latency against 

strong baselines. The result is an ML-driven exploration loop that 

achieves error-bounded interactivity, robust personalization, and 

scalable performance on evolving, high-dimensional datasets, 

while providing evaluation metrics that capture both user 

experience and privacy-preserving guarantees. 

Keywords—Dynamic query formation; Approximate Query 

Processing (AQP); local differential privacy; contextual bandits; 

reinforcement learning; constrained randomization; multi-

dimensional data exploration 

I. INTRODUCTION 

Modern analytics teams slice and dice multi-dimensional 
data at scale and demand interactive, sub-second replies. 
Iterative workflows generally require approximate query 
processing (AQP) and synopsis-driven solutions that trade 
minor, quantifiable error for substantial latency gains across 
terabyte-scale datasets [27], [5], [6]. In parallel, research 
examines how to lead users during exploration—through 
recommendations, active learning, and result diversification—

to maximize understanding rather than repeated or empty 
outcomes [24], [25], [26], [14], [13]. 

 

Fig. 1. General architecture of web usage data exploration. 

Fig. 1 shows a normal business analytics stack where 
internal and external sources—often harmonised through an 
MDM/ODS layer—land in a secure staging zone where raw 
snapshots are labelled and encrypted before being standardised 
in a Data Hub as clean, source-aligned base The Data 
Warehouse and Data Marts receive curated datasets, while BI 
Data Extracts and Web Services/APIs output wide, flat tables 
and real-time views through a Semantic Layer to casual BI users, 
operational applications, power users, and data stewards. A Data 
Science Sandbox isolates raw and refined data, and governance 
services—catalog, metadata, lineage, and security—span the 
stack. Our framework ingests schema statistics and lightweight 
samples from curated stores, forms randomised, privacy-scoped 
user-conditioned query candidates, executes them with 
approximate query processing (AQP) under explicit error 
bounds, and returns interactive summaries to downstream BI 
and visualisation tools without disrupting ETL or warehousing 
workflows. 

Despite advances, the state of the art has five limitations. 
Many methods lack strong flexibility to fluctuating workloads: 
precomputed samples and synopses grow stale when users 
switch attributes or segments, while adaptive systems may 
optimise for yesterday's queries and react slowly to sudden 
changes [1], [2], [3]. Second, post-hoc error assurances and 
narrow query classes hinder predictability and user trust in 
interactive contexts [6], [21], [50]. Third, dynamic, high-
dimensional datasets have scalability issues—managing 
numerous stratified samples or multi-attribute indexes occupies 
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space and requires maintenance [11], [23], [7]. Fourth, users still 
need to manually trial-and-error query formulation and guiding 
[24], [22], [14]. Finally, learning-based or probabilistic engines 
might add model memory, training time, and maintenance, 
which can hinder low-latency interactivity [8], [19], [5]. 

Personalization, randomized exploration, and error-aware 
AQP can be combined into an online loop that suggests, 
evaluates, and refines queries at human speed. Principled 
randomisation provides coverage and prevents filter bubbles, 
while personal web-usage signals (topics, entities, recency) can 
guide exploration. Modern AQP (sampling, compressed cubes, 
probabilistic summaries) and lightweight synopses can offer 
bounded-error answers quickly enough to keep users in flow 
[11], [5], [6], [20]. Recently developed learnt rules (contextual 
bandits, reinforcement learning) can arbitrate candidate queries 
under latency and diversity limitations [1], [8], [19]. 

1) Challenges: Designing a machine–learning framework 

for dynamic query creation over multi-dimensional data with 

randomised, privacy-scoped personalisation presents many 

system and model problems: 1) Data heterogeneity and schema 

drift: attributes vary in type, granularity, and nomenclature; 

sources fluctuate, breaking learnt mappings and cached 

synopses. 2) High dimensionality and combinatorial explosion: 

attribute-value predicates and group-bys increase 

exponentially, requiring rigorous pruning, templating, and 

coverage guarantees. 3) Latency-accuracy trade-off: interaction 

needs sub-second medians while respecting statistical error 

limitations; tight SLAs make balancing sample size, synopsis 

reuse, and escalation difficult. 4) Sample bias and uncertainty 

quantification: stratification, skew, and infrequent segments 

endanger unbiased results; confidence intervals and variance 

models must survive reuse and data updates [27]. 5) Privacy 

constraints [21]: local differential privacy decreases signal 

quality; balancing value and protection, and propagating noise 

through selection and estimation is difficult. 6) User modelling 

is complicated by cold start, idea drift, and session volatility; 

signals are scarce, implicit, and noisy. 7) Explore--exploit 

control: randomised candidate generation requires coverage 

guarantees to avoid myopic loops and online policy adaptation 

without quality degradation. 8) Reward shaping and 

counterfactual tracking are needed to ensure feedback 

reliability: presentation bias and interface effects complicate 

clicks, dwell, and refinements. 9) Interpretability and trust: 

questions, error bars, and trade-offs must be explained to 

consumers to accept approximate answers. 10) Scalability and 

resource efficiency: big, frequently updated tables strain CPU, 

memory, and storage budgets for sketches, samples, and caches. 

11) Streaming and freshness: incremental synopses and 

confidence assurances for arrivals/out-of-order data are 

difficult. 12) Robustness and fairness: regulations should not 

disregard minorities, withstand hostile or inadvertent outliers, 

and remain consistent across workloads. 13) Reproducibility 

and governance: randomised selection hinders auditability; 

queries, samples, and models must be seedable with lineage. 

14) Benchmarking and evaluation: suites must examine latency, 

CI compliance, coverage/diversity, and time-to-insight because 

no single metric covers utility. 15) Integration and portability: 

interfaces must work with catalogues, BI tools, and engines 

without changing ETL/ELT pathways and across approximate 

executors. 

We provide an end-to-end, privacy-aware machine learning 
system for dynamic query formulation in multi-dimensional 
data using randomised individual web-usage signals. Our 
system: 1) builds on-device preference embeddings with local 
differential privacy, 2) generates diverse, policy-ranked query 
candidates using constrained randomisation and information-
gain estimates from pilot samples, 3) selects queries via a 
contextual bandit that balances personal relevance, novelty, 
latency, and redundancy, and 4) executes them using an error-
aware AQP layer that combines stratified/pilot sampling, 
synopsis reuse, and AB. It addresses the five restrictions 
mentioned by supporting online adaptation, per-query error 
control, scaling with compact synopses, and decreasing user 
load through guided, diversity-aware query creation [1], [2], [3], 
[6], [11], [14], [20]. 

2) Our contribution: The study provides four contributions: 

A personalized, privacy-aware modelling pipeline that seeds 

query intent and reduces cold-start by converting web-usage 

events into exploratory preferences. A constrained-

randomization approach with coverage guarantees and 

information-gain scoring that preserves exploration diversity 

and relevance. A contextual bandit strategy with an RL 

extension that optimizes user engagement, information gain, 

latency, and redundancy under per-query cost and error 

limitations. An error-aware AQP executor that increases sample 

sizes and reuses synopses/materialized summaries for bounded-

error results at interactive latencies [6], [11], [12], [5]. 

The remainder of this paper is structured as follows: 
Section II reviews related work, Section III presents the 
proposed methodology, Section IV details the experimental 
evaluation, Section V discusses results, and Section VI 
concludes with contributions, limitations, and future directions. 

II. RELATED WORK 

The evolution of interactive data exploration and 
Approximate Query Processing (AQP) has given rise to a wide 
array of techniques that aim to balance performance, accuracy, 
adaptability, and user experience. However, these techniques 
still fall short in enabling privacy-preserving, dynamic, and user-
guided query formation—especially over evolving, high-
dimensional datasets. In this section, we explore the recent 
advances and their limitations that motivate the development of 
our proposed framework. The detailed work is shown in Table I. 

Zhang et al. [1] introduced a learning-based sample tuning 
mechanism for improving the precision of AQP systems in 
interactive data exploration. While the approach excels in 
adapting sample weights using a learned model, it lacks 
personalization and does not incorporate user behavior from 
outside the database context, such as browsing history. 
Similarly, Engelmann et al. [2] proposed AQP-Reuse, which 
reuses intermediate approximate query results to accelerate 
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future interactions. This technique demonstrates impressive 
performance but assumes static query workloads and offers 
limited adaptability to dynamic user interests. 

TABLE I.  RELATED WORK COMPARISON 

Reference Key Contribution Approach Limitation Addressed in Proposed Work 

Zhang et al.[1] Learning-based sample tuning for AQP Model-based sampling Lacks personalized query generation or user context. 

Engelmann et al. [2] Reusing approximate query results AQP result reuse Not adaptable to dynamic workloads or user interests. 

Li et al. [4] Graph-based AQP with representation learning Graph learning No user modeling or privacy-preserving mechanism. 

Zhao et al. [7] Efficient concurrent sampling via AB-Tree Random sampling index No integration of user behavior or query templates. 

QTune [8] Query tuning using deep RL Reinforcement learning Focuses on tuning execution, not query formation. 

Shen et al.[14] Query steering for result diversity Exploration-aware retrieval No implicit learning from user signals. 

He et al. [15] Sampling-driven explorable summaries Exploratory summaries Doesn’t include dynamic or privacy-aware adaptation. 

Lin et al. [19] Foundation models for SQL approximation Large pre-trained models No support for personalized or federated updates. 

Verbruggen et al. [22] Constraint-aware query building Interactive frontend guidance Lacks real-time learning or privacy mechanisms. 

Dimitriadou et al. [24] Active learning for query formulation User feedback loop Not privacy-preserving or scalable to high dimensions. 
 

Maroulis et al. [3] designed an adaptive indexing framework 
that evolves based on query access patterns. Though beneficial 
for performance under repetitive access, it lacks mechanisms to 
guide exploratory queries and is not suited for highly 
personalized or randomized query generation. Li et al. [4] 
developed GRELA, a graph-based representation learning 
technique to support AQP. However, their focus is on structural 
graph features rather than multidimensional numeric data, and 
the lack of privacy considerations makes it inadequate for 
personal web-data usage. 

EntropyDB [5] adopts a probabilistic entropy-driven model 
for query approximation. While powerful for dense statistical 
summarization, it does not handle sparse, high-dimensional 
exploration well. Bounded AQP [6] provides hard error 
guarantees through deterministic bounds, but scalability and 
support for workload variability remain challenges. Zhao et al. 
[7] contributed AB-Tree, an efficient index structure for 
concurrent random sampling and updates, yet its sampling lacks 
context-awareness and user-centric policies. 

QTune [8] utilizes deep reinforcement learning for 
automatic query tuning. Although promising, it primarily 
focuses on execution-time parameters and not on query 
formation or user-driven exploration. In contrast, Rimi et al. [9] 
proposed multidimensional query transformations to enhance 
expressivity. Their transformations, however, require explicit 
user inputs and lack automation based on learned behavior. 

Nguyen et al. [10] employed continuous approximation for 
visual OLAP queries, offering better performance but limited 
adaptability to ad hoc and evolving user interests. Mohapatra 
and Balazinska [11] proposed Approximate Data Cubes using 
data compression and summarization, which reduce overhead 
but still rely on static schema-driven aggregations. Roh et al. 
[12] emphasized adaptive materialized views, yet their system 
does not dynamically respond to user feedback or preferences. 

Large et al. [13] explored predictive sampling for query 
autocompletion. While enhancing interactivity, it falls short in 
promoting exploration diversity and privacy-preserving 

behavior modeling. Shen et al. [14] focused on diverse result 
retrieval via interactive query steering. Their work is effective 
for content diversity but lacks an underlying model of user 
intent. He et al. [15] introduced explorable data summaries 
through sampling, which assist in previewing data but are not 
connected to learned user preferences or workload shifts. 

Geohegan and Pitoura [16] addressed stream-based top-$k$ 
approximation with minimal latency, but their system doesn't 
scale well with multi-dimensional historical context. Müller et 
al. [17] proposed query latency models for geospatial systems, 
which are domain-specific and don’t generalize to broader high-
dimensional data. Fu et al. [18] inferred dynamic predicates for 
SQL efficiency, an important step toward automation, yet 
lacking a connection to implicit user signals. 

Lin et al. [19] proposed applying foundation models for 
approximate SQL processing, a powerful idea that still needs 
adaptation to personal context modeling. Farid et al. [20] used 
dynamic sampling for visualization, though their system isn't 
guided by an understanding of user intent. Symeonidis et al. [21] 
revisited sample sufficiency, offering strong theoretical insights 
but little on user-specific behavior or feedback loops. 

Verbruggen et al. [22] explored constraint-aware query 
building, a key advancement, yet without real-time learning or 
privacy guarantees. Das et al. [23] worked on multidimensional 
index composition but lacked interactive and user-centered 
features. Dimitriadou et al. [24] proposed AIDE, an active 
learning-based exploration framework that aligns well with user 
guidance, yet it doesn't handle privacy or scale dynamically. 

YmalDB [25] and QueRIE [26] are early works on result-
driven recommendations and collaborative exploration 
respectively. Though foundational, they are not scalable or 
privacy-preserving. Li and Li [27] provide a comprehensive 
survey of AQP techniques, highlighting the need for better error 
control and interactive support. 

Foundational concepts like Data Cube [28], Quotient Cube 
[29], Count-Min Sketch [30], and HyperLogLog [31] offer 
statistical underpinnings for AQP but were not designed with 
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modern interactivity, user context, or privacy in mind. Classical 
works on adaptive sampling [32] [34], space complexity [33], 
data summaries [35], and probabilistic queries [39] provide the 
groundwork but do not solve the challenges introduced by real-
time personalization and federated privacy. 

Additionally, advanced compression methods [36] [38], 
histograms [40] [41], and selectivity estimation techniques [42] 
[43] have refined traditional query planning but require 
integration with user-guided and privacy-aware strategies. 
Transform-based AQP [44] [45] achieves efficient 
approximation, yet lacks dynamic template generation 
capabilities from non-tabular user input. 

In summary, while these works make substantial strides in 
scalability, accuracy, and interactivity for AQP and query 
processing, they lack holistic support for dynamic query 
formation rooted in personalized, privacy-aware user modeling. 
Our proposed framework addresses these gaps by integrating 
local differential privacy, user embedding from web usage, 
constrained randomization, reinforcement learning–guided 
query generation, and adaptive AQP execution with bounded 
error guarantees. 

III. METHODOLOGY 

In this section, we discuss on proposed method and its 
modules. The existing work diagram in Fig. 2 illustrates a 
traditional metadata-enriched recommendation model used for 
predicting candidate ratings 𝑅𝑗𝑘

 between users and items. In this 

architecture, each user 𝑢𝑗 and item 𝑖𝑘 is associated with a set of 

auxiliary attributes that capture contextual and descriptive 
features. For users, these typically include identifiers, 
demographic details such as age and gender, and behavioral 
metadata. For items, attributes may include categorical tags such 
as genre or title information, among others. 

The core idea of the model is to identify “Same” or “Close” 
relationships between users and items based on these attributes. 
This enables the system to retrieve neighboring users or similar 
items that have known rating histories. From this information, 
two sub-models—user-oriented 𝑅y,γ

𝑢 and item-oriented     

𝑅𝑥
𝐼 ,𝑘  rating predictors—are engaged to extrapolate the likely 

rating score for the current candidate user-item pair. The 
prediction 𝑅𝑗𝑘 is generated by aggregating or interpolating this 

information. 

 
Fig. 2. Overview of existing recommendation system diagram. 

This approach represents a hybrid of collaborative filtering 
and content-based filtering, leveraging both observed behaviors 
(ratings) and structured metadata to improve the robustness of 
recommendations. It is particularly effective when the user-item 
rating matrix is sparse, and auxiliary attributes can provide 
useful signals for similarity computation. 

However, while effective, this architecture operates 
primarily on static, predefined metadata and does not 
incorporate dynamic contextual signals such as real-time user 
behavior (e.g. clickstream or browsing data). Furthermore, it 
does not account for privacy-aware modeling or federated data 
scenarios where user profiles are not centrally stored. These 
limitations constrain its adaptability in modern interactive 
systems that require privacy preservation, personalization, and 
context-sensitive query or recommendation generation. 

In contrast, the proposed machine learning framework 
shown in Fig. 3, for dynamic query formation, builds upon the 
foundation of similarity-based user modeling but extends it 
significantly. By integrating locally differentially private user 
embeddings derived from personal web usage data and 
employing reinforcement learning policies for template 
generation and query autocompletion, our framework offers a 
more intelligent, adaptive, and privacy-preserving alternative to 
traditional rating prediction models. 

 
Fig. 3. Overview of the proposed architecture. 
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Let 𝔇 denote one or more multi-dimensional data sources 
with attributes 𝔄 = {A₁,…,A_d} and numeric measures 𝔐. At 
interaction step t, the system forms a SQL query q_t from 
templates (filters P, group-bys g, aggregate φ ∈ {SUM, AVG, 
COUNT}) and executes it with approximate query processing 
(AQP) to maintain interactivity. We learn a policy π that 
balances personal relevance, diversity/coverage, information 
gain (IG), and latency under error tolerance ε. 

User Web Activity Logs → Input Stream: Privacy-scoped 
events from the user’s browser/search history (URLs, titles, 
timestamps, referrers) form the input stream. 

• Sessionization: split events by inactivity gap (e.g., 30 
minutes) into sessions S = {S₁,…}. 

• PII boundary: processing occurs locally; raw identifiers 
are never stored server-side. 

Preprocessing and Anonymization: 

1) Canonicalization: strip tracking query parameters (keep 

a whitelist), lowercase host/path, unshorten URLs. 

2) PII removal: redact emails, phone numbers, IDs via 

regex; hash user IDs with per-device salt. 

3) Tokenization: combine title + snippet → tokens; keep 

top-K TF-IDF terms per session. 

4) Local DP noise: add Gaussian/Laplace noise to term 

counts and later to profile vectors (privacy budget εDP). 

Feature Extraction: Semantic embeddings: encode page 
titles/snippets with a compact sentence encoder. 

Schema alignment: Build attribute/value lexicons from 𝔇 
(column names, value samples). Cross-encode esess with 
attribute prompts to obtain attribute preference scores w ∈ ℝ^d 
(softmax-normalized), then apply DP noise to get w~. 

User profile: Maintain a running profile u ←  α · u + (1 −
α) · esess (EMA) and sparse interest tags (top terms/entities) for 
interpretability. 

Clustering + Randomization: Keep K-means (or incremental 
DP-K-means) over recent session embeddings to discover 
interest clusters C =  {c1 ,… , cK} . For each cluster c, store 
centroid μc , supported attributes Gc ⊆  𝔄 (highest scoring by 
w~), and exemplar values Vc (frequent/representative values 
from logs and data samples). 

Coverage-aware randomized selection: cluster score at time 
t. 

𝑠𝑐 = (1 − λ) · sim(u, μc) + λ · IGc  −  η · redc  

Draw ct  ∼  softmax(
sc

T
) while enforcing minimum 

coverage over attributes/values within a session (reject over-
used clusters). 

Candidate generation: from  ct, produce K candidate queries 
by filling templates: • Drill-down (GROUP BY g ∈  Gc with 
predicates on top-k values from Vc); • Slice-and-dice (2D group-
by pairs with top-k filters); • Time roll-ups (windowed 
aggregates where time exists); • Top-k segments (rank by 
estimated lift or variance). 

Query Execution Module (Approximate Query Processing): 

Synopses and samples: Maintain stratified samples per hot 
attributes or pairs; sketches (KLL for quantiles, HLL for 
distincts); optional AB-tree-like sampler for O(log n) random 
draws under updates. 

Feasibility and cost: for each candidate q, on a small pilot 
sample S₀ estimate variance σ̂², selectivity, and latency using a 
learned regressor. Accept if predicted CI width ≤ ε; else escalate 
sample size or fall back to exact execution if under time budget. 

Execution: run AQP; cache partials for reuse (synopsis 
reuse/materialized aggregates). Emit (ŷ, CI, latency). 

Result Feedback Loop: Signals captured: Clicks on 
visualization/table, dwell time, refine actions, saves/exports; 
diversity utility via distance between current and recent result 
distributions. 

Reward shaping: rt =  α · ut  +  β · IG(qt) −  γ · lat̂(qt) −
 δ · red(qt), where ut  aggregates interaction signals. 

Profile updates: Online updates of u and w~; increment 
coverage counters. 

Reinforcement Learning for Future Refinement 

State:  𝑠𝑡= [u, w~, esess, synopsis stats, history embedding]. 

Action: Select a query qt  from the candidate set or choose 
the next slot (attribute/predicate) to fill. 

Policy: Begin with a contextual bandit (LinUCB or 
Thompson Sampling) for robust online learning: r̂(q) = θᵀ·ϕ(st, 
q) with UCB/TS exploration. Optionally upgrade to actor-critic 
for slot-wise generation when longer query construction chains 
are desired. 

Learning: Update θ (or policy network) after each interaction 
with reward rt; anneal temperature T and exploration λ over the 
session. 

Multi-Dimensional Data Sources ⇄ System Integration:  

Connectors: SQL engines, data warehouses, data lakes. Pull 
lightweight column stats and small value samples to support 
schema alignment and predicate priors. 

Metadata catalog: Datatypes, cardinalities, missingness, last 
update; features feed the cost/latency model. 

Freshness: Periodically refresh synopses; AB-tree/streaming 
samplers handle inserts; mark CI as stale-aware if refresh lag 
exceeds threshold. 

User Web Activity Logs: This layer captures the raw web 
behavior of individuals — such as clicks, page visits, time spent 
on content, search queries, and navigation paths — from 
browsers or web applications. These logs form personalized 
high-dimensional sequences of user interactions that are 
essential for understanding intent patterns and behavior-based 
query formation. This step also includes secure logging and 
privacy-aware data tagging. 

Preprocessing and Anonymization: The preprocessing stage 
performs essential data cleaning, transformation, and 
structuring, while the anonymization component ensures 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 9, 2025 

509 | P a g e  
www.ijacsa.thesai.org 

privacy preservation: Data Cleaning: Removes null, redundant, 
or irrelevant values. Data Transformation: Converts logs into 
vectorized features, including timestamps, content types, and 
semantic weights. Normalization: Brings all values within 
comparable ranges to avoid ML bias [37]. Generalization: 
Abstracts specific values (e.g. URLs → Categories). Noise 
Addition: Ensures k-anonymity or differential privacy for 
identity protection. Together, this step guarantees that sensitive 
web usage behavior is transformed into usable yet private 
feature vectors suitable for downstream machine learning 
models. 

Feature Extraction: From the anonymized logs, semantic and 
statistical features are extracted using: TF-IDF or 
Word2Vec/BERT embeddings for textual content. Session 
duration, visit frequency, and navigation depth for behavioral 
data. Temporal sequences to model contextual intent. 
The output is a feature-rich vectorized representation of personal 
web behavior that captures both interest patterns and contextual 
semantics, allowing intelligent query generation. Clustering + 
Randomization: To mitigate overfitting and maintain privacy: 
Clustering algorithms (e.g., K-Means, DBSCAN) group similar 
user behavior patterns. Randomization introduces probabilistic 
perturbations or obfuscation (e.g., attribute shuffling, Laplacian 
noise) to retain diversity and uncertainty in training. 

This stage ensures robustness and diversity in data 
representation before passing to the model, and helps in 
generalized query templates rather than static ones. Query 
Execution Module: This module converts processed data into 
intelligent and dynamic query templates, tailored per user 
context. Key ML components include: Classification/Prediction 
models (e.g., Decision Trees, SVM, Transformer encoders) to 
detect the best query patterns. Intent prediction models to 
understand likely user goals. Template generation and filler 
population to produce executable queries. 
Queries are then triggered on multi-dimensional data sources 
such as time-series logs, structured DBs, or multimedia 
repositories, enabling real-time personalized exploration. 

Result Feedback Loop: The returned results are passed 
through: Relevance scoring mechanisms (precision, diversity, 
engagement signals). User interaction feedback (e.g., click-
through rate, dwell time). These are fed back into the framework 
to retrain models and improve subsequent queries. A 
reinforcement learning loop (e.g., Deep Q-Network or Policy 
Gradient) is often used, where actions (query forms) are updated 
based on reward signals (user satisfaction). 

Multi-Dimensional Data Sources: These are the target 
databases or knowledge repositories that contain diverse, high-
dimensional data: Structured (e.g., SQL-based), Semi-structured 
(e.g., JSON/XML web logs), Unstructured (e.g., text, images, 
videos). They form the query execution environment and 
provide training examples for model adaptation. 

This framework uniquely combines privacy-preserving web 
behavior mining, personalized clustering, and ML-driven query 
formation in a closed feedback loop. It innovatively introduces: 
Randomized pattern generation to enhance privacy and 
diversity. Reinforcement learning-based refinement, allowing 
the system to evolve with user behavior. Real-time intent-aware 
query synthesis, rather than fixed rule-based query patterns. 

IV. RESULTS 

The experimental evaluation aims to validate five objectives: 
interactivity, quality, exploration effectiveness, online 
adaptation, and privacy–utility trade-offs. Specifically, we 
assess whether the framework sustains human-in-the-loop 
latencies on large, multi-dimensional data, delivers approximate 
answers that meet predefined error bounds, increases 
exploration coverage and reduces time-to-insight compared with 
competitive baselines, adapts within a session to shifting 
workloads, and preserves utility under local differential privacy 
(DP). Our hypotheses are that median latency decreases while 
the 95th percentile remains under the service-level target, that 
confidence-interval (CI) compliance exceeds 95 per cent, that 
diversity and coverage improve alongside reduced time-to-first-
insight, that cumulative reward rises over the course of a session 
as the policy adapts, and that utility degrades gracefully as the 
DP budget is tightened. 

To emulate personal preferences without collecting sensitive 
browsing data, we rely on public clickstream proxies for user 
modeling. News-oriented sessions (e.g., MIND) and commerce-
oriented sessions (e.g., Yoochoose or RetailRocket) provide 
sequences of user interactions that capture topical and 
categorical interests; optionally, a smaller categorical sequence 
dataset (e.g., the UCI MSNBC corpus) is included for additional 
variety. These signals are later mapped to attributes in our 
analytics schemas to drive personalization while remaining 
privacy-preserving. For query execution, we evaluate on three 
representative domains. In retail analytics, we use an orders 
schema (such as Instacart or Online Retail II) comprising orders, 
order–product links, and product catalogs, with dimensions 
including department, aisle, day of week, hour, and user 
segment, and measures such as revenue and quantity. In urban 
mobility, we adopt the NYC Yellow Taxi data with dimensions 
for pickup and dropoff zones, hour, weekday, vendor, and 
payment type, and measures including fare, tip, and trip 
duration. In media analytics, we use IMDb or MovieLens-20M 
with dimensions for genre, year, region, and language, and 
measures for average rating and count. To stress scalability, we 
additionally run TPC‑DS workloads at scale factors 10 and 100. 

All clickstream datasets are sessionized using a 30‑minute 
inactivity gap, and extremely short sessions are discarded to 
reduce noise. We encode page titles and snippets using compact 
sentence embeddings (e.g., MiniLM or DistilBERT) and 
aggregate them by mean pooling to obtain session embeddings. 
To align user interests with database schemas, we compute 
cosine similarities between session embeddings and 
attribute/value prompts to produce an attribute preference 
vector, to which we add local DP noise (Laplace or Gaussian) 
with privacy budgets drawn from the set {∞, 3, 2, 1}. For 
approximate execution, we precompute synopsis structures per 
table, including uniform and stratified samples in the 1–10% 
range, KLL sketches for quantiles, and HyperLogLog for 
distinct counts. The executor supports on-demand sampling 
escalation with a multiplicative factor of two, bounded by a 
latency‑aware maximum sample size. 

Experiments are conducted on both single‑node and 
distributed backends. We use DuckDB (version 0.9) for 
single‑node runs and Apache Spark (version 3.5) for cluster 
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runs, leveraging their support for sampling and approximate 
aggregates. The AQP layer employs a pilot sample of fifty 
thousand rows by default, estimates variance via a normal 
approximation or bootstrap when specified, and enforces 95% 
confidence‑interval gating before returning results. Optional 
indexing uses an AB‑tree‑inspired sampler realized as a 
weighted reservoir or segment‑tree to enable logarithmic‑time 
random draws under updates. The decision policy is 
implemented as a contextual bandit (LinUCB or Thompson 
Sampling) with feature vectors that combine user and session 
embeddings, synopsis‑derived statistics such as selectivity and 
cardinality, and compact features of the query template. To 
simulate user feedback for offline tests, we map the dominant 
segments of a query’s result to the categories present in the 
clickstream session and derive click and dwell signals 
accordingly. Hardware for single‑node tests consists of a 
32‑core CPU with 128 GB of RAM and NVMe storage; 
distributed experiments employ eight workers with 16 virtual 
CPUs and 64 GB of memory each. We report both 
environments. 

We compare against several baselines designed to 
disentangle the contributions of personalization, randomization, 
and approximation. Exact‑SQL executes the same templates 
without approximation and therefore represents an upper bound 
on accuracy and a lower bound on speed. A static‑template 
strategy performs drill‑down and slice‑and‑dice in a fixed order 
without personalization. A popularity‑only strategy ranks 
attributes and values by global frequency and omits 
randomization. A greedy‑personalization baseline uses the 
attribute preference vector but disables exploration and diversity 
penalties. A random‑walk baseline chooses attributes and values 
at random subject to type constraints. A diversity‑only steering 
variant maximizes coverage without personalization. Finally, an 
AQP‑only variant uses the approximate executor with a 
deterministic candidate order and no bandit policy. All methods 
share the same AQP executor, except for Exact‑SQL, so that 
differences primarily reflect query formation and selection 
policies. 

We organize discovery tasks by domain and associate each 
with a goal profile that identifies relevant attributes and value 
sets. In retail, tasks include finding segments with elevated 
revenue per basket, contrasting weekday and weekend behavior 
by department, and discovering aisles with high variance. In 
mobility, tasks include ranking pickup–dropoff pairs by time of 
day, identifying zones with anomalous tip rates, and locating 
temporal trend changes. In media analytics, tasks include 
detecting genres with rising ratings, examining regional shifts 
by year, and surfacing actors or directors with strong segment 
lifts. During simulation, user utility is credited when a query’s 
result distribution aligns with the current session interests 
derived from clickstream categories or matches the task profile. 

Performance is measured by interaction latency, reported as 
median and 95th‑percentile values, with a target of sub‑second 
medians and p95 below two to three seconds. We also record 
throughput in queries per minute under parallel sessions. 
Accuracy is evaluated using relative error between approximate 
and exact aggregates, the fraction of results whose exact values 
lie within the returned confidence intervals, and the rate at which 
queries require sample escalation or exact fallback. Exploration 

effectiveness is captured by time‑to‑first‑insight, defined as the 
number of steps required to reach a result exceeding a utility 
threshold; by cumulative reward across a session, computed 
from user interaction signals, information gain, predicted 
latency, and redundancy penalties; by attribute and value‑range 
coverage; by average Jensen–Shannon distance between 
consecutive result distributions as a proxy for diversity; and by 
user effort measured in the number of refinements and template 
switches. Privacy is assessed by tracing how these metrics vary 
with the DP budget and by a leakage proxy based on 
membership‑inference AUC over user embeddings. 

The policy is warm‑started offline using logged sessions 
with an 80/10/10 split by user into training, validation, and test 
sets. Synopsis‑derived features are standardized by z‑scores and 
all embeddings are L2‑normalized. Hyperparameters are 
selected via grid search, exploring exploration weights, softmax 
temperatures, LinUCB confidence parameters, and 
sampling‑escalation factors, using validation cumulative reward 
and CI compliance as selection criteria. For online simulation, 
each test session initializes user and preference embeddings and 
cluster state, then runs for 20 to 40 interaction steps while 
logging all metrics. All baselines operate over the same 
candidate pools and random seeds to ensure comparability. An 
optional live study recruits 20 to 30 participants and follows a 
within‑subjects design with counterbalanced conditions 
between our method and baselines. Participants complete three 
scripted discovery tasks per domain within fixed time budgets, 
after which we collect time‑to‑first‑insight, task success rates, 
and standardized usability questionnaires such as SUS or USE. 

We conduct ablations to quantify the contribution of each 
component. These include disabling personalization by zeroing 
the attribute preference vector, turning off randomization to 
force greedy selection, removing CI gating to use fixed samples, 
disabling synopsis reuse to eliminate cached partials, replacing 
the latency model with a uniform cost prior, sweeping privacy 
budgets across a range to observe utility degradation, and 
swapping the execution backend between DuckDB and Spark to 
test portability. We report metric means with 95 per cent 
bootstrap confidence intervals using one thousand resamples. 
For pairwise comparisons, we apply the Wilcoxon signed‑rank 
test, a non‑parametric alternative robust to non‑normality, and 
we control family‑wise error rates under multiple comparisons 
using the Holm–Bonferroni procedure. 

All experiments are scripted in Python 3.10 with PyTorch, 
NumPy, and Scikit‑learn, and rely on a set of SQL templates for 
candidate generation. We provide a Dockerfile to ensure 
consistent environments across hardware. Random seeds are 
fixed for data splits, clustering, and candidate generation. We 
release synthetic query logs, sampled synopses, and trained 
bandit weights, and we include wall‑clock times, realized 
sample sizes, and escalation events in the reported artifacts. 

Unless otherwise tuned, we use twelve clusters and eight 
candidates per interaction step. The exploration mixture weight 
starts at 0.3 and decays toward 0.1 over a session, while the 
softmax temperature is set to 0.7. The pilot sample contains 
approximately fifty thousand rows, sampling escalation doubles 
the current sample when needed, and the maximum is governed 
by the latency service level. Confidence intervals are computed 
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at the 95 per cent level with a relative error tolerance of five per 
cent. For the policy, LinUCB uses a confidence parameter of 
0.5, and Thompson Sampling employs a Bayesian ridge prior 
with unit variance. Unless noted, the local DP budget is set to 
two. We anticipate that the framework will achieve sub‑second 
median latency and keep the 95th percentile under three seconds 
while meeting confidence‑interval bounds in at least 95 per cent 
of interactions. We further expect faster time‑to‑first‑insight and 
higher cumulative reward than strong baselines due to guided, 
randomized exploration, coupled with observable 
within‑session adaptation to workload shifts. Finally, we expect 
only gradual degradation of utility as the privacy budget is 
reduced, indicating a favorable privacy–utility trade‑off. 

 
Fig. 4. Module-wise execution time analysis illustrating the computational 

cost incurred by each stage in the pipeline. Query Execution and Feature 

Extraction are identified as dominant time consumers, suggesting potential 

areas for optimization. 

 
Fig. 5. Line plot comparing Accuracy, Precision, Recall, and F1-Score across 

all modules. The variation in metric values reveals performance strengths and 

weaknesses of individual components in the framework. 

The execution time bar plot in Fig. 4 provides a comparative 
analysis of the time consumed by each module in the proposed 
pipeline. It highlights the computational burden of modules such 
as Query Execution and Feature Extraction, offering insights 
into optimization opportunities for latency-critical deployments. 
This line plot in Fig. 5 showcases the variation of performance 
metrics — accuracy, precision, recall, and F1-score — across 
different modules. It illustrates the relative effectiveness of each 
module and reveals stages where precision or recall might be 
imbalanced, which is essential for targeted tuning. The 

correlation heatmap in Fig. 6 displays inter-metric relationships, 
quantifying how closely performance indicators like accuracy, 
precision, recall, and F1-score align. Strong correlations suggest 
metric consistency, while outliers may signal bias or model 
overfitting in particular scenarios. The stacked bar chart in Fig. 7 
visualizes the comparative distribution of precision and recall 
across individual pipeline stages. It reveals trade-offs between 
the two metrics and identifies modules that prioritize one over 
the other — a crucial aspect for evaluating decision boundaries 
and false positive/negative sensitivity. The AUC-ROC curve in 
Fig. 8 evaluates the classifier's ability to distinguish between 
classes. A higher AUC value demonstrates better 
generalizability and discrimination. The plot helps validate the 
reliability of probabilistic outputs in query formation decisions. 

The confusion matrix in Fig. 9 provides a detailed 
breakdown of prediction performance in terms of true positives, 
true negatives, false positives, and false negatives. It enables 
error-type analysis and aids in diagnosing misclassification 
trends. This curve in Fig. 10 highlights the model's behavior 
under different classification thresholds. It is particularly 
valuable in imbalanced datasets, where achieving high precision 
and recall simultaneously is challenging. The curve guides 
optimal threshold selection. This bar plot in Fig. 11 evaluates the 
memory footprint of each module. It supports resource planning 
and deployment strategies, especially when operating under 
hardware constraints. High-memory modules can be flagged for 
compression or offloading. The CPU utilization in Fig. 12 plot 
tracks the computational demand of pipeline stages. Modules 
with consistently high CPU usage may cause processing 
bottlenecks and warrant parallelization or hardware acceleration 
for improved throughput. This plot in Fig. 13 investigates the 
trade-off between privacy (quantified by ε in differential 
privacy) and model accuracy. As ε increases, less noise is 
injected, improving accuracy at the cost of reduced privacy. The 
curve helps determine optimal ε-values balancing security and 
utility. 

 
Fig. 6. Correlation heatmap showing interdependencies between 

performance metrics. Strong positive correlations among metrics indicate 

consistency, while anomalies help diagnose imbalanced learning behavior. 
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Fig. 7. Stacked bar chart visualizing the trade-off between Precision and 

Recall across different modules. This result highlights the relative dominance 

of these metrics and supports informed threshold adjustment. 

 
Fig. 8. Receiver Operating Characteristic (ROC) curve showing the true 

positive rate against the false positive rate at various thresholds. The Area 

Under Curve (AUC) indicates strong classification capability. 

 
Fig. 9. Heatmap representation of the confusion matrix, showing the counts 

of true positives, true negatives, false positives, and false negatives. It offers 

granular insight into classification performance and error types. 

 
Fig. 10. Precision-Recall curve demonstrating the model's ability to maintain 

high precision and recall under varying thresholds. Particularly useful in 

evaluating classifier performance on imbalanced datasets. 

 
Fig. 11. Bar plot showing memory consumption (in MB) by each functional 

module. The result aids in identifying resource-heavy components for 

potential optimization or deployment planning. 

 
Fig. 12. Line graph illustrating CPU utilization percentages across pipeline 

stages. Modules with higher CPU load are potential bottlenecks and 

candidates for acceleration or parallelization. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 9, 2025 

513 | P a g e  
www.ijacsa.thesai.org 

 
Fig. 13. Graph showing the trade-off between privacy budget (ε) and model 

accuracy. Higher ε values reduce noise and increase accuracy but reduce 

privacy, allowing for a  balanced privacy-preserving configuration. 

The distribution plot in Fig. 14 of user session lengths 
reveals behavioral patterns. A normal-like distribution suggests 
consistency in interaction duration, whereas skewness may 
indicate outlier behaviors or segments with higher engagement. 
This learning curve in Fig. 15 compares model training and 
validation loss over epochs. Converging curves suggest good 
generalization, while divergence indicates overfitting. 
Monitoring this plot is essential for model regularization and 
early stopping. 

 
Fig. 14. Histogram with KDE overlay illustrating the distribution of user 

session lengths. The shape of the distribution reveals user behavior 

consistency and session engagement characteristics. 

 
Fig. 15. Training and validation loss curves across epochs. The proximity or 

divergence of the two curves indicates the model’s generalization ability, 

overfitting risk, and the need for regularization. 

A. Comparison Analysis and Discussion 

The execution time analysis highlights that query execution 
and feature extraction consume the most time. This observation 
aligns with the findings in AIDE [24] and QTune [8], where 
interactive data exploration and learning-based tuning introduce 
runtime overheads in complex modules. Compared to traditional 
AQP methods such as GRELA [4] and AB-Tree [7], the modular 
processing in our pipeline introduces slightly higher time per 
stage, which is a trade-off for real-time adaptability and result 
fidelity. Performance metrics indicate consistently high 
accuracy and F1-score across modules, validating the adaptive 
intelligence built into the learning framework. This trend is 
consistent with GRELA [4] and Sampling-Driven Summaries 
[15], which emphasize the importance of learned representations 
in improving query quality over static heuristics. The correlation 
heatmap shows strong coherence among precision, recall, and 
F1-score, suggesting a well-balanced classifier behavior. 
Compared to bounded AQP models like [6] and [36], which 
often trade off recall for speed, our model maintains metric 
consistency due to feedback-driven optimization. The precision 
vs recall distribution reveals trade-offs across modules, 
particularly in the clustering phase. This finding resonates with 
entropy-based summaries such as EntropyDB [5] and 
probabilistic evaluation [39], where recall improvements are 
counterbalanced by slight precision loss depending on user 
query diversity. 

The AUC-ROC curve demonstrates a high area under the 
curve, indicating strong class separation, even under randomized 
feature selection. Compared to earlier efforts like Count-Min 
Sketch [30] and HyperLogLog [31] that focus on statistical 
aggregates, our learning-based inference offers more robust 
predictive power for interactive decisions. The confusion matrix 
helps visualize misclassification hotspots. Similar insights were 
used in AQP-Reuse [2] and Interactive Query Steering [14] to 
refine user-specific feedback, which we similarly leverage 
through a DQN-like feedback loop. The precision-recall curve 
confirms good balance across thresholds. This is particularly 
crucial for dynamic query formation where output confidence 
fluctuates. Our results outperform query autocompletion 
methods like [13], which often focus on diversity at the expense 
of confidence. Memory usage results reveal that query modules 
are the most memory-intensive, which aligns with the findings 
in [18] and [12], where dynamic predicate inference and 
adaptive materialized views consume high memory in order to 
maintain fast response times for exploration queries. 

CPU utilization analysis supports the conclusion that 
clustering and feedback-based adaptation are computationally 
intensive. While classical AQP methods like Wavelets [45] and 
Histograms [41] have low CPU footprints, they do not offer the 
adaptive intelligence required for personalized query 
optimization. The trade-off plot between privacy (ε) and 
accuracy reflects common patterns seen in differential privacy-
based systems. Our results are consistent with the theoretical 
guarantees discussed in [34] and practical trade-offs visualized 
in [1] and [27], indicating that small ε values result in higher 
noise but better privacy, while larger ε values yield higher 
utility. Session length distribution reveals a relatively Gaussian 
pattern with consistent interaction behavior. These insights are 
similar to YmalDB [25] and QueRIE [26], which also analyze 
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session behavior to tailor exploration strategies and 
recommendation engines. Finally, the training vs validation loss 
curve confirms a stable generalization with minimal overfitting, 
validating the robustness of our learning model. Compared to 
static estimation approaches like [32] and [33], our system 
demonstrates continuous improvement, benefiting from 
feedback adaptation as seen in QTune [8] and AIDE [24]. 

V. CONCLUSION 

This study proposed a machine learning–driven framework 
for dynamic query creation in multi-dimensional data settings 
that uses randomized personal online usage behavior to improve 
flexibility, personalization, and user relevance. The proposed 
pipeline combines preprocessing, feature extraction, clustering, 
and intelligent query generation for real-time, context-aware, 
error-bounded approximate querying. This study proposes a 
privacy-preserving personalization mechanism using local 
differential privacy for web-derived user embeddings, a 
constrained-randomization strategy to ensure diversity and 
fairness in query formation, a contextual bandit policy to balance 
exploration–exploitation trade-offs in interactive workloads, 
and an error-aware AQP executor to guarantee bounded-error 
performance while maintaining scale. These innovations 
provide a framework for interactive data exploration that unifies 
personalization, randomization, and approximation.  
Experimental results show that the framework outperforms 
state-of-the-art approaches like GRELA, AIDE, QTune, and 
Sampling-Driven AQP in precision–recall trade-offs, accuracy, 
noise robustness, and privacy resilience. In latency-sensitive 
contexts, resource utilization analysis proves practical. 
However, this study has drawbacks. The evaluation may not 
convey enterprise-scale workload complexity due to benchmark 
datasets. While differential privacy guarantees are implemented, 
the privacy budget-model utility trade-off needs further study in 
real-world deployments. Highly dynamic schema-evolving data 
scalability is another issue. Deep reinforcement learning for 
long-horizon query optimization, fine-tuned semantic 
embeddings for better personalization, and cross-domain 
adaptation for varied application settings will be included in the 
system in future studies. We will also investigate lightweight 
deployment methodologies on distributed edge–cloud systems 
and federated updates. This study extends dynamic query 
creation by providing an end-to-end, privacy-preserving, and 
theoretically grounded framework. Its personalization, limited 
randomization, and error-aware AQP enable scalable, 
interactive, and trustworthy analytics in dynamic, multi-
dimensional data settings. 
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