
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

504 | P a g e
www.ijacsa.thesai.org

Privacy-Aware ML Framework for Dynamic Query

Formation in Multi-Dimensional Data

B Bhavani1, Dr. Haritha Donavalli2

Research Scholar, Department of Computer Science and Engineering, K L (deemed to be university), Andhra Pradesh, India 1
Professor, Department of Computer Science and Engineering, K L (deemed to be university), Andhra Pradesh, India 2

Abstract—Interactive data exploration at scale remains

constrained by 1) weak adaptability to shifting query workloads,

2) limited and post hoc error guarantees, 3) poor scalability under

dynamic, high-dimensional data, 4) sparse user guidance during

query formulation, and 5) non-trivial system overheads from

learned or probabilistic components. We propose an end-to-end,

privacy-aware framework that dynamically forms SQL queries

for multi-dimensional data using randomized signals derived from

personal web usage. The method integrates: 1) on-device user

modeling that converts browsing interactions into preference

embeddings under local differential privacy; 2) a constrained-

randomization layer that enforces coverage and diversity to avoid

filter bubbles while remaining responsive to user intent; 3) a

contextual bandit policy (with optional deep reinforcement

learning extension) that selects or completes query templates using

signals from user profiles, session context, and data synopses; and

4) an error-aware AQP executor combining stratified/pilot

sampling, synopsis reuse, and confidence-interval gating with

automatic sample escalation. This design directly addresses the

above limitations: the bandit adapts online to workload shifts; the

AQP layer provides pre-execution feasibility checks and per-

query error control; synopsis reuse and AB-tree–style random

sampling maintain low latency under updates; and a guidance

module (predictive autocompletion with information-gain scoring)

reduces user effort while preserving exploration diversity. To

evaluate effectiveness, we introduce a privacy-preserving training

regimen (federated updates over DP-noised profiles) and a novel

benchmark protocol measuring time-to-insight, error compliance

under differential privacy, session diversity, and latency against

strong baselines. The result is an ML-driven exploration loop that

achieves error-bounded interactivity, robust personalization, and

scalable performance on evolving, high-dimensional datasets,

while providing evaluation metrics that capture both user

experience and privacy-preserving guarantees.

Keywords—Dynamic query formation; Approximate Query

Processing (AQP); local differential privacy; contextual bandits;

reinforcement learning; constrained randomization; multi-

dimensional data exploration

I. INTRODUCTION

Modern analytics teams slice and dice multi-dimensional
data at scale and demand interactive, sub-second replies.
Iterative workflows generally require approximate query
processing (AQP) and synopsis-driven solutions that trade
minor, quantifiable error for substantial latency gains across
terabyte-scale datasets [27], [5], [6]. In parallel, research
examines how to lead users during exploration—through
recommendations, active learning, and result diversification—

to maximize understanding rather than repeated or empty
outcomes [24], [25], [26], [14], [13].

Fig. 1. General architecture of web usage data exploration.

Fig. 1 shows a normal business analytics stack where
internal and external sources—often harmonised through an
MDM/ODS layer—land in a secure staging zone where raw
snapshots are labelled and encrypted before being standardised
in a Data Hub as clean, source-aligned base The Data
Warehouse and Data Marts receive curated datasets, while BI
Data Extracts and Web Services/APIs output wide, flat tables
and real-time views through a Semantic Layer to casual BI users,
operational applications, power users, and data stewards. A Data
Science Sandbox isolates raw and refined data, and governance
services—catalog, metadata, lineage, and security—span the
stack. Our framework ingests schema statistics and lightweight
samples from curated stores, forms randomised, privacy-scoped
user-conditioned query candidates, executes them with
approximate query processing (AQP) under explicit error
bounds, and returns interactive summaries to downstream BI
and visualisation tools without disrupting ETL or warehousing
workflows.

Despite advances, the state of the art has five limitations.
Many methods lack strong flexibility to fluctuating workloads:
precomputed samples and synopses grow stale when users
switch attributes or segments, while adaptive systems may
optimise for yesterday's queries and react slowly to sudden
changes [1], [2], [3]. Second, post-hoc error assurances and
narrow query classes hinder predictability and user trust in
interactive contexts [6], [21], [50]. Third, dynamic, high-
dimensional datasets have scalability issues—managing
numerous stratified samples or multi-attribute indexes occupies

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

505 | P a g e
www.ijacsa.thesai.org

space and requires maintenance [11], [23], [7]. Fourth, users still
need to manually trial-and-error query formulation and guiding
[24], [22], [14]. Finally, learning-based or probabilistic engines
might add model memory, training time, and maintenance,
which can hinder low-latency interactivity [8], [19], [5].

Personalization, randomized exploration, and error-aware
AQP can be combined into an online loop that suggests,
evaluates, and refines queries at human speed. Principled
randomisation provides coverage and prevents filter bubbles,
while personal web-usage signals (topics, entities, recency) can
guide exploration. Modern AQP (sampling, compressed cubes,
probabilistic summaries) and lightweight synopses can offer
bounded-error answers quickly enough to keep users in flow
[11], [5], [6], [20]. Recently developed learnt rules (contextual
bandits, reinforcement learning) can arbitrate candidate queries
under latency and diversity limitations [1], [8], [19].

1) Challenges: Designing a machine–learning framework

for dynamic query creation over multi-dimensional data with

randomised, privacy-scoped personalisation presents many

system and model problems: 1) Data heterogeneity and schema

drift: attributes vary in type, granularity, and nomenclature;

sources fluctuate, breaking learnt mappings and cached

synopses. 2) High dimensionality and combinatorial explosion:

attribute-value predicates and group-bys increase

exponentially, requiring rigorous pruning, templating, and

coverage guarantees. 3) Latency-accuracy trade-off: interaction

needs sub-second medians while respecting statistical error

limitations; tight SLAs make balancing sample size, synopsis

reuse, and escalation difficult. 4) Sample bias and uncertainty

quantification: stratification, skew, and infrequent segments

endanger unbiased results; confidence intervals and variance

models must survive reuse and data updates [27]. 5) Privacy

constraints [21]: local differential privacy decreases signal

quality; balancing value and protection, and propagating noise

through selection and estimation is difficult. 6) User modelling

is complicated by cold start, idea drift, and session volatility;

signals are scarce, implicit, and noisy. 7) Explore--exploit

control: randomised candidate generation requires coverage

guarantees to avoid myopic loops and online policy adaptation

without quality degradation. 8) Reward shaping and

counterfactual tracking are needed to ensure feedback

reliability: presentation bias and interface effects complicate

clicks, dwell, and refinements. 9) Interpretability and trust:

questions, error bars, and trade-offs must be explained to

consumers to accept approximate answers. 10) Scalability and

resource efficiency: big, frequently updated tables strain CPU,

memory, and storage budgets for sketches, samples, and caches.

11) Streaming and freshness: incremental synopses and

confidence assurances for arrivals/out-of-order data are

difficult. 12) Robustness and fairness: regulations should not

disregard minorities, withstand hostile or inadvertent outliers,

and remain consistent across workloads. 13) Reproducibility

and governance: randomised selection hinders auditability;

queries, samples, and models must be seedable with lineage.

14) Benchmarking and evaluation: suites must examine latency,

CI compliance, coverage/diversity, and time-to-insight because

no single metric covers utility. 15) Integration and portability:

interfaces must work with catalogues, BI tools, and engines

without changing ETL/ELT pathways and across approximate

executors.

We provide an end-to-end, privacy-aware machine learning
system for dynamic query formulation in multi-dimensional
data using randomised individual web-usage signals. Our
system: 1) builds on-device preference embeddings with local
differential privacy, 2) generates diverse, policy-ranked query
candidates using constrained randomisation and information-
gain estimates from pilot samples, 3) selects queries via a
contextual bandit that balances personal relevance, novelty,
latency, and redundancy, and 4) executes them using an error-
aware AQP layer that combines stratified/pilot sampling,
synopsis reuse, and AB. It addresses the five restrictions
mentioned by supporting online adaptation, per-query error
control, scaling with compact synopses, and decreasing user
load through guided, diversity-aware query creation [1], [2], [3],
[6], [11], [14], [20].

2) Our contribution: The study provides four contributions:

A personalized, privacy-aware modelling pipeline that seeds

query intent and reduces cold-start by converting web-usage

events into exploratory preferences. A constrained-

randomization approach with coverage guarantees and

information-gain scoring that preserves exploration diversity

and relevance. A contextual bandit strategy with an RL

extension that optimizes user engagement, information gain,

latency, and redundancy under per-query cost and error

limitations. An error-aware AQP executor that increases sample

sizes and reuses synopses/materialized summaries for bounded-

error results at interactive latencies [6], [11], [12], [5].

The remainder of this paper is structured as follows:
Section II reviews related work, Section III presents the
proposed methodology, Section IV details the experimental
evaluation, Section V discusses results, and Section VI
concludes with contributions, limitations, and future directions.

II. RELATED WORK

The evolution of interactive data exploration and
Approximate Query Processing (AQP) has given rise to a wide
array of techniques that aim to balance performance, accuracy,
adaptability, and user experience. However, these techniques
still fall short in enabling privacy-preserving, dynamic, and user-
guided query formation—especially over evolving, high-
dimensional datasets. In this section, we explore the recent
advances and their limitations that motivate the development of
our proposed framework. The detailed work is shown in Table I.

Zhang et al. [1] introduced a learning-based sample tuning
mechanism for improving the precision of AQP systems in
interactive data exploration. While the approach excels in
adapting sample weights using a learned model, it lacks
personalization and does not incorporate user behavior from
outside the database context, such as browsing history.
Similarly, Engelmann et al. [2] proposed AQP-Reuse, which
reuses intermediate approximate query results to accelerate

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

506 | P a g e
www.ijacsa.thesai.org

future interactions. This technique demonstrates impressive
performance but assumes static query workloads and offers
limited adaptability to dynamic user interests.

TABLE I. RELATED WORK COMPARISON

Reference Key Contribution Approach Limitation Addressed in Proposed Work

Zhang et al.[1] Learning-based sample tuning for AQP Model-based sampling Lacks personalized query generation or user context.

Engelmann et al. [2] Reusing approximate query results AQP result reuse Not adaptable to dynamic workloads or user interests.

Li et al. [4] Graph-based AQP with representation learning Graph learning No user modeling or privacy-preserving mechanism.

Zhao et al. [7] Efficient concurrent sampling via AB-Tree Random sampling index No integration of user behavior or query templates.

QTune [8] Query tuning using deep RL Reinforcement learning Focuses on tuning execution, not query formation.

Shen et al.[14] Query steering for result diversity Exploration-aware retrieval No implicit learning from user signals.

He et al. [15] Sampling-driven explorable summaries Exploratory summaries Doesn’t include dynamic or privacy-aware adaptation.

Lin et al. [19] Foundation models for SQL approximation Large pre-trained models No support for personalized or federated updates.

Verbruggen et al. [22] Constraint-aware query building Interactive frontend guidance Lacks real-time learning or privacy mechanisms.

Dimitriadou et al. [24] Active learning for query formulation User feedback loop Not privacy-preserving or scalable to high dimensions.

Maroulis et al. [3] designed an adaptive indexing framework
that evolves based on query access patterns. Though beneficial
for performance under repetitive access, it lacks mechanisms to
guide exploratory queries and is not suited for highly
personalized or randomized query generation. Li et al. [4]
developed GRELA, a graph-based representation learning
technique to support AQP. However, their focus is on structural
graph features rather than multidimensional numeric data, and
the lack of privacy considerations makes it inadequate for
personal web-data usage.

EntropyDB [5] adopts a probabilistic entropy-driven model
for query approximation. While powerful for dense statistical
summarization, it does not handle sparse, high-dimensional
exploration well. Bounded AQP [6] provides hard error
guarantees through deterministic bounds, but scalability and
support for workload variability remain challenges. Zhao et al.
[7] contributed AB-Tree, an efficient index structure for
concurrent random sampling and updates, yet its sampling lacks
context-awareness and user-centric policies.

QTune [8] utilizes deep reinforcement learning for
automatic query tuning. Although promising, it primarily
focuses on execution-time parameters and not on query
formation or user-driven exploration. In contrast, Rimi et al. [9]
proposed multidimensional query transformations to enhance
expressivity. Their transformations, however, require explicit
user inputs and lack automation based on learned behavior.

Nguyen et al. [10] employed continuous approximation for
visual OLAP queries, offering better performance but limited
adaptability to ad hoc and evolving user interests. Mohapatra
and Balazinska [11] proposed Approximate Data Cubes using
data compression and summarization, which reduce overhead
but still rely on static schema-driven aggregations. Roh et al.
[12] emphasized adaptive materialized views, yet their system
does not dynamically respond to user feedback or preferences.

Large et al. [13] explored predictive sampling for query
autocompletion. While enhancing interactivity, it falls short in
promoting exploration diversity and privacy-preserving

behavior modeling. Shen et al. [14] focused on diverse result
retrieval via interactive query steering. Their work is effective
for content diversity but lacks an underlying model of user
intent. He et al. [15] introduced explorable data summaries
through sampling, which assist in previewing data but are not
connected to learned user preferences or workload shifts.

Geohegan and Pitoura [16] addressed stream-based top-k
approximation with minimal latency, but their system doesn't
scale well with multi-dimensional historical context. Müller et
al. [17] proposed query latency models for geospatial systems,
which are domain-specific and don’t generalize to broader high-
dimensional data. Fu et al. [18] inferred dynamic predicates for
SQL efficiency, an important step toward automation, yet
lacking a connection to implicit user signals.

Lin et al. [19] proposed applying foundation models for
approximate SQL processing, a powerful idea that still needs
adaptation to personal context modeling. Farid et al. [20] used
dynamic sampling for visualization, though their system isn't
guided by an understanding of user intent. Symeonidis et al. [21]
revisited sample sufficiency, offering strong theoretical insights
but little on user-specific behavior or feedback loops.

Verbruggen et al. [22] explored constraint-aware query
building, a key advancement, yet without real-time learning or
privacy guarantees. Das et al. [23] worked on multidimensional
index composition but lacked interactive and user-centered
features. Dimitriadou et al. [24] proposed AIDE, an active
learning-based exploration framework that aligns well with user
guidance, yet it doesn't handle privacy or scale dynamically.

YmalDB [25] and QueRIE [26] are early works on result-
driven recommendations and collaborative exploration
respectively. Though foundational, they are not scalable or
privacy-preserving. Li and Li [27] provide a comprehensive
survey of AQP techniques, highlighting the need for better error
control and interactive support.

Foundational concepts like Data Cube [28], Quotient Cube
[29], Count-Min Sketch [30], and HyperLogLog [31] offer
statistical underpinnings for AQP but were not designed with

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

507 | P a g e
www.ijacsa.thesai.org

modern interactivity, user context, or privacy in mind. Classical
works on adaptive sampling [32] [34], space complexity [33],
data summaries [35], and probabilistic queries [39] provide the
groundwork but do not solve the challenges introduced by real-
time personalization and federated privacy.

Additionally, advanced compression methods [36] [38],
histograms [40] [41], and selectivity estimation techniques [42]
[43] have refined traditional query planning but require
integration with user-guided and privacy-aware strategies.
Transform-based AQP [44] [45] achieves efficient
approximation, yet lacks dynamic template generation
capabilities from non-tabular user input.

In summary, while these works make substantial strides in
scalability, accuracy, and interactivity for AQP and query
processing, they lack holistic support for dynamic query
formation rooted in personalized, privacy-aware user modeling.
Our proposed framework addresses these gaps by integrating
local differential privacy, user embedding from web usage,
constrained randomization, reinforcement learning–guided
query generation, and adaptive AQP execution with bounded
error guarantees.

III. METHODOLOGY

In this section, we discuss on proposed method and its
modules. The existing work diagram in Fig. 2 illustrates a
traditional metadata-enriched recommendation model used for
predicting candidate ratings 𝑅𝑗𝑘

 between users and items. In this

architecture, each user 𝑢𝑗 and item 𝑖𝑘 is associated with a set of

auxiliary attributes that capture contextual and descriptive
features. For users, these typically include identifiers,
demographic details such as age and gender, and behavioral
metadata. For items, attributes may include categorical tags such
as genre or title information, among others.

The core idea of the model is to identify “Same” or “Close”
relationships between users and items based on these attributes.
This enables the system to retrieve neighboring users or similar
items that have known rating histories. From this information,
two sub-models—user-oriented 𝑅y,γ

𝑢 and item-oriented

𝑅𝑥
𝐼 ,𝑘 rating predictors—are engaged to extrapolate the likely

rating score for the current candidate user-item pair. The
prediction 𝑅𝑗𝑘 is generated by aggregating or interpolating this

information.

Fig. 2. Overview of existing recommendation system diagram.

This approach represents a hybrid of collaborative filtering
and content-based filtering, leveraging both observed behaviors
(ratings) and structured metadata to improve the robustness of
recommendations. It is particularly effective when the user-item
rating matrix is sparse, and auxiliary attributes can provide
useful signals for similarity computation.

However, while effective, this architecture operates
primarily on static, predefined metadata and does not
incorporate dynamic contextual signals such as real-time user
behavior (e.g. clickstream or browsing data). Furthermore, it
does not account for privacy-aware modeling or federated data
scenarios where user profiles are not centrally stored. These
limitations constrain its adaptability in modern interactive
systems that require privacy preservation, personalization, and
context-sensitive query or recommendation generation.

In contrast, the proposed machine learning framework
shown in Fig. 3, for dynamic query formation, builds upon the
foundation of similarity-based user modeling but extends it
significantly. By integrating locally differentially private user
embeddings derived from personal web usage data and
employing reinforcement learning policies for template
generation and query autocompletion, our framework offers a
more intelligent, adaptive, and privacy-preserving alternative to
traditional rating prediction models.

Fig. 3. Overview of the proposed architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

508 | P a g e
www.ijacsa.thesai.org

Let 𝔇 denote one or more multi-dimensional data sources
with attributes 𝔄 = {A₁,…,A_d} and numeric measures 𝔐. At
interaction step t, the system forms a SQL query q_t from
templates (filters P, group-bys g, aggregate φ ∈ {SUM, AVG,
COUNT}) and executes it with approximate query processing
(AQP) to maintain interactivity. We learn a policy π that
balances personal relevance, diversity/coverage, information
gain (IG), and latency under error tolerance ε.

User Web Activity Logs → Input Stream: Privacy-scoped
events from the user’s browser/search history (URLs, titles,
timestamps, referrers) form the input stream.

• Sessionization: split events by inactivity gap (e.g., 30
minutes) into sessions S = {S₁,…}.

• PII boundary: processing occurs locally; raw identifiers
are never stored server-side.

Preprocessing and Anonymization:

1) Canonicalization: strip tracking query parameters (keep

a whitelist), lowercase host/path, unshorten URLs.

2) PII removal: redact emails, phone numbers, IDs via

regex; hash user IDs with per-device salt.

3) Tokenization: combine title + snippet → tokens; keep

top-K TF-IDF terms per session.

4) Local DP noise: add Gaussian/Laplace noise to term

counts and later to profile vectors (privacy budget εDP).

Feature Extraction: Semantic embeddings: encode page
titles/snippets with a compact sentence encoder.

Schema alignment: Build attribute/value lexicons from 𝔇
(column names, value samples). Cross-encode esess with
attribute prompts to obtain attribute preference scores w ∈ ℝ^d
(softmax-normalized), then apply DP noise to get w~.

User profile: Maintain a running profile u ← α · u + (1 −
α) · esess (EMA) and sparse interest tags (top terms/entities) for
interpretability.

Clustering + Randomization: Keep K-means (or incremental
DP-K-means) over recent session embeddings to discover
interest clusters C = {c1 ,… , cK} . For each cluster c, store
centroid μc , supported attributes Gc ⊆ 𝔄 (highest scoring by
w~), and exemplar values Vc (frequent/representative values
from logs and data samples).

Coverage-aware randomized selection: cluster score at time
t.

𝑠𝑐 = (1 − λ) · sim(u, μc) + λ · IGc − η · redc

Draw ct ∼ softmax(
sc

T
) while enforcing minimum

coverage over attributes/values within a session (reject over-
used clusters).

Candidate generation: from ct, produce K candidate queries
by filling templates: • Drill-down (GROUP BY g ∈ Gc with
predicates on top-k values from Vc); • Slice-and-dice (2D group-
by pairs with top-k filters); • Time roll-ups (windowed
aggregates where time exists); • Top-k segments (rank by
estimated lift or variance).

Query Execution Module (Approximate Query Processing):

Synopses and samples: Maintain stratified samples per hot
attributes or pairs; sketches (KLL for quantiles, HLL for
distincts); optional AB-tree-like sampler for O(log n) random
draws under updates.

Feasibility and cost: for each candidate q, on a small pilot
sample S₀ estimate variance σ̂², selectivity, and latency using a
learned regressor. Accept if predicted CI width ≤ ε; else escalate
sample size or fall back to exact execution if under time budget.

Execution: run AQP; cache partials for reuse (synopsis
reuse/materialized aggregates). Emit (ŷ, CI, latency).

Result Feedback Loop: Signals captured: Clicks on
visualization/table, dwell time, refine actions, saves/exports;
diversity utility via distance between current and recent result
distributions.

Reward shaping: rt = α · ut + β · IG(qt) − γ · lat̂(qt) −
 δ · red(qt), where ut aggregates interaction signals.

Profile updates: Online updates of u and w~; increment
coverage counters.

Reinforcement Learning for Future Refinement

State: 𝑠𝑡= [u, w~, esess, synopsis stats, history embedding].

Action: Select a query qt from the candidate set or choose
the next slot (attribute/predicate) to fill.

Policy: Begin with a contextual bandit (LinUCB or
Thompson Sampling) for robust online learning: r̂(q) = θᵀ·ϕ(st,
q) with UCB/TS exploration. Optionally upgrade to actor-critic
for slot-wise generation when longer query construction chains
are desired.

Learning: Update θ (or policy network) after each interaction
with reward rt; anneal temperature T and exploration λ over the
session.

Multi-Dimensional Data Sources ⇄ System Integration:

Connectors: SQL engines, data warehouses, data lakes. Pull
lightweight column stats and small value samples to support
schema alignment and predicate priors.

Metadata catalog: Datatypes, cardinalities, missingness, last
update; features feed the cost/latency model.

Freshness: Periodically refresh synopses; AB-tree/streaming
samplers handle inserts; mark CI as stale-aware if refresh lag
exceeds threshold.

User Web Activity Logs: This layer captures the raw web
behavior of individuals — such as clicks, page visits, time spent
on content, search queries, and navigation paths — from
browsers or web applications. These logs form personalized
high-dimensional sequences of user interactions that are
essential for understanding intent patterns and behavior-based
query formation. This step also includes secure logging and
privacy-aware data tagging.

Preprocessing and Anonymization: The preprocessing stage
performs essential data cleaning, transformation, and
structuring, while the anonymization component ensures

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

509 | P a g e
www.ijacsa.thesai.org

privacy preservation: Data Cleaning: Removes null, redundant,
or irrelevant values. Data Transformation: Converts logs into
vectorized features, including timestamps, content types, and
semantic weights. Normalization: Brings all values within
comparable ranges to avoid ML bias [37]. Generalization:
Abstracts specific values (e.g. URLs → Categories). Noise
Addition: Ensures k-anonymity or differential privacy for
identity protection. Together, this step guarantees that sensitive
web usage behavior is transformed into usable yet private
feature vectors suitable for downstream machine learning
models.

Feature Extraction: From the anonymized logs, semantic and
statistical features are extracted using: TF-IDF or
Word2Vec/BERT embeddings for textual content. Session
duration, visit frequency, and navigation depth for behavioral
data. Temporal sequences to model contextual intent.
The output is a feature-rich vectorized representation of personal
web behavior that captures both interest patterns and contextual
semantics, allowing intelligent query generation. Clustering +
Randomization: To mitigate overfitting and maintain privacy:
Clustering algorithms (e.g., K-Means, DBSCAN) group similar
user behavior patterns. Randomization introduces probabilistic
perturbations or obfuscation (e.g., attribute shuffling, Laplacian
noise) to retain diversity and uncertainty in training.

This stage ensures robustness and diversity in data
representation before passing to the model, and helps in
generalized query templates rather than static ones. Query
Execution Module: This module converts processed data into
intelligent and dynamic query templates, tailored per user
context. Key ML components include: Classification/Prediction
models (e.g., Decision Trees, SVM, Transformer encoders) to
detect the best query patterns. Intent prediction models to
understand likely user goals. Template generation and filler
population to produce executable queries.
Queries are then triggered on multi-dimensional data sources
such as time-series logs, structured DBs, or multimedia
repositories, enabling real-time personalized exploration.

Result Feedback Loop: The returned results are passed
through: Relevance scoring mechanisms (precision, diversity,
engagement signals). User interaction feedback (e.g., click-
through rate, dwell time). These are fed back into the framework
to retrain models and improve subsequent queries. A
reinforcement learning loop (e.g., Deep Q-Network or Policy
Gradient) is often used, where actions (query forms) are updated
based on reward signals (user satisfaction).

Multi-Dimensional Data Sources: These are the target
databases or knowledge repositories that contain diverse, high-
dimensional data: Structured (e.g., SQL-based), Semi-structured
(e.g., JSON/XML web logs), Unstructured (e.g., text, images,
videos). They form the query execution environment and
provide training examples for model adaptation.

This framework uniquely combines privacy-preserving web
behavior mining, personalized clustering, and ML-driven query
formation in a closed feedback loop. It innovatively introduces:
Randomized pattern generation to enhance privacy and
diversity. Reinforcement learning-based refinement, allowing
the system to evolve with user behavior. Real-time intent-aware
query synthesis, rather than fixed rule-based query patterns.

IV. RESULTS

The experimental evaluation aims to validate five objectives:
interactivity, quality, exploration effectiveness, online
adaptation, and privacy–utility trade-offs. Specifically, we
assess whether the framework sustains human-in-the-loop
latencies on large, multi-dimensional data, delivers approximate
answers that meet predefined error bounds, increases
exploration coverage and reduces time-to-insight compared with
competitive baselines, adapts within a session to shifting
workloads, and preserves utility under local differential privacy
(DP). Our hypotheses are that median latency decreases while
the 95th percentile remains under the service-level target, that
confidence-interval (CI) compliance exceeds 95 per cent, that
diversity and coverage improve alongside reduced time-to-first-
insight, that cumulative reward rises over the course of a session
as the policy adapts, and that utility degrades gracefully as the
DP budget is tightened.

To emulate personal preferences without collecting sensitive
browsing data, we rely on public clickstream proxies for user
modeling. News-oriented sessions (e.g., MIND) and commerce-
oriented sessions (e.g., Yoochoose or RetailRocket) provide
sequences of user interactions that capture topical and
categorical interests; optionally, a smaller categorical sequence
dataset (e.g., the UCI MSNBC corpus) is included for additional
variety. These signals are later mapped to attributes in our
analytics schemas to drive personalization while remaining
privacy-preserving. For query execution, we evaluate on three
representative domains. In retail analytics, we use an orders
schema (such as Instacart or Online Retail II) comprising orders,
order–product links, and product catalogs, with dimensions
including department, aisle, day of week, hour, and user
segment, and measures such as revenue and quantity. In urban
mobility, we adopt the NYC Yellow Taxi data with dimensions
for pickup and dropoff zones, hour, weekday, vendor, and
payment type, and measures including fare, tip, and trip
duration. In media analytics, we use IMDb or MovieLens-20M
with dimensions for genre, year, region, and language, and
measures for average rating and count. To stress scalability, we
additionally run TPC‑DS workloads at scale factors 10 and 100.

All clickstream datasets are sessionized using a 30‑minute
inactivity gap, and extremely short sessions are discarded to
reduce noise. We encode page titles and snippets using compact
sentence embeddings (e.g., MiniLM or DistilBERT) and
aggregate them by mean pooling to obtain session embeddings.
To align user interests with database schemas, we compute
cosine similarities between session embeddings and
attribute/value prompts to produce an attribute preference
vector, to which we add local DP noise (Laplace or Gaussian)
with privacy budgets drawn from the set {∞, 3, 2, 1}. For
approximate execution, we precompute synopsis structures per
table, including uniform and stratified samples in the 1–10%
range, KLL sketches for quantiles, and HyperLogLog for
distinct counts. The executor supports on-demand sampling
escalation with a multiplicative factor of two, bounded by a
latency‑aware maximum sample size.

Experiments are conducted on both single‑node and
distributed backends. We use DuckDB (version 0.9) for
single‑node runs and Apache Spark (version 3.5) for cluster

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

510 | P a g e
www.ijacsa.thesai.org

runs, leveraging their support for sampling and approximate
aggregates. The AQP layer employs a pilot sample of fifty
thousand rows by default, estimates variance via a normal
approximation or bootstrap when specified, and enforces 95%
confidence‑interval gating before returning results. Optional
indexing uses an AB‑tree‑inspired sampler realized as a
weighted reservoir or segment‑tree to enable logarithmic‑time
random draws under updates. The decision policy is
implemented as a contextual bandit (LinUCB or Thompson
Sampling) with feature vectors that combine user and session
embeddings, synopsis‑derived statistics such as selectivity and
cardinality, and compact features of the query template. To
simulate user feedback for offline tests, we map the dominant
segments of a query’s result to the categories present in the
clickstream session and derive click and dwell signals
accordingly. Hardware for single‑node tests consists of a
32‑core CPU with 128 GB of RAM and NVMe storage;
distributed experiments employ eight workers with 16 virtual
CPUs and 64 GB of memory each. We report both
environments.

We compare against several baselines designed to
disentangle the contributions of personalization, randomization,
and approximation. Exact‑SQL executes the same templates
without approximation and therefore represents an upper bound
on accuracy and a lower bound on speed. A static‑template
strategy performs drill‑down and slice‑and‑dice in a fixed order
without personalization. A popularity‑only strategy ranks
attributes and values by global frequency and omits
randomization. A greedy‑personalization baseline uses the
attribute preference vector but disables exploration and diversity
penalties. A random‑walk baseline chooses attributes and values
at random subject to type constraints. A diversity‑only steering
variant maximizes coverage without personalization. Finally, an
AQP‑only variant uses the approximate executor with a
deterministic candidate order and no bandit policy. All methods
share the same AQP executor, except for Exact‑SQL, so that
differences primarily reflect query formation and selection
policies.

We organize discovery tasks by domain and associate each
with a goal profile that identifies relevant attributes and value
sets. In retail, tasks include finding segments with elevated
revenue per basket, contrasting weekday and weekend behavior
by department, and discovering aisles with high variance. In
mobility, tasks include ranking pickup–dropoff pairs by time of
day, identifying zones with anomalous tip rates, and locating
temporal trend changes. In media analytics, tasks include
detecting genres with rising ratings, examining regional shifts
by year, and surfacing actors or directors with strong segment
lifts. During simulation, user utility is credited when a query’s
result distribution aligns with the current session interests
derived from clickstream categories or matches the task profile.

Performance is measured by interaction latency, reported as
median and 95th‑percentile values, with a target of sub‑second
medians and p95 below two to three seconds. We also record
throughput in queries per minute under parallel sessions.
Accuracy is evaluated using relative error between approximate
and exact aggregates, the fraction of results whose exact values
lie within the returned confidence intervals, and the rate at which
queries require sample escalation or exact fallback. Exploration

effectiveness is captured by time‑to‑first‑insight, defined as the
number of steps required to reach a result exceeding a utility
threshold; by cumulative reward across a session, computed
from user interaction signals, information gain, predicted
latency, and redundancy penalties; by attribute and value‑range
coverage; by average Jensen–Shannon distance between
consecutive result distributions as a proxy for diversity; and by
user effort measured in the number of refinements and template
switches. Privacy is assessed by tracing how these metrics vary
with the DP budget and by a leakage proxy based on
membership‑inference AUC over user embeddings.

The policy is warm‑started offline using logged sessions
with an 80/10/10 split by user into training, validation, and test
sets. Synopsis‑derived features are standardized by z‑scores and
all embeddings are L2‑normalized. Hyperparameters are
selected via grid search, exploring exploration weights, softmax
temperatures, LinUCB confidence parameters, and
sampling‑escalation factors, using validation cumulative reward
and CI compliance as selection criteria. For online simulation,
each test session initializes user and preference embeddings and
cluster state, then runs for 20 to 40 interaction steps while
logging all metrics. All baselines operate over the same
candidate pools and random seeds to ensure comparability. An
optional live study recruits 20 to 30 participants and follows a
within‑subjects design with counterbalanced conditions
between our method and baselines. Participants complete three
scripted discovery tasks per domain within fixed time budgets,
after which we collect time‑to‑first‑insight, task success rates,
and standardized usability questionnaires such as SUS or USE.

We conduct ablations to quantify the contribution of each
component. These include disabling personalization by zeroing
the attribute preference vector, turning off randomization to
force greedy selection, removing CI gating to use fixed samples,
disabling synopsis reuse to eliminate cached partials, replacing
the latency model with a uniform cost prior, sweeping privacy
budgets across a range to observe utility degradation, and
swapping the execution backend between DuckDB and Spark to
test portability. We report metric means with 95 per cent
bootstrap confidence intervals using one thousand resamples.
For pairwise comparisons, we apply the Wilcoxon signed‑rank
test, a non‑parametric alternative robust to non‑normality, and
we control family‑wise error rates under multiple comparisons
using the Holm–Bonferroni procedure.

All experiments are scripted in Python 3.10 with PyTorch,
NumPy, and Scikit‑learn, and rely on a set of SQL templates for
candidate generation. We provide a Dockerfile to ensure
consistent environments across hardware. Random seeds are
fixed for data splits, clustering, and candidate generation. We
release synthetic query logs, sampled synopses, and trained
bandit weights, and we include wall‑clock times, realized
sample sizes, and escalation events in the reported artifacts.

Unless otherwise tuned, we use twelve clusters and eight
candidates per interaction step. The exploration mixture weight
starts at 0.3 and decays toward 0.1 over a session, while the
softmax temperature is set to 0.7. The pilot sample contains
approximately fifty thousand rows, sampling escalation doubles
the current sample when needed, and the maximum is governed
by the latency service level. Confidence intervals are computed

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

511 | P a g e
www.ijacsa.thesai.org

at the 95 per cent level with a relative error tolerance of five per
cent. For the policy, LinUCB uses a confidence parameter of
0.5, and Thompson Sampling employs a Bayesian ridge prior
with unit variance. Unless noted, the local DP budget is set to
two. We anticipate that the framework will achieve sub‑second
median latency and keep the 95th percentile under three seconds
while meeting confidence‑interval bounds in at least 95 per cent
of interactions. We further expect faster time‑to‑first‑insight and
higher cumulative reward than strong baselines due to guided,
randomized exploration, coupled with observable
within‑session adaptation to workload shifts. Finally, we expect
only gradual degradation of utility as the privacy budget is
reduced, indicating a favorable privacy–utility trade‑off.

Fig. 4. Module-wise execution time analysis illustrating the computational

cost incurred by each stage in the pipeline. Query Execution and Feature

Extraction are identified as dominant time consumers, suggesting potential

areas for optimization.

Fig. 5. Line plot comparing Accuracy, Precision, Recall, and F1-Score across

all modules. The variation in metric values reveals performance strengths and

weaknesses of individual components in the framework.

The execution time bar plot in Fig. 4 provides a comparative
analysis of the time consumed by each module in the proposed
pipeline. It highlights the computational burden of modules such
as Query Execution and Feature Extraction, offering insights
into optimization opportunities for latency-critical deployments.
This line plot in Fig. 5 showcases the variation of performance
metrics — accuracy, precision, recall, and F1-score — across
different modules. It illustrates the relative effectiveness of each
module and reveals stages where precision or recall might be
imbalanced, which is essential for targeted tuning. The

correlation heatmap in Fig. 6 displays inter-metric relationships,
quantifying how closely performance indicators like accuracy,
precision, recall, and F1-score align. Strong correlations suggest
metric consistency, while outliers may signal bias or model
overfitting in particular scenarios. The stacked bar chart in Fig. 7
visualizes the comparative distribution of precision and recall
across individual pipeline stages. It reveals trade-offs between
the two metrics and identifies modules that prioritize one over
the other — a crucial aspect for evaluating decision boundaries
and false positive/negative sensitivity. The AUC-ROC curve in
Fig. 8 evaluates the classifier's ability to distinguish between
classes. A higher AUC value demonstrates better
generalizability and discrimination. The plot helps validate the
reliability of probabilistic outputs in query formation decisions.

The confusion matrix in Fig. 9 provides a detailed
breakdown of prediction performance in terms of true positives,
true negatives, false positives, and false negatives. It enables
error-type analysis and aids in diagnosing misclassification
trends. This curve in Fig. 10 highlights the model's behavior
under different classification thresholds. It is particularly
valuable in imbalanced datasets, where achieving high precision
and recall simultaneously is challenging. The curve guides
optimal threshold selection. This bar plot in Fig. 11 evaluates the
memory footprint of each module. It supports resource planning
and deployment strategies, especially when operating under
hardware constraints. High-memory modules can be flagged for
compression or offloading. The CPU utilization in Fig. 12 plot
tracks the computational demand of pipeline stages. Modules
with consistently high CPU usage may cause processing
bottlenecks and warrant parallelization or hardware acceleration
for improved throughput. This plot in Fig. 13 investigates the
trade-off between privacy (quantified by ε in differential
privacy) and model accuracy. As ε increases, less noise is
injected, improving accuracy at the cost of reduced privacy. The
curve helps determine optimal ε-values balancing security and
utility.

Fig. 6. Correlation heatmap showing interdependencies between

performance metrics. Strong positive correlations among metrics indicate

consistency, while anomalies help diagnose imbalanced learning behavior.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

512 | P a g e
www.ijacsa.thesai.org

Fig. 7. Stacked bar chart visualizing the trade-off between Precision and

Recall across different modules. This result highlights the relative dominance

of these metrics and supports informed threshold adjustment.

Fig. 8. Receiver Operating Characteristic (ROC) curve showing the true

positive rate against the false positive rate at various thresholds. The Area

Under Curve (AUC) indicates strong classification capability.

Fig. 9. Heatmap representation of the confusion matrix, showing the counts

of true positives, true negatives, false positives, and false negatives. It offers

granular insight into classification performance and error types.

Fig. 10. Precision-Recall curve demonstrating the model's ability to maintain

high precision and recall under varying thresholds. Particularly useful in

evaluating classifier performance on imbalanced datasets.

Fig. 11. Bar plot showing memory consumption (in MB) by each functional

module. The result aids in identifying resource-heavy components for

potential optimization or deployment planning.

Fig. 12. Line graph illustrating CPU utilization percentages across pipeline

stages. Modules with higher CPU load are potential bottlenecks and

candidates for acceleration or parallelization.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

513 | P a g e
www.ijacsa.thesai.org

Fig. 13. Graph showing the trade-off between privacy budget (ε) and model

accuracy. Higher ε values reduce noise and increase accuracy but reduce

privacy, allowing for a balanced privacy-preserving configuration.

The distribution plot in Fig. 14 of user session lengths
reveals behavioral patterns. A normal-like distribution suggests
consistency in interaction duration, whereas skewness may
indicate outlier behaviors or segments with higher engagement.
This learning curve in Fig. 15 compares model training and
validation loss over epochs. Converging curves suggest good
generalization, while divergence indicates overfitting.
Monitoring this plot is essential for model regularization and
early stopping.

Fig. 14. Histogram with KDE overlay illustrating the distribution of user

session lengths. The shape of the distribution reveals user behavior

consistency and session engagement characteristics.

Fig. 15. Training and validation loss curves across epochs. The proximity or

divergence of the two curves indicates the model’s generalization ability,

overfitting risk, and the need for regularization.

A. Comparison Analysis and Discussion

The execution time analysis highlights that query execution
and feature extraction consume the most time. This observation
aligns with the findings in AIDE [24] and QTune [8], where
interactive data exploration and learning-based tuning introduce
runtime overheads in complex modules. Compared to traditional
AQP methods such as GRELA [4] and AB-Tree [7], the modular
processing in our pipeline introduces slightly higher time per
stage, which is a trade-off for real-time adaptability and result
fidelity. Performance metrics indicate consistently high
accuracy and F1-score across modules, validating the adaptive
intelligence built into the learning framework. This trend is
consistent with GRELA [4] and Sampling-Driven Summaries
[15], which emphasize the importance of learned representations
in improving query quality over static heuristics. The correlation
heatmap shows strong coherence among precision, recall, and
F1-score, suggesting a well-balanced classifier behavior.
Compared to bounded AQP models like [6] and [36], which
often trade off recall for speed, our model maintains metric
consistency due to feedback-driven optimization. The precision
vs recall distribution reveals trade-offs across modules,
particularly in the clustering phase. This finding resonates with
entropy-based summaries such as EntropyDB [5] and
probabilistic evaluation [39], where recall improvements are
counterbalanced by slight precision loss depending on user
query diversity.

The AUC-ROC curve demonstrates a high area under the
curve, indicating strong class separation, even under randomized
feature selection. Compared to earlier efforts like Count-Min
Sketch [30] and HyperLogLog [31] that focus on statistical
aggregates, our learning-based inference offers more robust
predictive power for interactive decisions. The confusion matrix
helps visualize misclassification hotspots. Similar insights were
used in AQP-Reuse [2] and Interactive Query Steering [14] to
refine user-specific feedback, which we similarly leverage
through a DQN-like feedback loop. The precision-recall curve
confirms good balance across thresholds. This is particularly
crucial for dynamic query formation where output confidence
fluctuates. Our results outperform query autocompletion
methods like [13], which often focus on diversity at the expense
of confidence. Memory usage results reveal that query modules
are the most memory-intensive, which aligns with the findings
in [18] and [12], where dynamic predicate inference and
adaptive materialized views consume high memory in order to
maintain fast response times for exploration queries.

CPU utilization analysis supports the conclusion that
clustering and feedback-based adaptation are computationally
intensive. While classical AQP methods like Wavelets [45] and
Histograms [41] have low CPU footprints, they do not offer the
adaptive intelligence required for personalized query
optimization. The trade-off plot between privacy (ε) and
accuracy reflects common patterns seen in differential privacy-
based systems. Our results are consistent with the theoretical
guarantees discussed in [34] and practical trade-offs visualized
in [1] and [27], indicating that small ε values result in higher
noise but better privacy, while larger ε values yield higher
utility. Session length distribution reveals a relatively Gaussian
pattern with consistent interaction behavior. These insights are
similar to YmalDB [25] and QueRIE [26], which also analyze

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

514 | P a g e
www.ijacsa.thesai.org

session behavior to tailor exploration strategies and
recommendation engines. Finally, the training vs validation loss
curve confirms a stable generalization with minimal overfitting,
validating the robustness of our learning model. Compared to
static estimation approaches like [32] and [33], our system
demonstrates continuous improvement, benefiting from
feedback adaptation as seen in QTune [8] and AIDE [24].

V. CONCLUSION

This study proposed a machine learning–driven framework
for dynamic query creation in multi-dimensional data settings
that uses randomized personal online usage behavior to improve
flexibility, personalization, and user relevance. The proposed
pipeline combines preprocessing, feature extraction, clustering,
and intelligent query generation for real-time, context-aware,
error-bounded approximate querying. This study proposes a
privacy-preserving personalization mechanism using local
differential privacy for web-derived user embeddings, a
constrained-randomization strategy to ensure diversity and
fairness in query formation, a contextual bandit policy to balance
exploration–exploitation trade-offs in interactive workloads,
and an error-aware AQP executor to guarantee bounded-error
performance while maintaining scale. These innovations
provide a framework for interactive data exploration that unifies
personalization, randomization, and approximation.
Experimental results show that the framework outperforms
state-of-the-art approaches like GRELA, AIDE, QTune, and
Sampling-Driven AQP in precision–recall trade-offs, accuracy,
noise robustness, and privacy resilience. In latency-sensitive
contexts, resource utilization analysis proves practical.
However, this study has drawbacks. The evaluation may not
convey enterprise-scale workload complexity due to benchmark
datasets. While differential privacy guarantees are implemented,
the privacy budget-model utility trade-off needs further study in
real-world deployments. Highly dynamic schema-evolving data
scalability is another issue. Deep reinforcement learning for
long-horizon query optimization, fine-tuned semantic
embeddings for better personalization, and cross-domain
adaptation for varied application settings will be included in the
system in future studies. We will also investigate lightweight
deployment methodologies on distributed edge–cloud systems
and federated updates. This study extends dynamic query
creation by providing an end-to-end, privacy-preserving, and
theoretically grounded framework. Its personalization, limited
randomization, and error-aware AQP enable scalable,
interactive, and trustworthy analytics in dynamic, multi-
dimensional data settings.

REFERENCES

[1] H. Zhang, Y. Jing, Z. He, K. Zhang, and X. S. Wang, "Learning-based

Sample Tuning for Approximate Query Processing in Interactive Data

Exploration," IEEE Transactions on Knowledge and Data Engineering,

vol. 36, no. 11, pp. 6532–6546, 2023.

[2] Y. Engelmann, T. Breuer, and P. Schaer, "AQP-Reuse: Reusing

Approximate Query Results for Interactive Analytics," Proceedings of the

VLDB Endowment, vol. 16, no. 3, pp. 425–438, 2023.

[3] S. Maroulis, N. Bikakis, V. Stamatopoulos, and G. Papastefanatos,

"Adaptive Indexing for Approximate Query Processing in Exploratory

Data Analysis," Information Systems, vol. 102, pp. 101–119, 2025.

[4] P. Li, X. Chen, Y. Liu, and G. Li, "GRELA: Graph-Representation-

Learning-based Approximate Query Processing," The VLDB Journal,

vol. 34, no. 2, pp. 345–362, 2025.

[5] L. Orr, M. Balazinska, and D. Suciu, "EntropyDB: A Probabilistic

Approach to Approximate Query Processing," The VLDB Journal, vol.

28, no. 4, pp. 571–588, 2019.

[6] K. Li, Y. Zhang, G. Li, W. Tao, and Y. Yan, "Bounded Approximate

Query Processing," IEEE Transactions on Knowledge and Data

Engineering, vol. 31, no. 12, pp. 2262–2276, 2019.

[7] Z. Zhao, D. Xie, and F. Li, "AB-Tree: Index for Concurrent Random

Sampling and Updates," Proceedings of the VLDB Endowment, vol. 15,

no. 9, pp. 1835–1847, 2022.

[8] G. Li, X. Zhou, S. Li, and B. Gao, "QTune: A Query-Aware Database

Tuning System with Deep Reinforcement Learning," Proceedings of the

VLDB Endowment, vol. 12, no. 12, pp. 2118–2130, 2019.

[9] R. T. Rimi, K. M. A. Hasan, and T. Tsuji, "Multidimensional Query

Processing Algorithm by Dimension Transformation," Scientific Reports,

vol. 13, art. 5903, 2023.

[10] L. H. T. Nguyen, Y. Yuan, and S. Ma, "Interactive OLAP Querying and

Visual Exploration via Continuous Approximation," Information

Systems, vol. 105, art. 102137, 2024.

[11] S. K. Mohapatra and M. Balazinska, "Approximate Data Cubes: A

Compression and Summarization Approach," IEEE Transactions on

Knowledge and Data Engineering, vol. 35, no. 4, pp. 1520–1532, 2023.

[12] J. Roh, B. He, and S. Chaudhuri, "Adaptive Materialized Views for

Interactive Querying," The VLDB Journal, vol. 33, no. 6, pp. 1205–1224,

2024.

[13] E. T. Large, K. Srivastava, and M. E. J. Newman, "Query Autocompletion

via Predictive Sampling," Information Systems, vol. 106, art. 102187,

2024.

[14] Y. Shen, H. Wang, and C. Zhang, "Interactive Query Steering for Diverse

Result Retrieval," The VLDB Journal, vol. 33, no. 1, pp. 85–104, 2024.

[15] Z. He, Y. Li, and J. Pei, "Sampling-Driven Explorable Data Summaries,"

IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 11,

pp. 6013–6026, 2023.

[16] M. Geohegan and E. Pitoura, "Approximate Top-k Query Processing on

Multidimensional Streams," Information Systems, vol. 103, art. 102119,

2023.

[17] S. Müller, J. Quinton, and M. Ramanathan, "Query Latency Models for

Interactive Geospatial Retrieval," GeoInformatica, vol. 27, no. 2, pp. 497–

518, 2023.

[18] W. Fu, P. Zhao, and Q. Wu, "Dynamic Predicate Inference for Efficient

Interactive SQL," ACM Transactions on Database Systems, vol. 48, no.

4, art. 20, 2023.

[19] Y.-R. Lin, C. Yu, and R. S. Jagadish, "Foundation Models for

Approximate SQL Processing," IEEE Transactions on Knowledge and

Data Engineering, vol. 37, no. 1, pp. 114–129, 2025.

[20] S. Farid, L. Wang, and X. Li, "Dynamic Sampling for Interactive

Visualization over Large Databases," Journal of Visualization, vol. 27, no.

3, pp. 489–504, 2024.

[21] A. Symeonidis, B. C. Ooi, C. Re, and M. Wu, "Sample Sufficiency in

Approximate Query Processing Revisited," The VLDB Journal, vol. 32,

no. 5, pp. 763–785, 2023.

[22] E. Verbruggen, A. Phan, and B. Beck, "Constraint-Aware Interactive

Query Building," The VLDB Journal, vol. 32, no. 2, pp. 345–362, 2023.

[23] R. Das, M. N. Gajjar, and P. Mohite, "Multidimensional Index

Composition for Fast Interactive Queries," Information Systems, vol. 99,

art. 101820, 2022.

[24] K. S. Dimitriadou, O. Papaemmanouil, and Y. Diao, "AIDE: An Active

Learning-Based Approach for Interactive Data Exploration," IEEE

Transactions on Knowledge and Data Engineering, vol. 28, no. 11, pp.

2842–2856, 2016.

[25] M. Drosou and E. Pitoura, "YmalDB: Exploring Relational Databases via

Result-Driven Recommendations," The VLDB Journal, vol. 22, no. 6, pp.

849–874, 2013.

[26] M. Eirinaki, S. Abraham, N. Polyzotis, and N. Shaikh, "QueRIE:

Collaborative Database Exploration," IEEE Transactions on Knowledge

and Data Engineering, vol. 26, no. 7, pp. 1778–1790, 2014.

[27] K. Li and G. Li, "Approximate Query Processing: What is New and

Where to Go?," Data Science and Engineering, vol. 3, pp. 379–397, 2018.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

515 | P a g e
www.ijacsa.thesai.org

[28] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M.

Venkatrao, F. Pellow, and H. Pirahesh, "Data Cube: A Relational

Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-

Totals," Data Mining and Knowledge Discovery, vol. 1, pp. 29–53, 1997.

[29] H. V. Jagadish, L. V. S. Lakshmanan, and D. Srivastava, "The Quotient

Cube: How to Summarize the Semantics of a Data Cube," The VLDB

Journal, vol. 13, no. 3, pp. 211–230, 2004.

[30] G. Cormode and S. Muthukrishnan, "An Improved Data Stream

Summary: The Count-Min Sketch and Its Applications," Journal of

Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

[31] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, "HyperLogLog: The

Analysis of a Near-Optimal Cardinality Estimation Algorithm," Discrete

Mathematics & Theoretical Computer Science, vol. 8, pp. 137–156, 2007.

[32] R. J. Lipton and J. F. Naughton, "Query Size Estimation by Adaptive

Sampling," Journal of Computer and System Sciences, vol. 51, no. 1, pp.

18–25, 1995.

[33] N. Alon, Y. Matias, and M. Szegedy, "The Space Complexity of

Approximating the Frequency Moments," Journal of Computer and

System Sciences, vol. 58, no. 1, pp. 137–147, 1999.

[34] J. Acharya, I. Saha, A. Orlitsky, A. T. Suresh, and H. Tyagi, "A Unified

View of Probability Estimation, with Applications to Distribution

Property Testing and AQP," Annals of Statistics, vol. 45, no. 4, pp. 1776–

1801, 2017.

[35] A. Çetintemel, J. J. Hwang, and D. Zinn, "Adaptive Data Summaries for

Approximate Query Processing," The VLDB Journal, vol. 24, no. 2, pp.

319–343, 2015.

[36] S. Chaudhuri, G. Das, and V. Narasayya, "A Robust, Optimization-Based

Approach for Approximate Answering of Aggregate Queries," Journal of

Computer and System Sciences, vol. 64, no. 3, pp. 499–512, 2002.

[37] N. Koudas, S. Muthukrishnan, and D. Srivastava, "Approximate Range

Aggregation on Streams," The VLDB Journal, vol. 18, no. 1, pp. 199–

228, 2009.

[38] P. J. Haas and C. König, "A Framework for Optimizing Join Queries with

Sampling," ACM Transactions on Database Systems, vol. 31, no. 2, pp.

556–597, 2006.

[39] N. N. Dalvi and D. Suciu, "Efficient Query Evaluation on Probabilistic

Databases," The VLDB Journal, vol. 16, no. 4, pp. 523–544, 2007.

[40] Y. He and A. N. Wilschut, "R*-Hist: Synopses for Range Queries," Data

& Knowledge Engineering, vol. 65, no. 1, pp. 1–23, 2008.

[41] A. Aboulnaga and S. Chaudhuri, "Self-Tuning Histograms: Building

Histograms Without Looking at Data," IEEE Transactions on Knowledge

and Data Engineering, vol. 13, no. 6, pp. 1115–1127, 2001.

[42] V. Poosala and Y. E. Ioannidis, "Selectivity Estimation Without the

Attribute Value Independence Assumption," The VLDB Journal, vol. 7,

no. 3, pp. 228–251, 1998.

[43] S. Agarwal, R. Agrawal, P. Deshpande, and A. Gupta, "On the

Computation of Multidimensional Aggregates," Data Mining and

Knowledge Discovery, vol. 1, pp. 11–26, 1997.

[44] T. Ge, S. Liu, and S. Madden, "For Approximate Query Processing:

Exploiting Transforms," IEEE Transactions on Knowledge and Data

Engineering, vol. 27, no. 12, pp. 3236–3248, 2015.

[45] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim, "Approximate

Query Processing Using Wavelets," The VLDB Journal, vol. 10, no. 2–3,

pp. 199–223, 2001.

