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Abstract—The classification of cough sounds for smoker 

detection represents a challenging task in audio processing that 

compares different data representation methods. This study 

presents a performance analysis of two prominent deep learning 

approaches: a spectrogram-based model, the Audio Spectrogram 

Transformer (AST), and a raw waveform-based model, 

Wav2Vec2. We used 7,561 smoker and 7,561 non-smoker 

samples from the CODA TB DREAM Challenge dataset. Both 

models were trained with five-fold cross-validation and data 

augmentation (SpecAugment for AST; noise, pitch, and time 

shifts for Wav2Vec2). The raw waveform-based Wav2Vec2 

model achieved the best performance, with an average accuracy 

of 86.5%, an F1-score of 0.862, and an Area Under the Curve 

(AUC) of 0.945, completing training in approximately 49 minutes 

per fold. In contrast, the spectrogram-based AST model reached 

around 76-77% accuracy and an AUC of 0.85 in approximately 

78 minutes per fold. These findings indicate that the raw 

waveform-based approach is significantly more effective and 

computationally efficient than the spectrogram-based approach 

for this task, offering a robust method for non-invasive smoker 

classification through the analysis of vocal biomarkers. 
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I. INTRODUCTION 

Tobacco consumption continues to be a major contributor 
to preventable illness and death on a global scale. As reported 
by the World Health Organization (WHO), tobacco-related 
illnesses affect more than 8 million individuals each year, 
including approximately 1.3 million non-smokers who die as a 
result of exposure to secondhand smoke [1]. The long-term 
health effects of smoking, such as cardiovascular diseases, 
chronic obstructive pulmonary disease (COPD), and multiple 
types of cancer, pose a substantial burden on both individuals 
and healthcare systems [2]. 

Tobacco smoke comprises a complex blend of more than 
7,000 chemical substances, including at least 70 that are 
carcinogenic, all of which significantly contribute to its wide-
ranging adverse health effects. These substances can damage 
nearly every organ in the body, leading to a wide range of 
diseases [3]. For example, smoking is a leading cause of 
several types of cancer, including those affecting the lungs, 
oral cavity, larynx, bladder, and pancreas. It also markedly 

elevates the risk of cardiovascular diseases by contributing to 
atherosclerosis development and impairing endothelial 
function. Moreover, smoking impairs respiratory health, 
leading to conditions like COPD and worsening of asthma 
symptoms [4]. The harmful effects of smoking are not limited 
to active smokers; secondhand smoke exposure also poses 
serious health risks, including increased incidence of lung 
cancer and heart disease in non-smokers. 

Despite the well-documented health consequences, the 
accurate and efficient verification of smoking status remains a 
significant challenge. Conventional methods primarily rely on 
self-reported declarations, which are prone to 
misrepresentation and bias. Studies indicate that a substantial 
number of smokers misrepresent their status on various 
applications. To overcome this, biochemical tests, such as 
cotinine detection in saliva or urine, are often used for 
objective assessment. While reliable, these biochemical 
methods have notable drawbacks: they are invasive, costly, and 
often impractical for large-scale or remote screening scenarios 
[5]. These limitations highlight the need for an alternative 
detection method that is non-invasive, objective, and scalable. 

Recent advancements in digital health have introduced 
vocal biomarkers as a promising, non-invasive solution. 
Smoking induces physiological changes in the respiratory tract 
and vocal folds, leading to measurable alterations in voice and 
cough characteristics such as fundamental frequency, jitter, 
shimmer, and harmonics-to-noise ratio [6]. Smokers tend to 
exhibit rougher voice textures, prolonged coughing bouts, and 
altered pitch or spectral features, which have been empirically 
shown to distinguish them from non-smokers with significant 
accuracy [7]. These acoustic features can be captured and 
analyzed using data science to differentiate between smokers 
and non-smokers, offering a cost-effective and accessible 
approach to verification. 

The application of data science and deep learning is 
expected to improve the efficiency of the underwriting process. 
As an interdisciplinary field, data science uses scientific 
methodologies, algorithms, and systems to extract insights 
from both structured and unstructured data. It draws upon 
mathematics, statistics, information science, and computer 
science principles and is closely associated with techniques 
such as data mining, machine learning, and big data analytics. 
These tools support the creation of predictive models, uncover 
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patterns and trends, and facilitate data-driven decision-making. 
Deep learning, as outlined in [8], is a subset of machine 
learning that enables a system to learn from previous data and 
understand complex concepts without explicit programming. 
By learning from experience, computers can autonomously 
perform tasks, reducing the need for manual input. This 
capability holds promise for enabling real-time underwriting 
processes. In previous studies [9] and [10], deep learning, 
particularly Convolutional Neural Networks (CNNs), was 
employed to detect diabetic retinopathy using retinal fundus 
images. 

This study used audio data to implement a deep learning 
approach to identify individuals’ smoking status. The proposed 
approach is expected to enable accurate, real-time 
identification of smoking status, thereby enhancing the 
underwriting process. Moreover, by automating a task that is 
traditionally performed in the laboratory, artificial intelligence 
offers a cost-saving opportunity for insurance companies 
through increased operational efficiency. 

Based on this context, this study aims to answer the 
following primary research questions: 1) How effectively can 
deep learning models differentiate between smokers and non-
smokers using only the sound of their cough? 2) Which audio 
data representation: a spectrogram-based model (Audio 
Spectrogram Transformer) or a raw waveform-based model 
(Wav2Vec2) offers superior classification performance and 
computational efficiency for this task? 

Two frameworks for audio classification were used in this 
study. The first kind operates using the mel-spectrogram image 
as input. The second kind uses the raw waveform as the input. 
Representative models for the first approach include CNN, 
VGGish, YAMNet, and AST. For the second approach, 
CNN1D, WaveNet, SampleRNN, and Wav2Vec2 are 
commonly used models [11]. While these architectures have 
been benchmarked for detecting overt respiratory diseases, 
their comparative efficacy for identifying the subtler 
physiological markers of smoking status in cough audio 
remains an open and important research question. 

AST (Audio Spectrogram Transformer) is a deep learning 
model that adapts the transformer architecture, originally 
developed for natural language processing, to audio 
classification tasks by processing mel-spectrogram 
representations of audio signals. Unlike conventional 
convolutional models, AST leverages self-attention 
mechanisms to capture long-range temporal and frequency 
dependencies in audio data. AST has demonstrated strong 
performance in the context of detecting anomalies or 
categorizing specific audio events, such as identifying coughs. 
For instance, research in [12] used AST to classify various 
types of cough sounds and achieved an F1-score of 0.804. 

Wav2Vec2 is a self-supervised learning model developed 
for speech representation learning that has shown remarkable 
performance in various audio classification tasks. It operates 
directly on raw audio waveforms and learns contextualized 
representations using a combination of convolutional feature 
encoders and transformer-based architectures. In contrast to 
traditional methods that depend extensively on handcrafted 

features or spectrogram representations, Wav2Vec2 learns 
meaningful patterns from raw, unlabeled audio data 
autonomously, thereby substantially minimizing the reliance on 
large annotated datasets [13]. In the domain of audio-based 
classification, including speaker identification, emotion 
recognition, and health-related applications such as cough 
sound classification, Wav2Vec2 has demonstrated high levels 
of accuracy. For instance, a study [14] employed Wav2Vec2 
with minimal preprocessing to detect COVID-19 coughs, 
achieving competitive results with an Area Under the Curve 
(AUC) of 0.7810. 

In this study, the AST and Wav2Vec2 algorithms were 
employed to classify coughs of smokers. The AST model was 
selected because of its strong performance in audio 
classification tasks, particularly those using mel-spectrogram 
inputs. Then, the Wav2Vec2 algorithm, which is one of the 
best models for audio representation that uses raw waveform as 
the input, is used. The performances of AST and Wav2Vec2 
will be compared with those of prior approaches for classifying 
smokers from audio recordings. 

The remainder of this paper is organized as follows. 
Section II provides an overview of related work in the field. 
Section III details the dataset, data preprocessing techniques, 
and the architecture of the deep learning models used. 
Section IV presents the experimental results and a comparative 
analysis of the models' performance. Finally, Section V 
concludes the paper by summarizing the key findings and 
suggesting directions for future research. 

II. RELATED WORK 

Research into identifying smoking status from vocal cues 
has evolved from traditional acoustic feature analysis to the 
application of deep learning. Early studies focused on 
identifying perturbations in voice characteristics, such as 
fundamental frequency, jitter, shimmer, and harmonics-to-
noise ratio, to distinguish smokers from non-smokers. These 
approaches, while foundational, often relied on handcrafted 
features and classical machine learning models. 

Subsequent research moved towards machine learning 
techniques applied to more complex vocal representations as 
summarized in Table I. Poorjam et al. employed i-vector 
embeddings representing whole vocal tract characteristics 
combined with Logistic Regression classification, achieving an 
AUC of 0.74. This approach demonstrated the value of 
compact speaker-level representations for smoking status 
detection. Ma et al. applied convolutional neural networks 
(ResNet18) to Mel-frequency cepstral coefficients (MFCCs) 
and other acoustic features, reporting an Accuracy of 82% on a 
dataset comprising 1,194 samples. This deep learning approach 
leveraged spatial patterns in spectrogram representations to 
improve classification performance. Furthermore, Ayadi et al. 
explored a hybrid model leveraging pretrained Wav2Vec as a 
feature extractor directly from raw waveforms, followed by a 
Support Vector Machine (SVM) classifier, which achieved an 
accuracy of 72%. The use of Wav2Vec allowed for the 
extraction of rich temporal and spectral features without 
reliance on handcrafted features, highlighting the promise of 
end-to-end learned representations for this task. 
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Despite these promising results, current research is limited 
by several factors. Many studies utilize relatively small and 
imbalanced datasets, which may restrict the generalizability of 
models. Moreover, most frameworks employ multi-stage 
pipelines, separate feature extraction followed by classification 
or adapt architectures originally designed for image data (e.g., 
ResNet) on spectrogram inputs. There remains a lack of direct, 
rigorous comparative evaluations between state-of-the-art end-
to-end audio-specific architectures. Specifically, models that 
process spectrograms such as the Audio Spectrogram 
Transformer (AST) and those that work directly on raw audio 
waveforms like Wav2Vec2 have not yet been comprehensively 
contrasted for smoker detection. 

This study aims to address these gaps by conducting a 
systematic performance comparison of these two leading 
approaches on a large, balanced dataset. The results will 
provide critical insights into the optimal audio representation 
and model design for accurate and robust smoking status 
classification from voice signals. 

TABLE I.  STATE-OF-THE-ART 

Study Methodology 
Audio 

Features 
Dataset 

Evaluation 

Metrics 

[15] 
Wav2Vec + 

SVM 

Raw-

waveform 
4917 data  

Accuracy = 

72% 

AUC = 0.76 

[16] ResNet18 

MFCC, 

FBank, F0, 

jitter, and 

shimmer 

- 

Accuracy = 

82% 

F1-score = 

0.823 

[17] 
Logistic 

Regression 
i-vector 1194 data  AUC = 0.74 

III. DATA AND METHODOLOGY 

This section details the data sources and methodological 
approaches employed to address the core objectives of this 
research. Fig. 1 illustrates the procedural framework guiding 
this study. 

A. Dataset 

The dataset used in this research is the CODA TB DREAM 
Challenge dataset [18] comprises 29,768 cough recordings 
from seven countries (India, Philippines, South Africa, 
Uganda, Vietnam, Tanzania, and Madagascar). Each recording 
is associated with demographic and clinical metadata. For the 
purposes of our study, we removed all tuberculosis-positive 
cases and performed random undersampling of the majority 
class, resulting in 7,561 smoker and 7,561 non-smoker cough 
samples. The dataset is illustrated in Fig. 2. 

B. Data Preprocessing and Augmentations 

This study applied several data preprocessing techniques, 
including the following: 

• Resampling: This process involves adjusting the 
sampling rate to match the model’s requirements, 
ensuring input consistency, reducing memory usage, 
and improving computational efficiency [19]. In this 
study, we used a sampling rate of 16,000 Hz. 

• Padding and Truncation: Padding and truncation are 
processes used to standardize the duration of audio 
samples, ensuring that they can be uniformly processed 
by the model. Padding involves adding zero values to 
audio samples that are shorter than the target length, 
whereas truncation trims samples that exceed the 
specified duration. In this study, the audio length was 
set to 0.5 seconds. 

 

Fig. 1. Research workflow. 

 

Fig. 2. Dataset distribution. 

• Mel-Spectrogram Conversion: For the AST model, the 
input must be in the mel-spectrogram format. This 
process involves applying the Short-Time Fourier 
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Transform (STFT) to decompose the audio into its 
frequency components over time. Subsequently, the 
spectrogram was mapped onto the Mel scale, which 
more closely aligns with human auditory perception by 
emphasizing lower frequencies. Then, the mel-
spectrogram is converted to a decibel scale [20]. In this 
study, we used a mel-spectrogram with 128 mels bands, 
128 FFT components, and a hop length of 128. 

• Training, Validation, and Test Data Splitting: Dividing 
the dataset into training, validation, and test sets is a 
crucial step in developing deep learning models. The 
training set, which comprises most of the data, is used 
to teach the model to recognize patterns and extract 
relevant features. During training, validation is 
employed to monitor the model’s performance and 
mitigate issues such as overfitting or underfitting. The 
test set is used to evaluate the model’s generalization 
ability on previously unseen data. In this study, the 
dataset was partitioned with 25% used as the test set, 
and the remainder split using 5-fold cross-validation. 

• Subsequently, augmentation techniques were applied to 
the training set to enhance data diversity and improve 
the model’s generalization performance. The 
augmentation methods include SpecAugment for the 
AST algorithm, and Gaussian noise, pitch shift, and 
time shift for the Wav2Vec2 algorithm [21]. The 
following provides a detailed explanation of each 
augmentation technique: 

• SpecAugment: SpecAugment is a data augmentation 
technique that modifies audio data spectrogram 
representations. It applies three primary 
transformations: time warping, frequency masking, and 
time masking. Time warping involves stretching or 
compressing the spectrogram along the temporal axis. 
Frequency masking randomly obscures certain 
frequency bands. Time masking similarly hides 
segments along the time axis. These augmentations 
compel models to focus on more general patterns within 
the data, rather than overfitting to specific features, 
thereby improving generalization to diverse and unseen 
audio inputs. In this study, we used eight bands for 
frequency masking and eight frames for time masking. 

• Gaussian Noise: Gaussian noise augmentation involves 
the addition of random noise drawn from a Gaussian 
distribution to the original audio signal. This technique 
simulates real-world acoustic conditions such as 
background chatter, machinery hum, or environmental 
disturbances, thereby increasing the robustness of 
models against noisy inputs. By slightly perturbing the 
waveform, the Gaussian noise encourages the model to 
generalize better by learning essential features rather 
than memorizing clean training data. The noise mean 
and standard deviation can be adjusted to control the 
noise intensity. In this study, the minimum and 
maximum amplitudes for the Gaussian noise are 0.001 
and 0.015, respectively. 

• Pitch Shift: Pitch shifting is an augmentation technique 
that modifies the pitch of an audio signal while 
preserving its temporal duration. This is achieved by 
raising or lowering the frequency components of the 
audio waveform, effectively simulating vocal tone, 
gender, or emotional state variations. By introducing 
pitch variability, this technique enhances the model’s 
ability to generalize across different speakers and 
speaking styles. In this study, we used pitch shift with a 
minimum of -4 semitones and a maximum of 4 
semitones. 

• Time Shift: Time shift augmentation involves shifting 
the audio waveform by a small amount along the time 
axis. This technique simulates natural variations in 
speech or sound onset, such as differences in timing or 
speaker response delays, which often occur in real-
world recordings. By randomly altering the start point 
of the audio signal, time shifting encourages the model 
to become less sensitive to the exact temporal position 
of features and focus more on the content itself. In this 
study, we used time shift augmentation with a minimum 
shift of -10% and a maximum shift of 10%. 

C. Building Models 

This study adopts two distinct deep learning approaches for 
classifying smoking status based on cough audio. The first 
approach employs the AST, which converts raw audio signals 
into mel-spectrograms—a visual time-frequency 
representation—before feeding them into a vision transformer-
based model. This method treats audio as an image and 
leverages computer vision techniques to extract spatial patterns 
within the spectrogram. In contrast, the second approach uses 
Wav2Vec2, a transformer-based architecture designed to 
directly process raw audio waveforms without the need for 
spectrogram conversion. This end-to-end method allows the 
model to learn relevant features directly from the waveform 
through self-supervised pretraining followed by fine-tuning, 
integrating feature extraction and classification within a single 
unified stage. 

For the AST model, the input mel-spectrogram is first 
divided into non-overlapping 16 x 16 patches. Each patch is 
flattened into a one-dimensional vector and then passed 
through a linear projection layer to obtain a fixed-dimensional 
embedding. The architecture of AST can be seen in Fig. 3. 
Mathematically, for each patch 𝑃𝑖 , the embedding vector 𝐸𝑖 is 
computed using a linear projection, as defined in (1): 

𝐸𝑖 = 𝑊 ∙ 𝑣𝑒𝑐(𝑃𝑖) + 𝑏  (1) 

where, 𝑊  denotes the projection weight matrix, 𝑏 
represents the bias vector, and 𝑣𝑒𝑐(𝑃𝑖) corresponds to the 
flattened image patch. A learnable classification token, denoted 
as [CLS] is prepended to the patch embedding sequence to 
enable global representation learning for the input. Then, 
positional embeddings are added to each token to encode the 
relative position of each patch within the mel-spectrogram. 
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Fig. 3. AST architecture. 

The positional encoding, which uses sine and cosine 
functions at varying frequencies to capture the order of 
sequence elements, is mathematically defined in (2): 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
𝑝𝑜𝑠

100000
2𝑖
𝑑

) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = sin (
𝑝𝑜𝑠

100000
2𝑖
𝑑

)  (2) 

where, 𝑝𝑜𝑠  denotes the position index, 𝑖  represents the 
dimension index, and 𝑑  is the embedding dimension. The 
positional encodings are added element-wise to incorporate the 
positional information into the model, enabling it to capture the 
sequential order of the input data. 

Subsequently, the resulting sequence is input into the 
transformer encoder, which comprises 24 stacked layers. Each 
layer includes a multi-head self-attention mechanism with 16 
attention heads, followed by a position-wise feed-forward 
network with a hidden size of 1024. The self-attention 
mechanism calculates attention scores based on the query 𝑄, 
key 𝐾, and value 𝑉, and is mathematically expressed in (3): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (3) 

where, 𝑑𝑘  denotes the dimensionality of the key vectors. 
The multi-head attention mechanism computes multiple 
parallel attention outputs, each corresponding to a distinct 
attention head. These outputs are then concatenated, and a 
linear transformation is performed to produce the final 
attention representation. 

Following the self-attention mechanism, each token is 

processed through a position-wise feed-forward network 
(FFN), which comprises two linear transformations separated 
by as activation function, and non-linear activation function. 
This operation can be mathematically described by (4): 

𝐹𝐹𝑁(𝑥) = 𝐺𝐸𝐿𝑈(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (4) 

where, 𝑥 denotes the input token representation, 𝑊1  and 𝑊2 
are learnable weight matrices, 𝑏1and 𝑏2 are the corresponding 
bias vectors, and GELU is the Gaussian Error Linear Unit 
activation. The GELU activation, used in the FFN, is defined in 
(5): 

𝐺𝐸𝐿𝑈(𝑥) = 𝑥 ∙ Φ(𝑥) = 

𝑥 ∙
1

2
(1 + tanh (√

2

𝜋
(𝑥 + 0.044715𝑥3))) (5) 

where, Φ(𝑥)  is the standard Gaussian cumulative 
distribution function. The FFN allows for nonlinear 
transformations and enhances the model’s capacity to learn 
complex representations. 

Residual connections followed by layer normalization are 
applied after the self-attention and feed-forward sublayers. This 
architectural design helps stabilize the training process and 
facilitates efficient gradient flow throughout the network. After 
processing through 24 transformer encoder layers, the model 
does not rely on the conventional classification token [CLS] to 
represent global information. In this study, we employ 
attention pooling, which dynamically aggregates the sequence 
of patch embeddings into a single vector based on learned 
attention weights. The attention pooling mechanism assigns a 
weight 𝑎𝑖  to each token embedding ℎ𝑖 , and computes the 
aggregated representation ℎ𝑎𝑡𝑡𝑛  as a weighted sum of these 
embeddings, shown in (6): 

ℎ𝑎𝑡𝑡𝑛 = ∑ 𝑎1ℎ𝑖
𝑁
𝑖=1   (6) 

This representation is then passed through a final fully 
connected layer, followed by a softmax activation to perform a 
binary classification between smokers and non-smokers. The 
output logits 𝑧 = [𝑧0 ,𝑧1]  are converted into the class 
probability using the softmax function, as shown in (7): 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

𝑒𝑧0+𝑒𝑧1
, 𝑖 ∈ {0,1}  (7) 

During model training, the cross-entropy loss function was 
employed to quantify the difference between the predicted 
probability distribution and the actual class labels. The loss ℒ,  
which the model aims to minimize during training, is 
mathematically expressed in (8): 

ℒ = − ∑ 𝑦𝑖 log(𝑦𝑖)
1
𝑖=0        (8) 

The input of the Wav2Vec2 model is a raw audio 
waveform with a fixed length of 8,000 samples and a 
normalized amplitude within the range [-1, 1]. The Wav2Vec2 
architecture comprises two primary components: a 
convolutional feature encoder and a transformer-based context 
network. The architecture of Wav2Vec2 is shown in Fig. 4. 
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Fig. 4. Wav2Vec2 architecture. 

The feature encoder consists of seven one-dimensional 
convolutional layers that transform the raw audio signal into a 
sequence of latent acoustic representations. Each convolutional 
layer applies a kernel across the temporal dimension and 
reduces the sequence length through stride-based 
downsampling, which is computed as shown in (9): 

𝑌(𝑖) = (𝑥 ∗ 𝑤)(𝑖) = ∑ 𝑥(𝑖 + 𝑘) ∙ 𝑤(𝑘)𝐾−1
𝑘=0  (9) 

where, 𝑥 is the input signal, 𝑤  is the convolution kernel, 
and 𝐾 is the kernel size. The output is a lower-resolution but 
higher-dimensional representation capturing the local temporal 
features of the waveform. Each convolutional layer is 
immediately followed by the GELU activation function and 
layer normalization, which is computed as shown in (10): 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥) = 𝛾 ∙
𝑥−𝜇

√𝜎2+𝜖
+ 𝛽        (10) 

where, 𝜇  and 𝜎2  represent the mean and variance of the 
input 𝑥, respectively, 𝜖  is a small constant added to ensure 
numerical stability, and 𝛾 and  𝛽  are learnable scaling and 
shifting coefficients that allow the model to adapt to the 
normalized outputs during training. 

The output of the final convolutional layer is a sequence of 
latent vectors 𝑧 = (𝑧1, 𝑧2, … 𝑧𝑇) , which is passed to the 
context network— a stack of 24 transformer encoder layers 
with 16 attention heads and a position-wise FFN with a hidden 
size of 1024. Positional encodings are first added to the 
sequence, as in the AST model. 

Each transformer block contains two sublayers: a multi-
head self-attention mechanism and an FFN. The attention 
mechanism enables each time step to attend to all others, 
thereby capturing global contextual dependencies. This self-
attention mechanism is mathematically expressed in (11): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (11) 

The FFN in each transformer layer comprises two linear 
layers separated by a GELU activation, as described in (12): 

𝐹𝐹𝑁(𝑥) = 𝐺𝐸𝐿𝑈(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (12) 

After all transformer layers are processed, the output is a 
sequence of contextualized embeddings 𝑐 = (𝑐1, 𝑐2,… , 𝑐𝑇) , 

where each vector 𝑐𝑡 ∈  ℝ𝑑 encodes the acoustic information at 
time step 𝑡. Instead of using standard mean pooling, this study 
implements attention pooling to allow the model to learn which 
time steps are most informative for classification. 

This attention mechanism enables the model to focus on 
the most relevant portions of the cough signal, thereby 
improving its ability to differentiate between smokers and non-
smokers. The attention-weighted vector 𝑐𝑎𝑡𝑡𝑛 is passed through 
a linear classification layer followed by a softmax activation to 
produce the final prediction, as defined in (13): 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

𝑒𝑧0+𝑒𝑧1
, 𝑖 ∈ {0,1}       (13) 

During training, the cross-entropy loss is used to measure 
the discrepancy between the predicted probabilities and true 
labels. The loss function ℒ for the Wav2Vec2 model is defined 
in (14): 

ℒ = − ∑ 𝑦𝑖 log(𝑦𝑖)
1
𝑖=0        (14) 

D. Training Setup 

The AdamW optimizer was used to train the models, 
incorporating a weight decay of 0.001 and an initial learning 
rate of 1 × 10−4. Training was conducted for 20 epochs with a 
batch size of 16. The objective function was cross-entropy loss. 
Early stopping was applied based on validation loss to prevent 
overfitting, with a patience of four epochs. Model performance 
was comprehensively evaluated using several metrics, 
including accuracy, precision, recall, F1-score, and AUC, 
based on a 5-fold cross-validation with 75/25 train and 
validation/test split [22]. All experiments were conducted on an 
NVIDIA RTX A4000 GPU with 16 GB VRAM. 

IV. EXPERIMENTAL RESULTS 

A. Evaluation Parameters 

This study employed several evaluation metrics, including 
the accuracy, F1-score, precision, recall, and AUC. The 
confusion matrix is a fundamental tool for assessing 
classification model performance, offering a comprehensive 
comparison between the model’s predictions and the actual 
labels. The confusion matrix comprises four components: True 
Positives (TP), True Negatives (TN), False Positives (FP), and 
False Negatives (FN). Precision quantifies the proportion of 
correctly predicted positive instances among all instances 
predicted as positive, thereby providing insight into the 
model’s susceptibility to false positive errors. Recall, on the 
other hand, evaluates the proportion of actual positive instances 
that the model correctly identified, thereby reflecting its 
effectiveness in minimizing false negative errors. The F1-
score, computed as the harmonic mean of precision and recall, 
provides a balanced assessment of the model’s performance by 
simultaneously accounting for both FP and FN. Additionally, 
the AUC, derived from the Receiver Operating Characteristic 
(ROC) curve, and measures the model’s ability to discriminate 
between classes across various threshold settings. A higher 
AUC value indicates better overall classification performance, 
especially in imbalanced dataset scenarios. These evaluation 
metrics are computed using the formulas presented in (15) 
through (21). 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (15) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (16) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (17) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  (18) 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (19) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
    (20) 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅
1

0
  (21) 

B. Experimental Analysis 

In this study, simulations and model development for 
detecting smokers based on cough sounds, as well as the 
creation of a digital audio-based detection system, were 
conducted using hardware and software with specific 
configurations. Table II presents the detailed specifications of 
the equipment and tools used. 

TABLE II.  DEVICE SPECIFICATION 

Specifications 

GPU NVIDIA RTX A4000 

GPU Memory 16 GB 

RAM 16 GB 

Disk 1 TB 

Programming Language Python 3.10 

The authors configured the training process with 20 epochs, 
a learning rate of 0.0001, and a batch size of 16, using the 
AdamW optimizer. The raw waveform audio was resampled to 
16 kHz for input into the Wav2Vec2 model and subsequently 
transformed into mel-spectrograms with 128 frequency bins for 
use with the AST model. 

As shown in Table III, the Wav2Vec2 model without 
augmentation achieved the highest overall performance, 
attaining average accuracy, recall, precision, F1-score, and 
AUC values of 86.48%, 0.866, 0.868, 0.862, and 0.945, 
respectively. This model also required the shortest training 
time, completing each fold in an average of 49 minutes. 
Although the Wav2Vec2 with augmentation showed 
comparable AUC values (consistently 0.94 across all folds), its 
overall performance metrics were slightly lower, and its 
average training time increased to 65 minutes per fold. On the 
other hand, the AST model, both with and without 
SpecAugment, demonstrated moderate performance, with 
average F1-scores around 0.76-0.77 and longer training times 
of approximately 78 minutes per fold. Notably, the addition of 
SpecAugment to the AST did not yield significant 
improvements and, in some folds, even resulted in minor 
declines in accuracy. Overall, the Wav2Vec2-based approach 
outperformed the AST-based method in terms of both 
predictive performance and computational efficiency, 

indicating its suitability for fast and accurate detection of 
smokers based on cough audio. 

TABLE III.  MODEL’S PERFORMANCE 

Model 
Fol

d 

Evaluation Parameters 
Trainin

g Time Acc Rec Pre 
F1-

Scor
e 

AU
C 

AST (w/o 

Augmentation

) 

1 
76.65

% 

0.7

7 

0.7

7 
0.77 0.84 78 min 

2 
76.62

% 

0.7

6 

0.7

6 
0.76 0.84 78 min 

3 
76.49

% 

0.7

6 

0.7

7 
0.76 0.85 78 min 

4 
78.07

% 

0.7

8 

0.7

8 
0.78 0.86 78 min 

5 
76.33

% 

0.7

6 

0.7

8 
0.76 0.85 78 min 

AST (w/ 

Augmentation

) 

1 
75.75

% 

0.7

6 

0.7

6 
0.76 0.84 78 min 

2 
77.70

% 

0.7

8 

0.7

8 
0.78 0.86 77 min 

3 
77.31

% 

0.7

7 

0.7

9 
0.77 0.86 77 min 

4 
77.52

% 

0.7

8 

0.7

8 
0.78 0.85 78 min 

5 
76.75

% 

0.7

7 

0.7

7 
0.77 0.84 78 min 

Wav2Vec2 

(w/o 

Augmentation

) 

1 
87.46

% 

0.8

7 

0.8

7 
0.87 0.94 49 min 

2 
85.69

% 

0.8

6 

0.8

6 
0.86 0.93 49 min 

3 
86.54

% 

0.8

7 

0.8

7 
0.86 0.94 49 min 

4 
86.51

% 

0.8

7 

0.8

7 
0.86 0.94 49 min 

5 
86.19

% 

0.8

6 

0.8

7 
0.86 0.94 49 min 

Wav2Vec2 

(w/ 

Augmentation

) 

1 
87.17

% 

0.8

7 

0.8

7 
0.87 0.94 65 min 

2 
84.53

% 

0.8

5 

0.8

5 
0.84 0.94 65 min 

3 
86.49

% 

0.8

6 

0.8

7 
0.86 0.94 66 min 

4 
87.23

% 

0.8

7 

0.8

7 
0.87 0.94 65 min 

5 
85.35

% 

0.8

5 

0.8

6 
0.85 0.94 65 min 

V. CONCLUSION AND FUTURE WORK 

This study successfully demonstrated that cough sounds 
can serve as a noninvasive signal for detecting smoking status 
using deep learning approaches. Among the models evaluated, 
the Wav2Vec2 architecture without augmentation yielded the 
best performance, achieving an average accuracy of 86.48%, 
F1-score of 0.862, and AUC of 0.945, while also requiring the 
shortest training time of only 49 minutes per fold. This model 
significantly outperformed the AST-based models, both with 
and without SpecAugment, which achieved only around 76%–
77% accuracy with a longer training duration of approximately 
78 minutes per fold. These findings highlight the effectiveness 
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of raw waveform-based representations like Wav2Vec2 in 
capturing audio characteristics related to smoking, surpassing 
the performance of spectrogram-based methods such as AST. 
Therefore, the raw waveform-based approach using Wav2Vec2 
presents a viable and efficient direction for developing 
automated, non-invasive health screening tools. In practice, this 
technology could be integrated into mobile applications for the 
insurance industry, offering an objective method for 
underwriting and risk assessment that moves beyond self-
reported data. In clinical settings, it could serve as a rapid, 
preliminary screening tool in primary care. However, 
significant barriers to real-world adoption must be addressed. 
These include ensuring model robustness against varying audio 
quality from different consumer-grade microphones, handling 
background noise, and validating performance across diverse 
demographic populations. 

Future work should focus on these challenges. First, 
hyperparameter tuning is necessary to further optimize model 
performance. Second, model ensembling techniques could 
enhance predictive stability. Finally, and most critically, 
evaluating cross-dataset generalization is crucial to ensure the 
model performs reliably on cough samples from different 
sources and acoustic environments before it can be considered 
for deployment in real-world scenarios. 
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