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Abstract—Maintaining high-quality source code is crucial for 

software reliability, scalability, and maintainability. Traditional 

refactoring methods, which involve manual code improvement or 

rule-based automation, often fall short due to their inability to 

understand the contextual semantics of code. These approaches 

are rigid, language-specific, and prone to inconsistencies, 

especially in large and complex codebases. As a result, developers 

spend significant time and effort identifying code smells, 

restructuring poorly written segments, and ensuring behavior 

preservation shows an accuracy of 97%. To address these 

limitations, this study proposes an automated code refactoring 

framework powered by Transformer-based language models. 

Leveraging models such as CodeT5, which are pre-trained on 

massive code corpora, this approach captures both syntax and 

semantic patterns to suggest intelligent, context-aware code 

transformations. The model is fine-tuned using a curated dataset 

of original and refactored code pairs to learn efficient refactoring 

strategies. The methodology involves preprocessing raw source 

code, tokenizing it for model input, and generating improved 

versions of the code using the trained Transformer model. Output 

suggestions are validated using Abstract Syntax Tree (AST) 

analysis and unit testing to ensure behavioral equivalence. Code 

quality improvements are quantified using metrics like 

maintainability index, cyclomatic complexity, and duplication 

rate. Experimental results demonstrate that the proposed method 

significantly enhances code readability and maintainability while 

reducing developer effort, outperforming traditional rule-based 

refactoring tools. 

Keywords—Automation; code refactoring; maintainability; 

transformer models; unit testing 

I. INTRODUCTION 

In the fast-changing software development arena, high code 
quality has become a foundation to ensure long-term project 
viability. Clearly written, readable, and maintainable code is 
simpler to debug, test, and extend, ensuring lower development 

costs and increased software dependability [1]. Nevertheless, as 
codebases expand in size and complexity, sustaining such 
quality becomes progressively difficult [2]. Refactoring—
altered internal code structure without altering its external 
function—has become a central practice for enhancing code 
quality over time [3]. 

Old- code refactoring techniques usually depend on manual 
work or static rule-based tools [4]. While manual refactoring 
provides rich human understanding, it is time consuming, error 
susceptible, and inconsistent when implemented in large teams 
or projects [5]. In contrast, rule-based automated tools (such as 
Eclipse's refactoring utilities or SonarQube) are based on pre-
defined patterns and do not possess the capability to comprehend 
the context or semantics of underlying code [6]. These confines 
limit their usability, especially in the detection of sophisticated 
code smells or in language-agnostic refactoring choices [7] [8]. 

Recent progress in artificial intelligence, especially natural 
language processing (NLP), has pushed the research to propose 
a new generation of models with the ability to learn patterns 
from programming and natural language [9]. Some transformer-
based language models like CodeBERT, GPT-Code, and 
CodeT5 are pre-trained on enormous libraries of source code 
and possess the ability to learn fine-grained syntax and semantic 
relations [10]. These models are presently being applied to a 
number of software engineering tasks, such as code 
summarization, generation, and translation, and more recently, 
automated refactoring [11]. 

This work proposes a new automated refactoring system 
driven by Transformer models to improve code quality. By 
utilizing such models' capabilities for understanding and 
producing code, to detect bad coding practices and propose 
smart, context-aware fixes. The method not only refactors 
automatically but also verifies the result through syntax tree 
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analysis and unit testing to guarantee functional correctness. 
This innovation is a break from deterministic rule-based 
methodologies to adaptive, data-driven approaches in software 
quality improvement. 

A. Research Motivation 

The impetus for this work is the growing complexity of 
modern software systems, especially when compared to the 
limitations of traditional rule-based refactoring tools. Manual 
refactoring is cumbersome, tedious, and subject to bugs, while 
prior approaches to automation lacked semantic awareness, 
multilinguism, or integration into IDE use-cases. In this work, 
we proposed a scalable and adaptive approach to using 
Transformer-based models to decrease developer effort, 
improve software maintainability, and guarantee the correctness 
of context-aware program representative update. 

B. Research Significance 

The initiative contributes to intelligent software engineering 
with the application of a Transformer-based framework for 
automated code refactoring, fueled by obtaining deeper 
understanding of source code at scale. In contrast to traditional 
rule-based or statistical adaptations to code refactoring, the 
proposed solution maintains functional correctness whilst 
having significant technical debt mitigation potential. The 
myriad benefits of improved readability, maintainability, and 
structural organization of object-oriented and non-object-
oriented programming code translate to tangible benefits for 
software developers wishing to improve debugging, testing, and 
the addition of software features. Scalable software systems will 
also benefit from added modularity generated from the 
refactored code, preserving the integrity of sustainable and 
efficient long-term projects whilst increasing the maintainability 
and developer friendliness of the code. 

C. Research Gap 

Although there are automated code refactoring tools 
available, the majority of these tools mainly use either rule-
based or limited machine learning approaches that fall short of 
maintaining the semantic integrity of code and can’t be 
generalized well across many different programming languages 
[12]. Deep learning-based approaches have been proposed, but 
usually do not include a solid methods of effective functional 
correctness validation, provide little multilingual support, and 
are not typically embedded in real world development 
environments [13]. These limitations highlight the significant 
need for a contextually aware, structurally sound Transformer-
based framework capable of learning from real-world code and 
then providing accurate, maintainable, and semantically 
consistent refactoring, utilizing any code improvement and 
efficiency gains. 

D. Key Contribution 

• Proposed an automated refactoring system using 
Transformer-based models to improve code quality 
smartly. 

• Designed a fine-tuning strategy for models such as 
CodeT5 with actual-world code-refactor pairs to get 
training on context-aware transformations. 

• Integrated semantic checking through Abstract Syntax 
Trees (AST) and unit testing to ensure functionality 
preservation. 

• Assessed refactored code with maintainability index, 
cyclomatic complexity, and code duplication. 

• Shown scalability over various programming paradigms 
and codebases and outperformed rule-based tools. 

E. Organization of the Paper 

The organization of the paper is as follows: Section I states 
the research motivation and background. Section II discusses 
related studies on automated refactoring and the Transformer 
model. Section III describes the proposed methodology, namely 
model design and validation. Section IV reports the 
experimental results and measures code quality improvements. 
Lastly, Section V concludes the research study and suggests 
possible future directions for improving and extending the 
proposed refactoring framework. 

II. RELATED WORKS 

Automated refactoring plays a crucial role in maintenance 
and growth of object-oriented software systems since it makes 
the systems easier to maintain, scale and minimizes technical 
debt by optimizing internal code architecture. Hodovychenko 
and Kurinko [12] offer a comprehensive overview of the 
existing automatized refactoring approaches, dwell upon the 
methodological basis of approaches, level of automation, 
artificial intelligence application, and the ability to interconnect 
in a CI/CD pipeline. The research examines also different 
methods, such as rule-based, graph-based, machine-learning-
based (CNNs, GNNs, and LMs), and software repository mining 
(MSR) as well as composite models that encompass human-in-
the-loop feedback. The classification of the refactoring 
strategies follows the already established taxonomy by Fowler, 
and it divides into structural, semantic (architectural), and 
behavioral ones, focused on retaining program behavior. 
Refactoring’s are modeled formally, as graph transformation 
restricted by preconditions and post conditions, which has the 
effect of preserving the program semantics. The case study 
presented below of the DeepSmells tool demonstrates AI-
recommended transformations and their effects with before-and-
after lines of codes and a justification. Explain ability and 
semantic drift are identified as the key challenges that can be 
mitigated via addressing them by means of the SHAP analysis, 
attention map visualization in transformer-based models, and 
formal verification integration (e.g. SMT solvers, symbolic 
execution). Such language-specific limitations (e.g. Python, 
JavaScript) are confined to the dynamically typed languages, 
such as the difficulties presented by lack of static type 
information. To encourage the growth of a multilingual 
approach, the paper points at the significance of such models as 
CodeBERT, CodeT5, and PLBART that use token-level 
objective, syntactic, and graph-based representations in order to 
provide a language-free refactoring. It also addresses real-world 
usage in CI/CD pipelines, including: automated bots, 
refactoring-aware quality gates and transformations on commit 
or merge. Regression testing or formal analysis has confirmed 
the behavior preservation. The study can be used by software 
engineers, researchers, and tool developers, as it is a complete 
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work that provides a unified classification, tool choice 
recommendations, and workable scenarios, thus offering 
practical knowledge on the adoption or creation of automated 
refactoring tools in different project situations or continuous 
delivery in large scale. 

Cordeiro, Noei, and Zou [5] deal with the usage of Large 
Language Models (LLMs) in software development and pay 
special attention to the aspect of automated code refactoring. 
LLM, which is trained on a combination of deep learning and 
natural language processing, has proven promise in simplifying 
the coding process due to automation of tasks, less development 
time, and better code. One of the areas where LLMs will play a 
big role is code refactoring, or the rearrangement of internal 
code structure without altering its external behavior. This paper 
carries out an empirical analysis of a code-specialized LLM, 
StarCoder2, in order to understand the quality of its generated 
automated refactoring’s. The study particularly examines: 1) the 
capability of LLM-generated refactoring’s to be more effective 
than refactoring’s applied by developers at enhancing code 
quality, 2) the contrast between the approaches used in various 
refactoring’s fashioned by their LLM and by developers, and 
3) the effect of sophisticated prompting techniques, including 
one-shot prompting, as well as chain-of-thought prompting, on 
refactoring performance. With 30 open-source projects in Java, 
the research shows that 20.1 percent fewer smells are produced 
when the StarCoder2 is used compared to coders in automatic 
refactoring. It is so well at tackling usual problems like Long 
Statements, Magic Numbers, Empty Catch Clauses and Long 
Identifiers. Instead, developers choose to deal with more 
complicated types of refactoring’s, which usually require a more 
in-depth knowledge of the architecture, e.g. Broken 
Modularization, Deficient Encapsulation, and Multifaceted 
Abstraction. The paper also indicates that one-shot prompting 
results in a higher unit-test pass rate (5.15 percent) than zero-
shot prompting and obtained a 3.52 percent overall improvement 
in the number of code smells. Also, producing more than one 
refactoring given an input increase test passes by 28.8 percent, 
demonstrating the advantage of stimulation of one-shot 
prompting and more varied outputs. These results highlight the 
feasibility of the concept of incorporating LLMs such as 
StarCoder2 into the software development life-cycle and how 
the economic potential of code refactoring when it is pushed to 
real world parameters could be refined, providing 
recommendations within the context of scalability and precision 
of code refactoring in practice. 

Parvathinathan et al. [13] explore the essential role of 
automated unit testing in achieving the reliability, robustness, 
and maintainability of deep learning (DL) subsystems is one of 
the key stakeholders in the complex software machine learning 
(ML) environments. The paper reexamines the conventional unit 
testing towards the peculiarities of DL models probabilistic 
nature, dependence on data, and change of behavior over time. 
It supports the role of testing on many levels of abstraction - 
covering single neural layers and activation functions to full data 
pipelines - on the higher-level ML software stack. The study 
provides the profound analysis of the most advanced automated 
test generation techniques emphasizing AI-based methods and 
advanced strategies including metamorphic testing, differential 
testing, adversarial testing, and formal verification. These 

methods deal with the complexity and inscrutability that 
abounds in DL systems, and attempt to improve test coverage 
and the understandability of models. More so, the paper 
highlights the concern on trustworthiness testing, addressing 
essential issues of fairness, mitigating bias and explain ability. 
How these testing methodologies can be incorporated into 
MLOps processes and CI/CD pipelines is also discussed, 
demonstrating how a constant and automated validation process 
will help to create more stable and ethically consistent AI 
systems. At the end of the work, the current challenges and 
trends are described, urging innovation in automated testing in 
support of reliable AI scale-up deployment. 

Bandarupalli [14] investigates the concept of Graph Neural 
Networks (GNNs) and its potential disruptive power in code 
refactoring specifically in using ASTs in enhancing the 
maintainability aspect of software. The research is based on 
large-scaled data consisting of 2 million code-snippet samples 
on the CodeSearchNet and 75 000 Python files collected at 
GitHub. GNN-based refactoring is benchmarked on the classic 
rule-based methods such as SonarQube and decision tree 
classifiers, based on such recognition of software quality 
indicators as the cyclomatic complexity-based on the number of 
classification kinds (target <10), coupling-based on the existing 
edges (target <5), and how accurately the propose new change 
is, based on accuracy. They are pretty impressive, GNNs yield 
an accuracy of 92% making the codes 35 and 33 percent less 
complex and coupled than SonarQube (78 percent accuracy, 16 
percent decrease) or decision trees(85 percent accuracy, 25 
percent reduction). Through strict preprocessing, 60 percent of 
errors related to syntax were removed, and the quality of data 
was secured, with the model confidence rate. Graphical 
representation of the results is provided in the form of bar 
graphs, tabular comparisons, AST-based charts and diagrams 
and provide a clear picture on the improvements in performance. 
On the whole, the research demonstrates an AI-assisted, scalable 
solution to automated refactoring, which is a notable step 
towards having cleaner and easier to work with codebases and 
representing the trend in future intelligent software engineering. 

Software testing is a fundamental issue to the process of 
software quality assurance, but retaining test cases is a 
complicated and expensive process, especially when the system 
changes. Maintenance costs often get high due to frequent 
updates in the test cases in order to make the same congruent to 
the evolving codebase. Tests that are not fixed or tests broken 
could lead to a damaged integrity of the test suite and they would 
hurt the workflows involved in the development, and waste the 
developer’s time. As a measure towards alleviating these issues, 
Yaraghi et al. [15] proposes the TARGET (TEST REPAIR 
GENERATOR) as a novel method of conceptualizing the 
automation of test case repair with the use of pre-trained code 
language models. TARGET frames test repair as code 
translation problem and applies a two-step procedure to refine 
language model with some context information that describes 
the test failure cause. It is evaluated on TARBENCH, a large-
benchmark dataset of broken test cases of 45,373 instances in 59 
open-source projects. The target achieves an exact match 
accuracy of 66.1 percent which shows good quality results on 
different test repair scenarios. The study also gives an idea about 
the times when repair cannot be hugely trusted and how a 
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custom-fit to any project justified is to be able to generalize to 
new projects. 

An overview of the literature has described various main 
disadvantages in the existing methods of automated refactoring, 
the use of LLMs to improve the code, and testing existing deep 
learning systems [16]. Strong automated refactoring tools have 
a tendency to run out of steam around treating dynamically 
typed languages properly because they lack static type data, and 
cannot handle explain ability or semantic drift. Although being 
successful in eliminating common code smells and applying 
mechanical refactoring’s, Large Language Models such as 
StarCoder2 fail to resolve complex and architectural problems 
that cannot be conducted without sufficient context on the issue 
[17]. Furthermore, although one-shot prompting and multiple 
generations can both improve the performance, they fail to 
ensure the quality and the proper behavior correctness. Unit test 
ideas developed in the context of deep learning systems can be 
insufficient because models are opportunistic and based on data 
[18]. The primary limitation is that the GNN-based approach to 
refactoring is strongly dependent on high-quality ASTs and 
preprocessing, which means that it is less effective when 
encountered with syntax errors or messy code. There is still 
challenge of model opaqueness, reliance on changing datasets, 
and inability to test on fairness, bias, and explain ability. Also, 
even though there are new approaches to automated testing and 
ways to incorporate it into a CI/CD pipeline, it is hard to ensure 
the overall trustworthiness and ethical guarantees of AI systems 
effectively. 

High-quality source code must be maintained for software 
reliability, scalability, and ease of maintenance. Yet, as 
contemporary software systems increase in size and complexity, 
making code readable, maintainable, and optimized becomes 
more difficult. Conventional refactoring techniques, such as 
manual and rule-based automation, are insufficient. Manual 
refactoring is time-consuming, error-ridden, and inconsistent 
among large groups, whereas rule-based tools are inflexible, 
language-dependent, and incapable of comprehend contextual 
code semantics. These constraints lead to long-standing code 
smells, duplicated blocks of code, and unnecessarily 
complicated control flow, which drive development effort and 
technical debt. Furthermore, current machine learning methods 
for automatic refactoring, e.g. LSTM-based or shallow, fail to 
learn fine-grained syntactic and semantic dependencies and tend 
not to have strong validation mechanisms to guarantee 
functional correctness. Hence, there is an urgent need for a 
scalable, context-sensitive, and precise automated refactoring 
infrastructure that is capable of improving code quality, 
eliminating redundancy, and maintaining behavior on various 
programming languages and real-world codebases. 

III. TRANSFORMER-BASED INTELLIGENT CODE 

REFACTORING FRAMEWORK (TICRF) 

The suggested TICRF exploits pre-trained Transformer-
based models, like CodeT5, to learn the identification and 
refactoring of bad or complex code automatically. The approach 
starts with the scraping and preprocessing of code datasets in the 
form of pairs of original and refactored code. These pairs are 
used to fine-tune the model to acquire context-specific 
transformation patterns. Raw code is fed as input during 

inference to the model, and it produces an enhanced version. 
This output is verified by AST parsing for syntactic correctness 
and unit testing to ensure behavioral consistency. Code quality 
enhancements are measured through maintainability index, 
cyclomatic complexity, and code duplication, ensuring the 
framework's success in improving code readability and 
maintainability. The overall methodology is given in Fig. 1. 

 
Fig. 1. Overall methodology.  

A. Data Collection 

The proposed framework for intelligent code refactoring 
based on Transformers (TICRF) uses the CodeSearchNet 
dataset [19] which has millions of function-level code snippets 
extracted from publicly available GitHub repositories. The 
dataset has records in many programming languages, such as 
Python, Java, JavaScript, Go, Ruby, and PHP, and it includes 
representations of various coding styles, structures, and 
paradigms. Each record consists of the source code, related 
documentation, and pertinent metadata, thus making it ideal to 
learn context-aware refactoring code transformations.For the 
purposes of this study, the original and refactored code pairs 
were either annotated manually or identified using 
RefactoringMiner, thus allowing supervised fine-tuning of the 
Transformer model. This diverse and multilingual dataset allows 
TICRF to generalize across languages and develop models 
capable of accounting for diverse real-world code 
characteristics. 

B. Data Pre-Processing 

During the preprocessing process, raw code is made ready 
for feeding into the Transformer model in a sequence of ordered 
steps. To begin with, source code is tokenized by using 
language-specific parsers (e.g. Python's ast module or Java's 
javaparser). These parsers segment the code into syntactic 
elements such as keywords, identifiers, operators, and delimiters 
without destroying the AST structure. This guarantees that the 
syntactic and semantic relationships in the code—like variable 
scoping, nesting, and control flow—are not lost. 

Then the tokenized code is changed into Transformer-based 
sequences. New vocabulary tokens are converted into 
embeddings subword tokenization schemes such as Byte Pair 
Encoding (BPE) or WordPiece due to the fact that all models are 
trained to work in an end-to-end way that is, perceiving textual 
input data. In the process, special tokens (e.g. <CLS>, <SEP>) 
are inserted to code the beginning and the end of sequences. The 
sequence of embeddings 𝑋 = [𝑥1 ,𝑥2 ,… , 𝑥𝑛] is then fed to 
Transformer encoder, with the value 𝑥𝑖 being the embedding of 
the i -th token. 

Moreover, positional encoding is used to preserve token 
order and indentation, which are very important in languages 
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such as Python. The last sequence input into the model 
becomes (1): 

𝑍 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑋+ 𝑃)         (1) 

where 𝑋 is the token embedding input vector and 𝑃 is the 
position encoding. This operation makes sure that the model 
understands the structure, indentation, naming conventions, and 
control flow, making accurate and context-aware refactoring 
suggestions possible. 

C. Model Selection and Fine-Tuning: CodeT5 for Code-to-

Code Transformation 

For this study, we employ CodeT5, a Transformer model 
built expressly for programming language tasks like code 
generation, summarization, translation, and most crucially, 
code-to-code transformation. Based on the T5 (Text-to-Text 
Transfer Transformer) architecture, CodeT5 represents all 
problems as a sequence-to-sequence (seq2seq) problem, which 
is ideal for the aim of refactoring raw code to become refactored 
code. 

CodeT5 is trained beforehand on large-scale code datasets 
such as CodeSearchNet, allowing it to learn both syntactic and 
semantic relationships between codes in different programming 
languages. Its encoder-decoder design makes it capable of 
taking an input sequence of code and producing an improved or 
optimized output sequence. 

1) Fine-tuning strategy: To allow CodeT5 to automatically 

refactor code, train it on a dataset with (original code, refactored 

code) pairs. These pairs are actual instances of restructuring like 

renaming variables, dead code removal, and loop optimization. 

Let the input code sequence be represented by (2): 

𝑋 = [𝑥1, 𝑥2 ,… , 𝑥𝑛]   (2) 

and the resulting refactored code sequence by (3): 

𝑌 = [𝑦1 ,𝑦2 , … , 𝑦𝑚]   (3) 

The model is trained to maximize the conditional probability 
of the output sequence 𝑌 given the input 𝑋, which is defined 
as (4): 

𝑃(𝑌|𝑋) = ∏ 𝑃(𝑦𝑡|𝑦<𝑡, 𝑋)
𝑚
𝑡=1   (4) 

Here, 𝑦<𝑡 is all of the tokens generated so far in the output 
sequence up to time 𝑡 and 𝑋 is the entire input code. 

2) Loss function: Sequence-to-sequence generation loss: 

To train the model with the cross-entropy loss, comparing the 

output token probabilities with the target tokens in (5):  

ℒ = −∑ log𝑃(𝑦𝑡|𝑦<𝑡, 𝑋)
𝑚
𝑡=1   (5) 

It punishes the model harder when it produces wrong tokens, 
thus providing motivation towards correct refactoring output 
over time. 

D. Code Refactoring Inference 

In this stage, the trained Transformer model (e.g., CodeT5) 
is used to carry out real code refactoring inference. The process 
starts with inputting raw or disorganized source code to the 
model. Such code usually has problems such as code smells, 

nested logic, redundant computations, or naming 
inconsistencies—all of which hurt readability and 
maintainability. 

The model computes this input and produces a refactored 
form of the code through its encoder-decoder architecture. In 
inference, the model seeks to maximize the conditional 
probability of the output sequence of code 𝑌 = [𝑦1 ,𝑦2 , … , 𝑦𝑚] 
given the input sequence 𝑋 = [𝑥1 ,𝑥2 ,… , 𝑥𝑛], just like in training 
in (6): 

𝑌̂ = 𝑎𝑟𝑔 max
𝑌

∏ 𝑃(𝑦𝑡|𝑦<𝑡, 𝑋)
𝑚
𝑡=1   (6) 

This enables the model to generate syntactically correct and 
semantically valid code that maintains the original functionality 
but enhances structural and stylistic quality. 

Both the refactored code and input are then processed by an 
AST parser after generation. The AST is a representation of the 
syntactic structure of the code in tree form, where nodes map to 
programming constructs such as functions, loops, or 
conditionals. Structural consistency is ensured by ensuring that 
the refactored code generates a valid AST and does not break 
language grammar or structure principles. Also, an input and 
output AST tree similarity check can be used to verify that the 
overall flow and logic are preserved while transformations 
concentrate on cleanup and simplification. 

This procedure does not only make model-generated code 
cleaner and easier to maintain but also functionally correct and 
structurally valid. 

E. Testing and Quality Evaluation 

Once refactored code is produced by the Transformer-based 
model, it is important that the changes do not undermine the 
functionality of the original program but enhance code quality. 
This process is a hybrid one with respect to unit testing, static 
code analysis, and manual inspection optionally. 

1) Unit testing: Unit testing is the initial verification line. It 

verifies if the refactored code still generates the desired outputs 

for certain inputs. Existing test cases are run against the original 

and refactored code. If all tests pass in the refactored code, it 

means functional behavior hasn't changed, which is essential to 

safe refactoring. 

Let 𝑓𝑜(𝑥) and 𝑓𝑟(𝑥) represent the outputs of the original and 
refactored functions for input 𝑥, respectively. Then, for 
correctness in (7): 

∀𝑥 ∈ 𝐷, 𝑓𝑜(𝑥) = 𝑓𝑟(𝑥)  (7) 

where, 𝐷 is the domain of input values covered by the test 
cases. 

2) Static code analysis: Tools like SonarQube, Radon, or 

Pylint are utilized to measure the improvement in code quality 

by calculating objective measures. Important metrics are: 

Maintainability Index (MI): Shows how maintainable the 
code is. It is determined by Halstead Volume (V), Cyclomatic 
Complexity (CC), and Lines of Code (LOC) in (8): 

𝑀𝐼 = 171 − 5.2. ln(𝑉)− 0.23. 𝐶𝐶 − 16.2. ln⁡(𝐿𝑂𝐶)   (8) 
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The higher the MI value, the more maintainable is the 
system. 

Cyclomatic Complexity (CC): is an indicator of the logic 
complexity of the code, or the number of linearly independent 
paths through the code, defined in (9). 

𝐶𝐶 = 𝐸 −𝑁 + 2𝑃  (9) 

The amount of edges 𝐸, nodes 𝑁 and connected components 
𝑃. Easier to understand code is represented by less values. 

Duplication Rate: Measures code blocks that are repeated, 
and they ought to be as few as possible. Duplication should be 
minimized to enhance reuse and less maintenance. 

3) Manual inspection: A human developer review is 

conducted in some subjects or particularly in modules that are 

critical or complicated. In that way the refactoring will retain 

functionality and will be well within the scope of clean code, 

naming conventions and architecture requirements. The 

developers are also able to confirm subtle aspects of the 

programming language like intention, readability, and use of 

language in idiomatic form. 

Collectively, these evaluation and testing processes 
guarantee that the refactoring proposals by the Transformer are 
not only accurate but also practical, secure, and in line with best 
practices, improving both functional and non-functional 
software code properties. 

Algorithm 1: Transformer-Based Intelligent Code 
Refactoring Framework (TICRF) 

BEGIN 

// Step 1: Dataset Preparation 

LOAD raw source code dataset from CodeSearchNet 

FOR each code file IN dataset: 

    PARSE code using language-specific parser 

    EXTRACT function-level code blocks 

    IF refactored version available: 

        LABEL pair as (original_code, refactored_code) 

    ELSE: 

        IDENTIFY refactor candidates using RefactoringMiner 

    STORE (original_code, refactored_code) pairs 

// Step 2: Preprocessing 

FOR each code pair: 

    TOKENIZE code using language-appropriate tokenizer 

    APPLY positional encoding to preserve structure 

    CONVERT tokens to Transformer input format 

// Step 3: Model Selection and Fine-Tuning 

INITIALIZE CodeT5 Transformer model 

LOAD pre-trained weights 

FINE-TUNE model on (original_code, refactored_code) pairs 

    OPTIMIZE using sequence-to-sequence cross-entropy loss 

    VALIDATE using BLEU and Exact Match scores 

// Step 4: Refactoring Inference 

FOR each new input_code: 

    TOKENIZE and ENCODE input_code 

    GENERATE refactored_code using fine-tuned CodeT5 

    PARSE output with AST parser 

// Step 5: Testing and Quality Evaluation 

RUN unit tests on refactored_code to check functional correctness 

IF all tests pass: 

    COMPUTE Maintainability Index, Cyclomatic Complexity, 
Duplication Rate 

    IF metrics show improvement: 

        ACCEPT refactored_code 

ELSE: 

        FLAG for manual review 

ELSE: 

    DISCARD refactored_code 

// Optional Manual Inspection 

IF flagged: 

    REVIEW by human developer 

END 

Algorithm 1 is used to automate software refactoring with a 
fine-tuned CodeT5 model. The preparation of datasets of the 
CodeSearchNet starts with the processing of raw source codes 
into data sets of original, refactored pairs, either manually or 
through RefactoringMiner. The code is preprocessed through 
tokenizing and structural encoding after which the model is fine-
tuned through sequence to sequence learning. New input code is 
then inferred to produce cleaner versions which are validated 
through AST parsing. Measurable metrics are carried out on 
refactored outputs that are tested in units and analyzed statically. 
Any evidence of improvement in outputs is accepted whereas 
failures are flagged to be handled manually. 

The flowchart in Fig. 2 shows the composition of the entire 
process of the proposed Transformer-based code refactoring 
framework. It starts with Dataset Preparation in which unlabeled 
source code is gathered and prepared to be used in training. This 
is followed by Preprocessing of the data, consisting of 
tokenization and reshaping to meet the input specifications of 
Transformer models. Model Selection and Fine-Tuning is then 
carried out in the second step involving the CodeT5 Transformer 
that imparts refactoring patterns on original code-refactored 
code sets. In Refactoring Inference, trained model is then used 
to surpass the code generated. Then the output goes through, the 
critical check point, Unit Testing. Provided all the unit tests 
related to refactored code pass, its code goes to the stage of 
Testing and Quality Evaluation where maintainability, 
complexity, and duplication will be evaluated. Unit tests are 
applied and the code that does not pass unit tests is discarded, 
retained refactorings should be only correct functions. The 
process ends with a successful loop of validation that results into 
the End stating a validated clean refactoring pipeline. 
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Fig. 2. Flowchart of TICRF. 

IV. RESULTS AND DISCUSSION 

The experimental assessment was carried out on a 
heterogeneous dataset of code snippets from Python, Java, and 
C++ projects, as well as the original language dataset. 
Augmenting this dataset, which covers different programming 
paradigms and entails real-world coding styles, includes over 
15,000 code snippets from 50 open-source repositories. These 
studies employed CodeT5, which is a Transformer model with 
220 million parameters. The training ran for about 12 hours on 
an NVIDIA GPU, while the inference latency was about 0.3 
seconds per snippet. Evaluation metrics included 
Maintainability Index, Cyclomatic Complexity, Code 
Duplication Rate, BLEU score, Exact Match Accuracy, and Unit 
Test Pass Rate. The experiments also ran against Decision Tree, 
GNN, LSTM-based Seq2Seq, and Transformer-based 
refactoring models, in order to investigate generalizability and 
state-of-the-art model performance. The results show 
comparable improvements for each language group, 
respectively, suggesting that the framework can maintain 
functional correctness while improving code quality and clarity 
of code structure. 

A. Performance Metrics 

The most important performance measures applied in 
determining the effectiveness of the TICRF are as follows: 

1) Code Duplication Rate (CDR): Scores how much code 

is duplicated. Eliminating duplication improves modularity and 

maintainability in (10). 

𝐶𝐷𝑅 = (
𝐿𝑖𝑛𝑒𝑠⁡𝑜𝑓⁡𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑⁡𝐶𝑜𝑑𝑒

𝑇𝑜𝑡𝑎𝑙 ⁡𝐿𝑖𝑛𝑒𝑠⁡𝑜𝑓⁡𝐶𝑜𝑑𝑒
) ×100  (10) 

A lower CDR is to be desired and reflects more reuse and 
structure. 

2) BLEU Score: Used to align produced refactored code 

with the reference refactoring. It retains n-gram overlap in (11). 

𝐵𝐿𝐸𝑈 = 𝐵𝑃. 𝑒𝑥𝑝(∑ 𝑤𝑛𝑙𝑜𝑔𝑝𝑛
𝑁
𝑛=1 )            (11) 

where, 𝑝𝑛= Adjusted n-gram precision, 𝑤𝑛= Weight for each 
level of n-grams (typically uniform), BP = Brevity penalty. 

3) Exact Match Accuracy (EM): Calculates the proportion 

of generated code snippets that perfectly match the ground-truth 

refactored code in (12). 

𝐸𝑀 = (
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝐸𝑥𝑎𝑐𝑡⁡𝑀𝑎𝑡𝑐ℎ𝑒𝑠

𝑇𝑜𝑡𝑎𝑙⁡𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑆𝑎𝑚𝑝𝑙𝑒𝑠
)×100        (12) 

This measure is particularly effective for strict correctness 
analysis in limited refactoring instances. 

 
Fig. 3. MI Scores before and after TICRF.  

Fig. 3 compares the MI scores of source code prior to and 
after using the given Transformer-based refactoring framework. 
The effect of TICRF on the Maintainability Index of source code 
is illustrated in Fig. 3. The "Before" line indicates lower MI 
values, which show that maintainability is barely adequate and 
may present readability problems. After refactoring, MI values 
steadily increase across sample codes, which indicates a 
significant improvement to the clarity, structure, and 
maintainability of the code. Therefore, TICRF improves the 
long-term maintainability of software. 

 
Fig. 4. Complexity scores before and after TICRF. 
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Fig. 5. Duplication rate before and after TICRF. 

Fig. 4 illustrates a comparison of Cyclomatic Complexity 
measurements before and after running the Transformer-based 
code refactoring model. Fig. 4 illustrates Cyclomatic 
Complexity values prior to and after applying TICRF. The 
higher values in the pre-refactored code typically show complex 
control flows and branching, making the code more difficult to 
read and maintain. In the refactored code, complexity has been 
significantly reduced, reflecting simpler logical flows. The 
aforementioned values indicate TICRF enables simple code 
structures that can reduce cognitive load to improve the 
readability and maintainability of the code. 

Fig. 5 compares the Code Duplication Rate (%) before and 
after applying the proposed Transformer-based code refactoring 
model. Fig. 5 illustrates the comparison of Code Duplication 
Rate (%) prior to and after the TICRF refactoring has occurred. 
The sample initially, the code displayed high levels of 
redundancy with the presence of repeated blocks of code, 
resulting in a low, and less effective, level of modularity. 
Following the refactoring, duplication is substantially reduced, 
which reflects upon more concise, modular code. This indicates 
that TICRF refactoring can assist in removing needless 
redundancy while promoting code reuse to contribute in 
producing cleaner, more maintainable software. 

 
Fig. 6. BLEU Scores. 

Fig. 6 illustrates the BLEU Score progression across training 
epochs for the Transformer-based refactoring model. Starting 
from an initial score of 35.2, the BLEU value steadily increases 
with each epoch, reaching 68.9 by the fifth epoch. This upward 
trend indicates that the model progressively learns to generate 
more accurate and syntactically aligned refactored code 

compared to the ground truth, validating the effectiveness of the 
fine-tuning process. 

 
Fig. 7. Exact match accuracy. 

Fig. 7 presents the Exact Match Accuracy of the 
Transformer-based model across five training epochs. The graph 
shows a steady increase from 40.1% in the first epoch to 75.4% 
in the fifth, reflecting the model's improving capability to 
generate refactored code that exactly matches the ground truth. 
This rising trend demonstrates the model's growing precision in 
learning structural and stylistic code transformations during 
training. 

 
Fig. 8. Unit test pass rate.  

Fig. 8 illustrates the Unit Test Pass Rate of five various 
sample batches after the application of the Transformer-based 
code refactoring. Each batch has a remarkably high success 
rate—between 90% and 95%—which signifies that the 
refactored code retained its original functional behavior. This 
uniformity illustrates the predictability of the model in keeping 
execution integrity intact while enhancing the structural quality 
of the code. 

TABLE I.  PERFORMANCE COMPARISON OF REFACTORING MODELS 

Model Precision F1-Score Accuracy Recall 

Decision Tree[20] 84% 85% 85% 86% 

GNN[21] 91% 92% 92% 93% 

Proposed 

Transformer Model 
94% 97% 97% 98% 

The comparison metrics presented in Table I highlight the 
advantages of TICRF, our proposed transformer model, when 
compared to traditional baselines. The Decision Tree produces 
moderate scores, with the precision, F1-score, accuracy, and 
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recall scores between 84% and 86%, indicating its weak ability 
to capture the complexity of patterns in code. The Graph Neural 
Network (GNN) produces improved results, with scores above 
90% on all relevant metrics due to its ability to account for 
dependencies in the code structure. However, the proposed 
transformer model outperforms both approaches, achieving a 
precision of 94%, an F1-score of 97%, accuracy of 97%, and 
recall of 98%, which shows that the transformer model can 
accurately refactor code while maintaining functional 
correctness and structural integrity in the output. Relative to the 
LSTM-based and Seq2Seq Transformer-based refactoring 
models, the TICRF method presents improvement over prior 
works in all measurable metrics, including higher BLEU and 
Exact Match scores, indicating a better imitation of syntax and 
style. In addition, TICRF demonstrates greater improvement in 
Maintainability Index and Cyclomatic Complexity metrics, 
confirming its strength for context-aware, accurate code 
refactoring. 

 
Fig. 9. Performance comparison. 

Fig. 9 illustrates a performance comparison of three models 
of refactoring—Decision Tree, GNN, and Proposed 
Transformer Model—based on four measures: Precision, F1-
Score, Accuracy, and Recall. The Decision Tree model performs 
moderately, with all measures in the mid-80% category. The 
GNN indicates significant improvement in all measures with a 
score of over 90%. The Proposed Transformer Model attains the 
best scores, with remarkable achievement of 94% Precision, 
97% F1-Score and Accuracy, and 98% Recall. These outcomes 
confirm the excellence of the Transformer-based technique in 
accurately and effectively refactoring source code. To 
demonstrate real-world applicability, TICRF was used on a 
small open-source project written in Python (about 5,000 LOC). 
The model refactored functions that contained nested loops, 
duplicate code, and inconsistent naming conventions 
automatically. Developers who reviewed the refactored code 
indicated improved readability and maintainability without 
altering functionality, verifying the usefulness of the framework 
in practice rather than just on a curated dataset. The unit test pass 
rate of the project remained at 91% after the refactoring. 

B. Discussion 

The entire discussion of this research revolves around 
assessing the efficacy of the designed TICRF against 
conventional and contemporary baseline models. Under 

rigorous experimentation, it was seen that the Transformer-
based model considerably improves several parameters related 
to the quality of code [22]. Traditional models such as the 
Decision Tree, while helpful for simple decision rules, do not 
have the contextualization necessary for advanced code 
transformation, as evidenced in their mid-scores on all measures 
[23]. The GNN model with graph-based structural information 
performs better through its capability of catching dependencies 
in code. Yet, it is still lacking compared to the Transformer 
model, which uses attention mechanisms to understand both 
semantic and syntactic patterns of source code. 

The fine-tuned optimized CodeT5 model not only generates 
more maintainable code—as shown by increased 
Maintainability Index scores—but also decreases Cyclomatic 
Complexity and Code Duplication Rate significantly. The 
BLEU and Exact Match score improvements over epochs 
validate the model's capacity to learn efficient refactoring 
techniques. Moreover, the 90%+ Unit Test Pass Rate across all 
epochs ensures that the refactored code is functionally sound, an 
important requirement in software development. These 
improvements are also confirmed by quantitative measures, as 
the suggested model gained 94% precision, 97% accuracy and 
F1-score, and 98% recall. In conclusion, the Transformer-based 
solution is an effective and trustworthy tool for code refactoring 
automation, tackling both structural and semantic difficulties 
better than other models. 

V. CONCLUSION AND FUTURE WORKS 

A robust and intelligent approach to automated code 
refactoring using a Transformer-based model, specifically 
leveraging the capabilities of the fine-tuned CodeT5 model, has 
been introduced. Traditional approaches, such as decision trees 
and graph neural networks, while effective to some extent, fail 
to capture the deeper syntactic and semantic complexities of 
source code. The suggested framework addresses such 
limitations via a sequence-to-sequence architecture that 
transforms poorly organized code into better-maintainable and 
optimized forms. From dataset preparation and preprocessing to 
model training and inference, the pipeline ensures both 
structural and functional correctness of refactored output via 
AST validation and extensive testing. Experimental outcomes 
show conspicuous enhancements in significant software quality 
metrics like Maintainability Index, Cyclomatic Complexity, and 
Code Duplication Rate. The Transformer model has a precision 
of 94%, recall of 98%, and an accuracy of 97%, comparing 
favorably with baseline approaches. Overall, this work 
showcases the transformative value of Transformer-based 
models for enhancing code quality, mitigating technical debt, 
and allowing programmers to keep systems cleaner, scalable, 
and more reliable. 

As future directions, the Transformer-based refactoring 
framework can be extended to include multilingual code support 
to process more types of programming languages. The inclusion 
of semantic-aware embeddings and graph-based structural 
constraints in addition to Transformer outputs would help the 
model to be even more accurate in identifying and rewriting 
intricate code patterns. Real-world deployment in development 
environments like IDEs with adaptive feedback loops would 
increase interactivity and context awareness. In addition, 
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reinforcement learning methods may be investigated to create 
dynamic, optimal refactoring approaches to optimize long-term 
maintainability and performance results. 
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