
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

545 | P a g e
www.ijacsa.thesai.org

Enhancing Code Quality Through Automated

Refactoring Using Transformer-Based Language

Models

A. Sri Lakshmi1, Dr. E. S. Sharmila Sigamany2, Roopa Traisa3, Raman Kumar4,

Karaka Ramakrishna Reddy5, Jasgurpreet Singh Chohan6, Aseel Smerat7

Research Scholar, Department of English, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India 1
Associate Professor, Department of English, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India 2

Department of Management-School of Management-UG, JAIN (Deemed to be University), Bangalore, Karnataka, India3
University School of Mechanical Engineering, Rayat Bahra University, Mohali, India 4

Faculty of Engineering, Sohar University, Sohar, Oman4
Assistant Professor, Department of BS&H, B V Raju Institute of Technology, Narsapur, Medak, Telangana, India 5

Marwadi University Research Center-Department of Mechanical Engineering-Faculty of Engineering & Technology,
Marwadi University, Rajkot, Gujarat, India6

Faculty of Educational Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan7
Department of Biosciences-Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences,

Chennai, 602105, India7

Abstract—Maintaining high-quality source code is crucial for

software reliability, scalability, and maintainability. Traditional

refactoring methods, which involve manual code improvement or

rule-based automation, often fall short due to their inability to

understand the contextual semantics of code. These approaches

are rigid, language-specific, and prone to inconsistencies,

especially in large and complex codebases. As a result, developers

spend significant time and effort identifying code smells,

restructuring poorly written segments, and ensuring behavior

preservation shows an accuracy of 97%. To address these

limitations, this study proposes an automated code refactoring

framework powered by Transformer-based language models.

Leveraging models such as CodeT5, which are pre-trained on

massive code corpora, this approach captures both syntax and

semantic patterns to suggest intelligent, context-aware code

transformations. The model is fine-tuned using a curated dataset

of original and refactored code pairs to learn efficient refactoring

strategies. The methodology involves preprocessing raw source

code, tokenizing it for model input, and generating improved

versions of the code using the trained Transformer model. Output

suggestions are validated using Abstract Syntax Tree (AST)

analysis and unit testing to ensure behavioral equivalence. Code

quality improvements are quantified using metrics like

maintainability index, cyclomatic complexity, and duplication

rate. Experimental results demonstrate that the proposed method

significantly enhances code readability and maintainability while

reducing developer effort, outperforming traditional rule-based

refactoring tools.

Keywords—Automation; code refactoring; maintainability;

transformer models; unit testing

I. INTRODUCTION

In the fast-changing software development arena, high code
quality has become a foundation to ensure long-term project
viability. Clearly written, readable, and maintainable code is
simpler to debug, test, and extend, ensuring lower development

costs and increased software dependability [1]. Nevertheless, as
codebases expand in size and complexity, sustaining such
quality becomes progressively difficult [2]. Refactoring—
altered internal code structure without altering its external
function—has become a central practice for enhancing code
quality over time [3].

Old- code refactoring techniques usually depend on manual
work or static rule-based tools [4]. While manual refactoring
provides rich human understanding, it is time consuming, error
susceptible, and inconsistent when implemented in large teams
or projects [5]. In contrast, rule-based automated tools (such as
Eclipse's refactoring utilities or SonarQube) are based on pre-
defined patterns and do not possess the capability to comprehend
the context or semantics of underlying code [6]. These confines
limit their usability, especially in the detection of sophisticated
code smells or in language-agnostic refactoring choices [7] [8].

Recent progress in artificial intelligence, especially natural
language processing (NLP), has pushed the research to propose
a new generation of models with the ability to learn patterns
from programming and natural language [9]. Some transformer-
based language models like CodeBERT, GPT-Code, and
CodeT5 are pre-trained on enormous libraries of source code
and possess the ability to learn fine-grained syntax and semantic
relations [10]. These models are presently being applied to a
number of software engineering tasks, such as code
summarization, generation, and translation, and more recently,
automated refactoring [11].

This work proposes a new automated refactoring system
driven by Transformer models to improve code quality. By
utilizing such models' capabilities for understanding and
producing code, to detect bad coding practices and propose
smart, context-aware fixes. The method not only refactors
automatically but also verifies the result through syntax tree

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

546 | P a g e
www.ijacsa.thesai.org

analysis and unit testing to guarantee functional correctness.
This innovation is a break from deterministic rule-based
methodologies to adaptive, data-driven approaches in software
quality improvement.

A. Research Motivation

The impetus for this work is the growing complexity of
modern software systems, especially when compared to the
limitations of traditional rule-based refactoring tools. Manual
refactoring is cumbersome, tedious, and subject to bugs, while
prior approaches to automation lacked semantic awareness,
multilinguism, or integration into IDE use-cases. In this work,
we proposed a scalable and adaptive approach to using
Transformer-based models to decrease developer effort,
improve software maintainability, and guarantee the correctness
of context-aware program representative update.

B. Research Significance

The initiative contributes to intelligent software engineering
with the application of a Transformer-based framework for
automated code refactoring, fueled by obtaining deeper
understanding of source code at scale. In contrast to traditional
rule-based or statistical adaptations to code refactoring, the
proposed solution maintains functional correctness whilst
having significant technical debt mitigation potential. The
myriad benefits of improved readability, maintainability, and
structural organization of object-oriented and non-object-
oriented programming code translate to tangible benefits for
software developers wishing to improve debugging, testing, and
the addition of software features. Scalable software systems will
also benefit from added modularity generated from the
refactored code, preserving the integrity of sustainable and
efficient long-term projects whilst increasing the maintainability
and developer friendliness of the code.

C. Research Gap

Although there are automated code refactoring tools
available, the majority of these tools mainly use either rule-
based or limited machine learning approaches that fall short of
maintaining the semantic integrity of code and can’t be
generalized well across many different programming languages
[12]. Deep learning-based approaches have been proposed, but
usually do not include a solid methods of effective functional
correctness validation, provide little multilingual support, and
are not typically embedded in real world development
environments [13]. These limitations highlight the significant
need for a contextually aware, structurally sound Transformer-
based framework capable of learning from real-world code and
then providing accurate, maintainable, and semantically
consistent refactoring, utilizing any code improvement and
efficiency gains.

D. Key Contribution

• Proposed an automated refactoring system using
Transformer-based models to improve code quality
smartly.

• Designed a fine-tuning strategy for models such as
CodeT5 with actual-world code-refactor pairs to get
training on context-aware transformations.

• Integrated semantic checking through Abstract Syntax
Trees (AST) and unit testing to ensure functionality
preservation.

• Assessed refactored code with maintainability index,
cyclomatic complexity, and code duplication.

• Shown scalability over various programming paradigms
and codebases and outperformed rule-based tools.

E. Organization of the Paper

The organization of the paper is as follows: Section I states
the research motivation and background. Section II discusses
related studies on automated refactoring and the Transformer
model. Section III describes the proposed methodology, namely
model design and validation. Section IV reports the
experimental results and measures code quality improvements.
Lastly, Section V concludes the research study and suggests
possible future directions for improving and extending the
proposed refactoring framework.

II. RELATED WORKS

Automated refactoring plays a crucial role in maintenance
and growth of object-oriented software systems since it makes
the systems easier to maintain, scale and minimizes technical
debt by optimizing internal code architecture. Hodovychenko
and Kurinko [12] offer a comprehensive overview of the
existing automatized refactoring approaches, dwell upon the
methodological basis of approaches, level of automation,
artificial intelligence application, and the ability to interconnect
in a CI/CD pipeline. The research examines also different
methods, such as rule-based, graph-based, machine-learning-
based (CNNs, GNNs, and LMs), and software repository mining
(MSR) as well as composite models that encompass human-in-
the-loop feedback. The classification of the refactoring
strategies follows the already established taxonomy by Fowler,
and it divides into structural, semantic (architectural), and
behavioral ones, focused on retaining program behavior.
Refactoring’s are modeled formally, as graph transformation
restricted by preconditions and post conditions, which has the
effect of preserving the program semantics. The case study
presented below of the DeepSmells tool demonstrates AI-
recommended transformations and their effects with before-and-
after lines of codes and a justification. Explain ability and
semantic drift are identified as the key challenges that can be
mitigated via addressing them by means of the SHAP analysis,
attention map visualization in transformer-based models, and
formal verification integration (e.g. SMT solvers, symbolic
execution). Such language-specific limitations (e.g. Python,
JavaScript) are confined to the dynamically typed languages,
such as the difficulties presented by lack of static type
information. To encourage the growth of a multilingual
approach, the paper points at the significance of such models as
CodeBERT, CodeT5, and PLBART that use token-level
objective, syntactic, and graph-based representations in order to
provide a language-free refactoring. It also addresses real-world
usage in CI/CD pipelines, including: automated bots,
refactoring-aware quality gates and transformations on commit
or merge. Regression testing or formal analysis has confirmed
the behavior preservation. The study can be used by software
engineers, researchers, and tool developers, as it is a complete

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

547 | P a g e
www.ijacsa.thesai.org

work that provides a unified classification, tool choice
recommendations, and workable scenarios, thus offering
practical knowledge on the adoption or creation of automated
refactoring tools in different project situations or continuous
delivery in large scale.

Cordeiro, Noei, and Zou [5] deal with the usage of Large
Language Models (LLMs) in software development and pay
special attention to the aspect of automated code refactoring.
LLM, which is trained on a combination of deep learning and
natural language processing, has proven promise in simplifying
the coding process due to automation of tasks, less development
time, and better code. One of the areas where LLMs will play a
big role is code refactoring, or the rearrangement of internal
code structure without altering its external behavior. This paper
carries out an empirical analysis of a code-specialized LLM,
StarCoder2, in order to understand the quality of its generated
automated refactoring’s. The study particularly examines: 1) the
capability of LLM-generated refactoring’s to be more effective
than refactoring’s applied by developers at enhancing code
quality, 2) the contrast between the approaches used in various
refactoring’s fashioned by their LLM and by developers, and
3) the effect of sophisticated prompting techniques, including
one-shot prompting, as well as chain-of-thought prompting, on
refactoring performance. With 30 open-source projects in Java,
the research shows that 20.1 percent fewer smells are produced
when the StarCoder2 is used compared to coders in automatic
refactoring. It is so well at tackling usual problems like Long
Statements, Magic Numbers, Empty Catch Clauses and Long
Identifiers. Instead, developers choose to deal with more
complicated types of refactoring’s, which usually require a more
in-depth knowledge of the architecture, e.g. Broken
Modularization, Deficient Encapsulation, and Multifaceted
Abstraction. The paper also indicates that one-shot prompting
results in a higher unit-test pass rate (5.15 percent) than zero-
shot prompting and obtained a 3.52 percent overall improvement
in the number of code smells. Also, producing more than one
refactoring given an input increase test passes by 28.8 percent,
demonstrating the advantage of stimulation of one-shot
prompting and more varied outputs. These results highlight the
feasibility of the concept of incorporating LLMs such as
StarCoder2 into the software development life-cycle and how
the economic potential of code refactoring when it is pushed to
real world parameters could be refined, providing
recommendations within the context of scalability and precision
of code refactoring in practice.

Parvathinathan et al. [13] explore the essential role of
automated unit testing in achieving the reliability, robustness,
and maintainability of deep learning (DL) subsystems is one of
the key stakeholders in the complex software machine learning
(ML) environments. The paper reexamines the conventional unit
testing towards the peculiarities of DL models probabilistic
nature, dependence on data, and change of behavior over time.
It supports the role of testing on many levels of abstraction -
covering single neural layers and activation functions to full data
pipelines - on the higher-level ML software stack. The study
provides the profound analysis of the most advanced automated
test generation techniques emphasizing AI-based methods and
advanced strategies including metamorphic testing, differential
testing, adversarial testing, and formal verification. These

methods deal with the complexity and inscrutability that
abounds in DL systems, and attempt to improve test coverage
and the understandability of models. More so, the paper
highlights the concern on trustworthiness testing, addressing
essential issues of fairness, mitigating bias and explain ability.
How these testing methodologies can be incorporated into
MLOps processes and CI/CD pipelines is also discussed,
demonstrating how a constant and automated validation process
will help to create more stable and ethically consistent AI
systems. At the end of the work, the current challenges and
trends are described, urging innovation in automated testing in
support of reliable AI scale-up deployment.

Bandarupalli [14] investigates the concept of Graph Neural
Networks (GNNs) and its potential disruptive power in code
refactoring specifically in using ASTs in enhancing the
maintainability aspect of software. The research is based on
large-scaled data consisting of 2 million code-snippet samples
on the CodeSearchNet and 75 000 Python files collected at
GitHub. GNN-based refactoring is benchmarked on the classic
rule-based methods such as SonarQube and decision tree
classifiers, based on such recognition of software quality
indicators as the cyclomatic complexity-based on the number of
classification kinds (target <10), coupling-based on the existing
edges (target <5), and how accurately the propose new change
is, based on accuracy. They are pretty impressive, GNNs yield
an accuracy of 92% making the codes 35 and 33 percent less
complex and coupled than SonarQube (78 percent accuracy, 16
percent decrease) or decision trees(85 percent accuracy, 25
percent reduction). Through strict preprocessing, 60 percent of
errors related to syntax were removed, and the quality of data
was secured, with the model confidence rate. Graphical
representation of the results is provided in the form of bar
graphs, tabular comparisons, AST-based charts and diagrams
and provide a clear picture on the improvements in performance.
On the whole, the research demonstrates an AI-assisted, scalable
solution to automated refactoring, which is a notable step
towards having cleaner and easier to work with codebases and
representing the trend in future intelligent software engineering.

Software testing is a fundamental issue to the process of
software quality assurance, but retaining test cases is a
complicated and expensive process, especially when the system
changes. Maintenance costs often get high due to frequent
updates in the test cases in order to make the same congruent to
the evolving codebase. Tests that are not fixed or tests broken
could lead to a damaged integrity of the test suite and they would
hurt the workflows involved in the development, and waste the
developer’s time. As a measure towards alleviating these issues,
Yaraghi et al. [15] proposes the TARGET (TEST REPAIR
GENERATOR) as a novel method of conceptualizing the
automation of test case repair with the use of pre-trained code
language models. TARGET frames test repair as code
translation problem and applies a two-step procedure to refine
language model with some context information that describes
the test failure cause. It is evaluated on TARBENCH, a large-
benchmark dataset of broken test cases of 45,373 instances in 59
open-source projects. The target achieves an exact match
accuracy of 66.1 percent which shows good quality results on
different test repair scenarios. The study also gives an idea about
the times when repair cannot be hugely trusted and how a

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

548 | P a g e
www.ijacsa.thesai.org

custom-fit to any project justified is to be able to generalize to
new projects.

An overview of the literature has described various main
disadvantages in the existing methods of automated refactoring,
the use of LLMs to improve the code, and testing existing deep
learning systems [16]. Strong automated refactoring tools have
a tendency to run out of steam around treating dynamically
typed languages properly because they lack static type data, and
cannot handle explain ability or semantic drift. Although being
successful in eliminating common code smells and applying
mechanical refactoring’s, Large Language Models such as
StarCoder2 fail to resolve complex and architectural problems
that cannot be conducted without sufficient context on the issue
[17]. Furthermore, although one-shot prompting and multiple
generations can both improve the performance, they fail to
ensure the quality and the proper behavior correctness. Unit test
ideas developed in the context of deep learning systems can be
insufficient because models are opportunistic and based on data
[18]. The primary limitation is that the GNN-based approach to
refactoring is strongly dependent on high-quality ASTs and
preprocessing, which means that it is less effective when
encountered with syntax errors or messy code. There is still
challenge of model opaqueness, reliance on changing datasets,
and inability to test on fairness, bias, and explain ability. Also,
even though there are new approaches to automated testing and
ways to incorporate it into a CI/CD pipeline, it is hard to ensure
the overall trustworthiness and ethical guarantees of AI systems
effectively.

High-quality source code must be maintained for software
reliability, scalability, and ease of maintenance. Yet, as
contemporary software systems increase in size and complexity,
making code readable, maintainable, and optimized becomes
more difficult. Conventional refactoring techniques, such as
manual and rule-based automation, are insufficient. Manual
refactoring is time-consuming, error-ridden, and inconsistent
among large groups, whereas rule-based tools are inflexible,
language-dependent, and incapable of comprehend contextual
code semantics. These constraints lead to long-standing code
smells, duplicated blocks of code, and unnecessarily
complicated control flow, which drive development effort and
technical debt. Furthermore, current machine learning methods
for automatic refactoring, e.g. LSTM-based or shallow, fail to
learn fine-grained syntactic and semantic dependencies and tend
not to have strong validation mechanisms to guarantee
functional correctness. Hence, there is an urgent need for a
scalable, context-sensitive, and precise automated refactoring
infrastructure that is capable of improving code quality,
eliminating redundancy, and maintaining behavior on various
programming languages and real-world codebases.

III. TRANSFORMER-BASED INTELLIGENT CODE

REFACTORING FRAMEWORK (TICRF)

The suggested TICRF exploits pre-trained Transformer-
based models, like CodeT5, to learn the identification and
refactoring of bad or complex code automatically. The approach
starts with the scraping and preprocessing of code datasets in the
form of pairs of original and refactored code. These pairs are
used to fine-tune the model to acquire context-specific
transformation patterns. Raw code is fed as input during

inference to the model, and it produces an enhanced version.
This output is verified by AST parsing for syntactic correctness
and unit testing to ensure behavioral consistency. Code quality
enhancements are measured through maintainability index,
cyclomatic complexity, and code duplication, ensuring the
framework's success in improving code readability and
maintainability. The overall methodology is given in Fig. 1.

Fig. 1. Overall methodology.

A. Data Collection

The proposed framework for intelligent code refactoring
based on Transformers (TICRF) uses the CodeSearchNet
dataset [19] which has millions of function-level code snippets
extracted from publicly available GitHub repositories. The
dataset has records in many programming languages, such as
Python, Java, JavaScript, Go, Ruby, and PHP, and it includes
representations of various coding styles, structures, and
paradigms. Each record consists of the source code, related
documentation, and pertinent metadata, thus making it ideal to
learn context-aware refactoring code transformations.For the
purposes of this study, the original and refactored code pairs
were either annotated manually or identified using
RefactoringMiner, thus allowing supervised fine-tuning of the
Transformer model. This diverse and multilingual dataset allows
TICRF to generalize across languages and develop models
capable of accounting for diverse real-world code
characteristics.

B. Data Pre-Processing

During the preprocessing process, raw code is made ready
for feeding into the Transformer model in a sequence of ordered
steps. To begin with, source code is tokenized by using
language-specific parsers (e.g. Python's ast module or Java's
javaparser). These parsers segment the code into syntactic
elements such as keywords, identifiers, operators, and delimiters
without destroying the AST structure. This guarantees that the
syntactic and semantic relationships in the code—like variable
scoping, nesting, and control flow—are not lost.

Then the tokenized code is changed into Transformer-based
sequences. New vocabulary tokens are converted into
embeddings subword tokenization schemes such as Byte Pair
Encoding (BPE) or WordPiece due to the fact that all models are
trained to work in an end-to-end way that is, perceiving textual
input data. In the process, special tokens (e.g. <CLS>, <SEP>)
are inserted to code the beginning and the end of sequences. The
sequence of embeddings 𝑋 = [𝑥1 ,𝑥2 ,… , 𝑥𝑛] is then fed to
Transformer encoder, with the value 𝑥𝑖 being the embedding of
the i -th token.

Moreover, positional encoding is used to preserve token
order and indentation, which are very important in languages

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

549 | P a g e
www.ijacsa.thesai.org

such as Python. The last sequence input into the model
becomes (1):

𝑍 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑋+ 𝑃) (1)

where 𝑋 is the token embedding input vector and 𝑃 is the
position encoding. This operation makes sure that the model
understands the structure, indentation, naming conventions, and
control flow, making accurate and context-aware refactoring
suggestions possible.

C. Model Selection and Fine-Tuning: CodeT5 for Code-to-

Code Transformation

For this study, we employ CodeT5, a Transformer model
built expressly for programming language tasks like code
generation, summarization, translation, and most crucially,
code-to-code transformation. Based on the T5 (Text-to-Text
Transfer Transformer) architecture, CodeT5 represents all
problems as a sequence-to-sequence (seq2seq) problem, which
is ideal for the aim of refactoring raw code to become refactored
code.

CodeT5 is trained beforehand on large-scale code datasets
such as CodeSearchNet, allowing it to learn both syntactic and
semantic relationships between codes in different programming
languages. Its encoder-decoder design makes it capable of
taking an input sequence of code and producing an improved or
optimized output sequence.

1) Fine-tuning strategy: To allow CodeT5 to automatically

refactor code, train it on a dataset with (original code, refactored

code) pairs. These pairs are actual instances of restructuring like

renaming variables, dead code removal, and loop optimization.

Let the input code sequence be represented by (2):

𝑋 = [𝑥1, 𝑥2 ,… , 𝑥𝑛] (2)

and the resulting refactored code sequence by (3):

𝑌 = [𝑦1 ,𝑦2 , … , 𝑦𝑚] (3)

The model is trained to maximize the conditional probability
of the output sequence 𝑌 given the input 𝑋, which is defined
as (4):

𝑃(𝑌|𝑋) = ∏ 𝑃(𝑦𝑡|𝑦<𝑡, 𝑋)
𝑚
𝑡=1 (4)

Here, 𝑦<𝑡 is all of the tokens generated so far in the output
sequence up to time 𝑡 and 𝑋 is the entire input code.

2) Loss function: Sequence-to-sequence generation loss:

To train the model with the cross-entropy loss, comparing the

output token probabilities with the target tokens in (5):

ℒ = −∑ log𝑃(𝑦𝑡|𝑦<𝑡, 𝑋)
𝑚
𝑡=1 (5)

It punishes the model harder when it produces wrong tokens,
thus providing motivation towards correct refactoring output
over time.

D. Code Refactoring Inference

In this stage, the trained Transformer model (e.g., CodeT5)
is used to carry out real code refactoring inference. The process
starts with inputting raw or disorganized source code to the
model. Such code usually has problems such as code smells,

nested logic, redundant computations, or naming
inconsistencies—all of which hurt readability and
maintainability.

The model computes this input and produces a refactored
form of the code through its encoder-decoder architecture. In
inference, the model seeks to maximize the conditional
probability of the output sequence of code 𝑌 = [𝑦1 ,𝑦2 , … , 𝑦𝑚]
given the input sequence 𝑋 = [𝑥1 ,𝑥2 ,… , 𝑥𝑛], just like in training
in (6):

𝑌̂ = 𝑎𝑟𝑔 max
𝑌

∏ 𝑃(𝑦𝑡|𝑦<𝑡, 𝑋)
𝑚
𝑡=1 (6)

This enables the model to generate syntactically correct and
semantically valid code that maintains the original functionality
but enhances structural and stylistic quality.

Both the refactored code and input are then processed by an
AST parser after generation. The AST is a representation of the
syntactic structure of the code in tree form, where nodes map to
programming constructs such as functions, loops, or
conditionals. Structural consistency is ensured by ensuring that
the refactored code generates a valid AST and does not break
language grammar or structure principles. Also, an input and
output AST tree similarity check can be used to verify that the
overall flow and logic are preserved while transformations
concentrate on cleanup and simplification.

This procedure does not only make model-generated code
cleaner and easier to maintain but also functionally correct and
structurally valid.

E. Testing and Quality Evaluation

Once refactored code is produced by the Transformer-based
model, it is important that the changes do not undermine the
functionality of the original program but enhance code quality.
This process is a hybrid one with respect to unit testing, static
code analysis, and manual inspection optionally.

1) Unit testing: Unit testing is the initial verification line. It

verifies if the refactored code still generates the desired outputs

for certain inputs. Existing test cases are run against the original

and refactored code. If all tests pass in the refactored code, it

means functional behavior hasn't changed, which is essential to

safe refactoring.

Let 𝑓𝑜(𝑥) and 𝑓𝑟(𝑥) represent the outputs of the original and
refactored functions for input 𝑥, respectively. Then, for
correctness in (7):

∀𝑥 ∈ 𝐷, 𝑓𝑜(𝑥) = 𝑓𝑟(𝑥) (7)

where, 𝐷 is the domain of input values covered by the test
cases.

2) Static code analysis: Tools like SonarQube, Radon, or

Pylint are utilized to measure the improvement in code quality

by calculating objective measures. Important metrics are:

Maintainability Index (MI): Shows how maintainable the
code is. It is determined by Halstead Volume (V), Cyclomatic
Complexity (CC), and Lines of Code (LOC) in (8):

𝑀𝐼 = 171 − 5.2. ln(𝑉)− 0.23. 𝐶𝐶 − 16.2. ln⁡(𝐿𝑂𝐶) (8)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

550 | P a g e
www.ijacsa.thesai.org

The higher the MI value, the more maintainable is the
system.

Cyclomatic Complexity (CC): is an indicator of the logic
complexity of the code, or the number of linearly independent
paths through the code, defined in (9).

𝐶𝐶 = 𝐸 −𝑁 + 2𝑃 (9)

The amount of edges 𝐸, nodes 𝑁 and connected components
𝑃. Easier to understand code is represented by less values.

Duplication Rate: Measures code blocks that are repeated,
and they ought to be as few as possible. Duplication should be
minimized to enhance reuse and less maintenance.

3) Manual inspection: A human developer review is

conducted in some subjects or particularly in modules that are

critical or complicated. In that way the refactoring will retain

functionality and will be well within the scope of clean code,

naming conventions and architecture requirements. The

developers are also able to confirm subtle aspects of the

programming language like intention, readability, and use of

language in idiomatic form.

Collectively, these evaluation and testing processes
guarantee that the refactoring proposals by the Transformer are
not only accurate but also practical, secure, and in line with best
practices, improving both functional and non-functional
software code properties.

Algorithm 1: Transformer-Based Intelligent Code
Refactoring Framework (TICRF)

BEGIN

// Step 1: Dataset Preparation

LOAD raw source code dataset from CodeSearchNet

FOR each code file IN dataset:

 PARSE code using language-specific parser

 EXTRACT function-level code blocks

 IF refactored version available:

 LABEL pair as (original_code, refactored_code)

 ELSE:

 IDENTIFY refactor candidates using RefactoringMiner

 STORE (original_code, refactored_code) pairs

// Step 2: Preprocessing

FOR each code pair:

 TOKENIZE code using language-appropriate tokenizer

 APPLY positional encoding to preserve structure

 CONVERT tokens to Transformer input format

// Step 3: Model Selection and Fine-Tuning

INITIALIZE CodeT5 Transformer model

LOAD pre-trained weights

FINE-TUNE model on (original_code, refactored_code) pairs

 OPTIMIZE using sequence-to-sequence cross-entropy loss

 VALIDATE using BLEU and Exact Match scores

// Step 4: Refactoring Inference

FOR each new input_code:

 TOKENIZE and ENCODE input_code

 GENERATE refactored_code using fine-tuned CodeT5

 PARSE output with AST parser

// Step 5: Testing and Quality Evaluation

RUN unit tests on refactored_code to check functional correctness

IF all tests pass:

 COMPUTE Maintainability Index, Cyclomatic Complexity,
Duplication Rate

 IF metrics show improvement:

 ACCEPT refactored_code

ELSE:

 FLAG for manual review

ELSE:

 DISCARD refactored_code

// Optional Manual Inspection

IF flagged:

 REVIEW by human developer

END

Algorithm 1 is used to automate software refactoring with a
fine-tuned CodeT5 model. The preparation of datasets of the
CodeSearchNet starts with the processing of raw source codes
into data sets of original, refactored pairs, either manually or
through RefactoringMiner. The code is preprocessed through
tokenizing and structural encoding after which the model is fine-
tuned through sequence to sequence learning. New input code is
then inferred to produce cleaner versions which are validated
through AST parsing. Measurable metrics are carried out on
refactored outputs that are tested in units and analyzed statically.
Any evidence of improvement in outputs is accepted whereas
failures are flagged to be handled manually.

The flowchart in Fig. 2 shows the composition of the entire
process of the proposed Transformer-based code refactoring
framework. It starts with Dataset Preparation in which unlabeled
source code is gathered and prepared to be used in training. This
is followed by Preprocessing of the data, consisting of
tokenization and reshaping to meet the input specifications of
Transformer models. Model Selection and Fine-Tuning is then
carried out in the second step involving the CodeT5 Transformer
that imparts refactoring patterns on original code-refactored
code sets. In Refactoring Inference, trained model is then used
to surpass the code generated. Then the output goes through, the
critical check point, Unit Testing. Provided all the unit tests
related to refactored code pass, its code goes to the stage of
Testing and Quality Evaluation where maintainability,
complexity, and duplication will be evaluated. Unit tests are
applied and the code that does not pass unit tests is discarded,
retained refactorings should be only correct functions. The
process ends with a successful loop of validation that results into
the End stating a validated clean refactoring pipeline.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

551 | P a g e
www.ijacsa.thesai.org

Fig. 2. Flowchart of TICRF.

IV. RESULTS AND DISCUSSION

The experimental assessment was carried out on a
heterogeneous dataset of code snippets from Python, Java, and
C++ projects, as well as the original language dataset.
Augmenting this dataset, which covers different programming
paradigms and entails real-world coding styles, includes over
15,000 code snippets from 50 open-source repositories. These
studies employed CodeT5, which is a Transformer model with
220 million parameters. The training ran for about 12 hours on
an NVIDIA GPU, while the inference latency was about 0.3
seconds per snippet. Evaluation metrics included
Maintainability Index, Cyclomatic Complexity, Code
Duplication Rate, BLEU score, Exact Match Accuracy, and Unit
Test Pass Rate. The experiments also ran against Decision Tree,
GNN, LSTM-based Seq2Seq, and Transformer-based
refactoring models, in order to investigate generalizability and
state-of-the-art model performance. The results show
comparable improvements for each language group,
respectively, suggesting that the framework can maintain
functional correctness while improving code quality and clarity
of code structure.

A. Performance Metrics

The most important performance measures applied in
determining the effectiveness of the TICRF are as follows:

1) Code Duplication Rate (CDR): Scores how much code

is duplicated. Eliminating duplication improves modularity and

maintainability in (10).

𝐶𝐷𝑅 = (
𝐿𝑖𝑛𝑒𝑠⁡𝑜𝑓⁡𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑⁡𝐶𝑜𝑑𝑒

𝑇𝑜𝑡𝑎𝑙 ⁡𝐿𝑖𝑛𝑒𝑠⁡𝑜𝑓⁡𝐶𝑜𝑑𝑒
) ×100 (10)

A lower CDR is to be desired and reflects more reuse and
structure.

2) BLEU Score: Used to align produced refactored code

with the reference refactoring. It retains n-gram overlap in (11).

𝐵𝐿𝐸𝑈 = 𝐵𝑃. 𝑒𝑥𝑝(∑ 𝑤𝑛𝑙𝑜𝑔𝑝𝑛
𝑁
𝑛=1) (11)

where, 𝑝𝑛= Adjusted n-gram precision, 𝑤𝑛= Weight for each
level of n-grams (typically uniform), BP = Brevity penalty.

3) Exact Match Accuracy (EM): Calculates the proportion

of generated code snippets that perfectly match the ground-truth

refactored code in (12).

𝐸𝑀 = (
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝐸𝑥𝑎𝑐𝑡⁡𝑀𝑎𝑡𝑐ℎ𝑒𝑠

𝑇𝑜𝑡𝑎𝑙⁡𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑆𝑎𝑚𝑝𝑙𝑒𝑠
)×100 (12)

This measure is particularly effective for strict correctness
analysis in limited refactoring instances.

Fig. 3. MI Scores before and after TICRF.

Fig. 3 compares the MI scores of source code prior to and
after using the given Transformer-based refactoring framework.
The effect of TICRF on the Maintainability Index of source code
is illustrated in Fig. 3. The "Before" line indicates lower MI
values, which show that maintainability is barely adequate and
may present readability problems. After refactoring, MI values
steadily increase across sample codes, which indicates a
significant improvement to the clarity, structure, and
maintainability of the code. Therefore, TICRF improves the
long-term maintainability of software.

Fig. 4. Complexity scores before and after TICRF.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

552 | P a g e
www.ijacsa.thesai.org

Fig. 5. Duplication rate before and after TICRF.

Fig. 4 illustrates a comparison of Cyclomatic Complexity
measurements before and after running the Transformer-based
code refactoring model. Fig. 4 illustrates Cyclomatic
Complexity values prior to and after applying TICRF. The
higher values in the pre-refactored code typically show complex
control flows and branching, making the code more difficult to
read and maintain. In the refactored code, complexity has been
significantly reduced, reflecting simpler logical flows. The
aforementioned values indicate TICRF enables simple code
structures that can reduce cognitive load to improve the
readability and maintainability of the code.

Fig. 5 compares the Code Duplication Rate (%) before and
after applying the proposed Transformer-based code refactoring
model. Fig. 5 illustrates the comparison of Code Duplication
Rate (%) prior to and after the TICRF refactoring has occurred.
The sample initially, the code displayed high levels of
redundancy with the presence of repeated blocks of code,
resulting in a low, and less effective, level of modularity.
Following the refactoring, duplication is substantially reduced,
which reflects upon more concise, modular code. This indicates
that TICRF refactoring can assist in removing needless
redundancy while promoting code reuse to contribute in
producing cleaner, more maintainable software.

Fig. 6. BLEU Scores.

Fig. 6 illustrates the BLEU Score progression across training
epochs for the Transformer-based refactoring model. Starting
from an initial score of 35.2, the BLEU value steadily increases
with each epoch, reaching 68.9 by the fifth epoch. This upward
trend indicates that the model progressively learns to generate
more accurate and syntactically aligned refactored code

compared to the ground truth, validating the effectiveness of the
fine-tuning process.

Fig. 7. Exact match accuracy.

Fig. 7 presents the Exact Match Accuracy of the
Transformer-based model across five training epochs. The graph
shows a steady increase from 40.1% in the first epoch to 75.4%
in the fifth, reflecting the model's improving capability to
generate refactored code that exactly matches the ground truth.
This rising trend demonstrates the model's growing precision in
learning structural and stylistic code transformations during
training.

Fig. 8. Unit test pass rate.

Fig. 8 illustrates the Unit Test Pass Rate of five various
sample batches after the application of the Transformer-based
code refactoring. Each batch has a remarkably high success
rate—between 90% and 95%—which signifies that the
refactored code retained its original functional behavior. This
uniformity illustrates the predictability of the model in keeping
execution integrity intact while enhancing the structural quality
of the code.

TABLE I. PERFORMANCE COMPARISON OF REFACTORING MODELS

Model Precision F1-Score Accuracy Recall

Decision Tree[20] 84% 85% 85% 86%

GNN[21] 91% 92% 92% 93%

Proposed

Transformer Model
94% 97% 97% 98%

The comparison metrics presented in Table I highlight the
advantages of TICRF, our proposed transformer model, when
compared to traditional baselines. The Decision Tree produces
moderate scores, with the precision, F1-score, accuracy, and

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

553 | P a g e
www.ijacsa.thesai.org

recall scores between 84% and 86%, indicating its weak ability
to capture the complexity of patterns in code. The Graph Neural
Network (GNN) produces improved results, with scores above
90% on all relevant metrics due to its ability to account for
dependencies in the code structure. However, the proposed
transformer model outperforms both approaches, achieving a
precision of 94%, an F1-score of 97%, accuracy of 97%, and
recall of 98%, which shows that the transformer model can
accurately refactor code while maintaining functional
correctness and structural integrity in the output. Relative to the
LSTM-based and Seq2Seq Transformer-based refactoring
models, the TICRF method presents improvement over prior
works in all measurable metrics, including higher BLEU and
Exact Match scores, indicating a better imitation of syntax and
style. In addition, TICRF demonstrates greater improvement in
Maintainability Index and Cyclomatic Complexity metrics,
confirming its strength for context-aware, accurate code
refactoring.

Fig. 9. Performance comparison.

Fig. 9 illustrates a performance comparison of three models
of refactoring—Decision Tree, GNN, and Proposed
Transformer Model—based on four measures: Precision, F1-
Score, Accuracy, and Recall. The Decision Tree model performs
moderately, with all measures in the mid-80% category. The
GNN indicates significant improvement in all measures with a
score of over 90%. The Proposed Transformer Model attains the
best scores, with remarkable achievement of 94% Precision,
97% F1-Score and Accuracy, and 98% Recall. These outcomes
confirm the excellence of the Transformer-based technique in
accurately and effectively refactoring source code. To
demonstrate real-world applicability, TICRF was used on a
small open-source project written in Python (about 5,000 LOC).
The model refactored functions that contained nested loops,
duplicate code, and inconsistent naming conventions
automatically. Developers who reviewed the refactored code
indicated improved readability and maintainability without
altering functionality, verifying the usefulness of the framework
in practice rather than just on a curated dataset. The unit test pass
rate of the project remained at 91% after the refactoring.

B. Discussion

The entire discussion of this research revolves around
assessing the efficacy of the designed TICRF against
conventional and contemporary baseline models. Under

rigorous experimentation, it was seen that the Transformer-
based model considerably improves several parameters related
to the quality of code [22]. Traditional models such as the
Decision Tree, while helpful for simple decision rules, do not
have the contextualization necessary for advanced code
transformation, as evidenced in their mid-scores on all measures
[23]. The GNN model with graph-based structural information
performs better through its capability of catching dependencies
in code. Yet, it is still lacking compared to the Transformer
model, which uses attention mechanisms to understand both
semantic and syntactic patterns of source code.

The fine-tuned optimized CodeT5 model not only generates
more maintainable code—as shown by increased
Maintainability Index scores—but also decreases Cyclomatic
Complexity and Code Duplication Rate significantly. The
BLEU and Exact Match score improvements over epochs
validate the model's capacity to learn efficient refactoring
techniques. Moreover, the 90%+ Unit Test Pass Rate across all
epochs ensures that the refactored code is functionally sound, an
important requirement in software development. These
improvements are also confirmed by quantitative measures, as
the suggested model gained 94% precision, 97% accuracy and
F1-score, and 98% recall. In conclusion, the Transformer-based
solution is an effective and trustworthy tool for code refactoring
automation, tackling both structural and semantic difficulties
better than other models.

V. CONCLUSION AND FUTURE WORKS

A robust and intelligent approach to automated code
refactoring using a Transformer-based model, specifically
leveraging the capabilities of the fine-tuned CodeT5 model, has
been introduced. Traditional approaches, such as decision trees
and graph neural networks, while effective to some extent, fail
to capture the deeper syntactic and semantic complexities of
source code. The suggested framework addresses such
limitations via a sequence-to-sequence architecture that
transforms poorly organized code into better-maintainable and
optimized forms. From dataset preparation and preprocessing to
model training and inference, the pipeline ensures both
structural and functional correctness of refactored output via
AST validation and extensive testing. Experimental outcomes
show conspicuous enhancements in significant software quality
metrics like Maintainability Index, Cyclomatic Complexity, and
Code Duplication Rate. The Transformer model has a precision
of 94%, recall of 98%, and an accuracy of 97%, comparing
favorably with baseline approaches. Overall, this work
showcases the transformative value of Transformer-based
models for enhancing code quality, mitigating technical debt,
and allowing programmers to keep systems cleaner, scalable,
and more reliable.

As future directions, the Transformer-based refactoring
framework can be extended to include multilingual code support
to process more types of programming languages. The inclusion
of semantic-aware embeddings and graph-based structural
constraints in addition to Transformer outputs would help the
model to be even more accurate in identifying and rewriting
intricate code patterns. Real-world deployment in development
environments like IDEs with adaptive feedback loops would
increase interactivity and context awareness. In addition,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

554 | P a g e
www.ijacsa.thesai.org

reinforcement learning methods may be investigated to create
dynamic, optimal refactoring approaches to optimize long-term
maintainability and performance results.

REFERENCES

[1] V. Veeramachaneni, “AI-driven software development: enhancing code

quality and maintainability through automated refactoring,” Int J Recent

Dev Sci Technol, vol. 5, no. 6, pp. 94–101, 2021.

[2] A. Ainapure, A. Kharote, T. Agrawal, and S. Dhage, “Automate Code

Refactoring for Enhanced Software Maintenance and Development”.

[3] M. R. Lyu, B. Ray, A. Roychoudhury, S. H. Tan, and P. Thongtanunam,

“Automatic programming: Large language models and beyond,” ACM

Trans. Softw. Eng. Methodol., vol. 34, no. 5, pp. 1–33, 2025.

[4] K. Jain, “Exploiting Test Structure to Enhance Language Models for

Software Testing,” PhD Thesis, Carnegie Mellon University, 2025.

[5] J. Cordeiro, S. Noei, and Y. Zou, “An Empirical Study on the Code

Refactoring Capability of Large Language Models,” ArXiv Prepr.

ArXiv241102320, 2024.

[6] L. LEMNER and L. WAHLGREN, “Predicting the Need for Test

Maintenance Using LLM Agents-Applying Test Maintenance Factors to

Changes in Production Code to Identify If and Where Test Cases Need to

Be Updated,” 2024.

[7] M. Dewey, “Large Language Models and Software Testing,” 2024.

[8] A. Rehman, “AI Driven Code Review System: Leveraging Artificia l

Intelligence for Enhanced code Quality Assessment and Bug Detection,”

2025.

[9] K. Tsybulka, “Enhancing code quality through automated refactoring

techniques,” PhD Thesis, ETSI_Informatica, 2024.

[10] L. Lemner, L. Wahlgren, G. Gay, N. Mohammadiha, J. Liu, and J.

Wennerberg, “Exploring the Integration of Large Language Models in

Industrial Test Maintenance Processes,” ArXiv Prepr. ArXiv240906416,

2024.

[11] A. Aljohani and H. Do, “From fine-tuning to output: An empirical

investigation of test smells in transformer-based test code generation,” in

Proceedings of the 39th ACM/SIGAPP Symposium on Applied

Computing, 2024, pp. 1282–1291.

[12] M. A. H. M. A. Hodovychenko and D. D. K. D. D. Kurinko, “Analysis of

existing approaches to automated refactoring of object-oriented software

systems,” Вісник Сучасних Інформаційних Технологій, vol. 8, no. 2,

pp. 179–196, 2025.

[13] K. Parvathinathan et al., “Automated Unit Testing Frameworks for Deep

Learning Components in ML Software Stacks,” 2025.

[14] G. Bandarupalli, “AI-driven code refactoring: Using graph neural

networks to enhance software maintainability,” ArXiv Prepr.

ArXiv250410412, 2025.

[15] A. S. Yaraghi, D. Holden, N. Kahani, and L. Briand, “Automated test case

repair using language models,” IEEE Trans. Softw. Eng., 2025.

[16] M. Metsola, “LARGE LANGUAGE MODELS ON SOFTWARE

REFACTORING,” 2024.

[17] A. Barzilay, “Using natural language processing techniques for automated

code refactoring,” PhD Thesis, Universidade de SÃ\pounds o Paulo,

2023.

[18] I. Palit and T. Sharma, “Generating refactored code accurately using

reinforcement learning,” ArXiv Prepr. ArXiv241218035, 2024.

[19] O. Duggineni, “CodeSearchNet,” 2023, [Online]. Available:

https://www.kaggle.com/datasets/omduggineni/codesearchnet

[20] Y.-Y. Song and Y. Lu, “Decision tree methods: applications for

classification and prediction,” Shanghai Arch. Psychiatry, 2015.

[21] V. Gadey, R. Goetz, C. Sendner, S. Sovio, and A. Dmitrienko, “GNN -

Based Code Annotation Logic for Establishing Security Boundaries in C

Code,” ArXiv Prepr. ArXiv241111567, 2024.

[22] E. A. Issawi and O. A. Hajjouz, “Comparative Analysis of Conventional

Approaches and AI-Powered Tools for Unit Testing within Web

Application Development,” LU-CS-EX, 2024.

[23] E. Sundqvist, “AI-Assisted Unit Testing: Empirical Insights into GitHub

Copilot Chat’s Effectiveness and Collaborative Benefits.” 2024.

