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Abstract—Breast cancer remains a major global health 

concern and is among the leading causes of cancer-related deaths 

in women. Timely and precise diagnosis significantly improves 

treatment outcomes and patient survival rates. This paper 

presents a novel deep learning-based framework for breast cancer 

classification using ultrasound imagery, built upon the 

concatenation of two pre-trained Convolutional Neural Network 

(CNN) models: VGG19 and EfficientNetB0. By leveraging 

transfer learning and combining heterogeneous feature 

representations, the proposed method enhances the discriminative 

power of the extracted features. The model is evaluated on a 

publicly available benchmark ultrasound dataset and assessed 

through standard performance indicators, including accuracy, 

precision, recall, F1-score, and Area Under the Curve (AUC). In 

addition, Gradient-weighted Class Activation Mapping (Grad-

CAM) is employed to generate interpretability heatmaps, visually 

highlighting regions that contribute most to classification 

outcomes. The experimental findings reveal that the integrated 

architecture outperforms several existing approaches as well as 

individual CNN baselines. This study contributes to the growing 

field of AI-assisted medical diagnostics and demonstrates the 

effectiveness of model fusion in ultrasound-based breast cancer 

detection. 
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I. INTRODUCTION 

Breast cancer continues to be one of the most frequently 
diagnosed and life-threatening diseases among women globally. 
As reported by the World Health Organization (WHO), over 2.3 
million women were diagnosed with breast cancer in 2020, 
leading to approximately 685,000 deaths globally 1 . Early 
diagnosis remains a cornerstone in the fight against breast 
cancer, contribute significantly to lower mortality rates and 
enhancing the effectiveness of therapeutic interventions [1]. 

Ultrasound remains a commonly employed adjunct 
technique for breast cancer screening, particularly beneficial for 
women with dense breast tissue where mammography may fall 
short in sensitivity. Its widespread use is attributed to its non-
invasive nature, cost-effectiveness, and ability to provide real-
time imaging [2]. Nevertheless, the diagnostic reliability of 
ultrasound can be compromised by its operator-dependent 
interpretation, often resulting in variations between observers 
and inconsistent assessments [3]. 

 
1https://www.who.int/news-room/fact-sheets/detail/breast-cancer 

In recent years, deep learning, especially Convolutional 
Neural Networks (CNNs), has gained considerable traction for 
automating the interpretation of medical images [4]. These 
models have demonstrated strong performance in classification 
tasks by learning discriminative features directly from data [5], 
thereby eliminating the need for manual feature engineering [6]. 
Nevertheless, constructing deep learning models specifically for 
medical applications poses considerable challenges, largely 
because of the limited availability of large-scale, high-quality 
annotated datasets in this domain. 

To address the challenge of limited medical data, transfer 
learning has become an effective and widely utilized approach. 
By leveraging models pre-trained on large-scale datasets such as 
ImageNet, researchers can fine-tune neural networks for 
domain-specific medical imaging tasks [7]. In addition, 
combining different CNN architectures through ensemble 
methods or feature-level concatenation has been investigated as 
a means to enhance classification accuracy and generalization 
by capturing complementary feature representations [8]. In this 
context, several research areas have benefited from this 
development, such as: Cardiovascular disease classification [9], 
[10], [11], diabetes disease prediction [12], [13], [14], 
Parkinson’s disease detection [15], [16], [17], handwritten 
recognition [18], [19], [20], sentiment analysis [21], [22], etc. 

In this study, we introduce a dual-CNN fusion framework 
designed for the classification of breast cancer from ultrasound 
images. Our proposed approach combines the feature extraction 
capabilities of VGG19 and EfficientNetB0 through a feature-
level concatenation strategy, while keeping the pre-trained 
convolutional blocks frozen to reduce overfitting and accelerate 
convergence. The integration of Gradient-weighted Class 
Activation Mapping (Grad-CAM) further enhances model 
interpretability by providing visual explanations of the regions 
that most influenced the classification outcome. 

The effectiveness of the proposed model was evaluated 
using a publicly available breast ultrasound image dataset. The 
model achieved highly competitive performance with an 
accuracy of 98.44%, precision of 98.55%, recall of 99.66%, F1-
score of 99.11%, and an AUC of ≥ 0.99. These results 
demonstrate the potential of our fusion-based approach to 
support early and accurate breast cancer diagnosis, offering a 
valuable contribution to computer-aided diagnostic systems in 
clinical settings. 
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The rest of this article is structured as follows: Section II 
reviews the most relevant contributions and previous research 
efforts related to deep learning applications for breast cancer 
diagnosis. In Section III, the proposed deep convolutional 
framework based on the integration of VGG19 and 
EfficientNetB0 is described in detail, enhancement the 
architectural choices and fusion strategy. Section IV outlines the 
dataset characteristics, preprocessing techniques, and evaluation 
metrics adopted in this study. Section V reports the experimental 
findings and performance metrics achieved by our model, 
including the aforementioned high scores confirming the 
strength of the proposed method. Finally, Section VI concludes 
the study and outlines potential directions for future work. 

II. RELATED WORKS 

Recent advances in artificial intelligence, particularly in 
deep learning, have substantially improved the classification and 
diagnosis of breast cancer using medical imaging. In past 
studies, traditional feature extraction and dimensionality 
reduction techniques were most commonly applied to image 
classification problems, such as the use of homogeneity features 
in combination with mutual information for hyperspectral image 
analysis [23]. Among these techniques, Convolutional Neural 
Networks (CNNs) have demonstrated remarkable success in 
extracting relevant and discriminative features from complex 
image data, especially in ultrasound imaging, which remains a 
widely used modality for breast cancer screening due to its non-
invasive nature and cost-effectiveness. 

Several studies have explored the integration of CNN 
architectures and transfer learning techniques for enhancing 
breast lesion classification. For instance, the authors in [24] 
developed a computer-aided diagnosis (CAD) system based on 
an ensemble of VGG19 and ResNet152 to distinguish between 
benign and malignant lesions in breast ultrasound images. Their 
model achieved a sensitivity of 90.9% and an Area Under the 
Curve (AUC) of 0.951, showcasing the effectiveness of 
combining deep architectures. 

Similarly, in [25], the authors employed an ensemble 
learning strategy involving VGG, ResNet, and DenseNet 
networks to classify ultrasound images of breast tumors. Their 
evaluation on both public and private datasets resulted in an 
accuracy of 94.62%, a recall of 92.31%, and an F1-score of 
91.14% on the BUSI dataset, indicating the benefits of 
leveraging multiple pre-trained networks to improve 
generalization and robustness. 

The authors in [26] proposed a CNN-based approach 
utilizing GoogLeNet for binary classification of breast lesions. 
Their model achieved an accuracy of approximately 92.5% and 
a recall of 95.8%, highlighting the capability of deep learning to 
match or even surpass the diagnostic performance of 
experienced radiologists in certain clinical scenarios. 

In another comparative study [27], the authors analyzed 
several CNN architectures, including VGG16 and InceptionV3, 
for breast tumor classification using ultrasound images. Using a 
dataset of 947 training images and 269 testing images, their best-

performing model (fine-tuned VGG16) reached an accuracy of 
91.9% and an AUC of 0.934, emphasizing the critical role of 
fine-tuning and architecture selection in CNN-based medical 
applications. 

In our prior work [28], we conducted a comparative analysis 
of individual CNN models VGG16, VGG19, MobileNetV2, and 
ResNet50V2 using the same breast ultrasound dataset employed 
in this current study. Among them, the VGG19 model achieved 
the highest performance with an accuracy of 98.44%. Despite 
these encouraging results, single-network architectures are 
limited in capturing diverse feature representations and often 
lack interpretability, which is essential for clinical adoption. 

To address these limitations, the present study proposes a 
dual CNN concatenation framework combining VGG19 and 
EfficientNetB0, selected for their complementary architectural 
properties and feature extraction capabilities. This model 
enhances performance with feature-level fusion without 
compromising generalizability by freezing pre-trained 
convolutional heads. Moreover, incorporating Grad-CAM 
visualization advances transparency by uncovering the most 
discriminative region in each input image, rendering the system 
more interpretable and reliable for clinical use. 

III. PROPOSED CNN-BASED MODEL 

This section describes the architecture of the proposed deep 
learning model, which would classify breast ultrasound images 
as benign or malignant. The main goal is to improve diagnostic 
accuracy using transfer learning and feature combination via 
model concatenation. 

A. System Overview 

Fig. 1 illustrates the whole pipeline of the breast cancer 
diagnosis system. The system includes several steps starting 
from image acquisition and preprocessing of the ultrasound 
images, then feature extraction through pre-trained 
convolutional neural networks (CNNs). The features extracted 
from both models are combined and fed to a series of fully 
connected layers to generate the final binary prediction. This 
framework aims to be strong, understandable, and amenable to 
embedding within clinical workflow. 

B. Model Architecture 

The major contribution of this paper is the two-model 
concatenation method that combines two powerful pre-trained 
CNNs, VGG19 and EfficientNetB0, at the feature level. Both 
models are used as feature extractors without their classification 
heads, and only the last layers are fine-tuned to the ultrasound 
domain. 

Each backbone processes the input image in parallel, 
generating high-level feature representations. The feature maps 
are concatenated through a concatenation layer. The fused 
feature vector is fed through a sequence of fully connected layers 
with dropout regularization to avoid over-fitting. Finally, a 
sigmoid activation function is used to calculate the probability 
of malignancy. Fig. 2 illustrates the architecture of the proposed 
convolutional neural network. 
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Fig. 1. Flowchart of the system for detecting breast cancer. 

 
Fig. 2. The proposed CNN model architecture. 

C. Motivation for Concatenation 

The rationale behind using model concatenation is to harness 
the complementary strengths of both CNNs. VGG19 is known 
for its depth and ability to capture fine-grained spatial features, 
while EfficientNetB0 is optimized for efficiency and 
generalization. By combining their representations, the model 
can better distinguish subtle patterns present in benign and 
malignant lesions, which is particularly beneficial given the 
complexity of ultrasound data. 

D. Output and Prediction 

The output layer is a single neuron with a sigmoid activation 
function, producing a probability score between 0 and 1. A 
threshold of 0.5 is applied to categorize the image as benign or 
malignant. The performance of this architecture was thoroughly 
evaluated using various metrics, including accuracy, precision, 
recall, F1-score, and AUC. 

 
2https://www.kaggle.com/datasets/vuppalaadithyasairam/ultrasound-

breast-images-for-breast-cancer 

IV. MATERIALS AND METHODS 

A. Dataset Collection 

The dataset used in this study consists of breast ultrasound 
images categorized into two classes: benign and malignant. This 
dataset was previously employed in our earlier study [28] and is 
publicly available on Kaggle under the title “Ultrasound Breast 
Images for Breast Cancer”2. It comprises 9016 images in total, 
including 4574 benign and 4442 malignant samples. The images 
were preprocessed by resizing them to 224×224 pixels and 
normalizing pixel intensities to the [0,1] range. The choice of 
this dataset is motivated by its widespread use in prior research 
and its applicability to benchmarking breast cancer classification 
with ultrasound imaging, which remains one of the hardest 
modalities to handle since it is noisy and low-contrast Fig. 3 
provides a visual representation of the sample data included in 
the database used in this paper. 

  
(a)    (b) 

Fig. 3. Some samples of US images from the dataset are used: (a) Benign. 

(b) Malignant. 
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To ensure fair evaluation, the dataset was split into training 
(70%), validation (15%), and test (15%) subsets using stratified 
sampling to maintain class distribution. Table I summarizes the 
number of samples per class in each subset. 

TABLE I.  SAMPLE DISTRIBUTION ACROSS DATASET SPLITS 

Subset Benign Malignant Total 

Training 3203 3109 6311 

Validation 686 667 1353 

Test 686 666 1352 

B. Background on CNN 

Convolutional Neural Networks (CNNs) are a class of deep 
learning models particularly effective in analyzing image data 
[29]. CNNs apply a series of convolutional and pooling layers 
to extract hierarchical features from input images. In this study, 
we employed a dual-branch CNN architecture combining 
VGG19 [30] and EfficientNetB0 [31], both pre-trained on the 
ImageNet dataset. The extracted features from both networks 
were concatenated before being passed through fully connected 
layers, enabling more comprehensive representation learning. 

C. Confusion Matrix and Evaluation Metrics 

In the context of binary classification for breast cancer 
diagnosis, a confusion matrix is an essential tool to assess the 
performance of the proposed model. It provides a detailed 
breakdown of the model’s predictions compared to the actual 
ground truth labels by summarizing the number of correct and 
incorrect classifications. 

The binary confusion matrix [32] is structured as a 2×2 table 
comprising the following components: 

• True Positives (TP): Malignant cases correctly identified. 

• True Negatives (TN): Benign cases correctly identified. 

• False Positives (FP): Benign cases misclassified as 
malignant. 

• False Negatives (FN): Malignant cases misclassified as 
benign. 

These components form the foundation for calculating 
several widely adopted evaluation metrics that reflect different 
aspects of classification performance [33]: 

Accuracy =  
TP+TN

TP+TN+FP+FN
                          (1) 

Precision = 
TP

TP+FP
                         (2) 

Recall = 
TP

TP+FN
                    (3) 

F1-Score = 2 ×
Recall * Precision

Recall + Precision
                        (4) 

These are particularly critical in medical imaging use cases, 
where false negatives, specifically misclassification, can have 
profound implications on patient outcomes [34], [35]. They 
present a holistic perspective of the classification capacity of a 
deep learning algorithm and are critical indicators in 
determining whether it is ready for clinical adoption [36]. 

D. Gradient-Weighted Class Activation Mapping (Grad-

CAM) 

Gradient-weighted Class Activation Mapping (Grad-CAM) 
is a visualization technique used for the improved 
interpretability of convolutional neural networks (CNNs), 
especially in high-risk applications such as medical image 
processing. Grad-CAM generates class-specific localization 
heatmaps which display the most significant areas in an input 
image with respect to the prediction by the model, and thereby 
makes an insightful diagnosis of the decision-making process of 
the neural network. 

This is particularly helpful in medical image analysis, where 
it is not only important to know the decision that a model made 
but also why a model made that decision. The technique allows 
localization of discriminative regions within an image by 
utilizing the gradient information flowing into the last 
convolutional layer. 

The Grad-CAM method, proposed by [37], calculates the 
gradients of the class score with respect to the feature maps of 
the final convolutional layer. They are globally averaged to 
obtain importance weights, which are used to compute a 
weighted sum of the feature maps. The resulting localization 
map highlights the discriminative regions that considerably 
influence the model's prediction. 

𝛼𝑘ᶜ =
1

𝑍
× 𝛴ᵢ ∑ (

𝜕𝑦ᶜ

𝜕𝐴𝑖𝑗ᵏ
)𝑗                           () 

Where 𝛼𝑘ᶜ represents the importance weight for feature map 
k with respect to class c, yᶜ is the score for class c, Aᵢⱼᵏ denotes 
the activation at position (i, j) in the k-th feature map, and Z is 
the total number of pixels in Aᵏ. 

𝐿ᶜ_𝐺𝑟𝑎𝑑 − 𝐶𝐴𝑀 = 𝑅𝑒𝐿𝑈 (∑𝑘 𝛼𝑘ᶜ ×  𝐴ᵏ)           () 

This class-discriminative localization map, computed 
through the ReLU operation, specifically brings into view solely 
those features that have a positive contribution to the class of 
interest. This enables clinicians to better understand the model's 
decision-making process and ensures its alignment with 
medically relevant areas. 

Grad-CAM was employed in this work on the presented 
concatenated CNN model to identify the discriminative regions 
responsible for classifying breast ultrasound images into benign 
and malignant classes. Grad-CAM identifies the spatial 
locations influencing the classification outcome by computing 
gradients of the target class with respect to the last convolutional 
layer. This proves useful in the medical context, where the 
explainability and transparency are critical towards clinical 
adoption [38]. 

The Grad-CAM technique enhances the transparency of the 
model to an extent that clinicians and radiologists are able to 
check the region of interest of the model and trust its predictions. 
Adding Grad-CAM to the framework not only increases 
diagnostic confidence but also facilitates the explanation of 
complex medical images. 

Recent studies have emphasized the importance of 
explainable AI (XAI) techniques, such as Grad-CAM for 
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improving clinical applicability and regulatory compliance in 
healthcare AI solutions [39]. 

V. EXPERIMENTAL RESULTS 

A. Algorithm Best Parameters 

In order to optimize the performance of the proposed deep 
learning model for breast cancer diagnosis from ultrasound 
images, various training settings and hyperparameters were 
chosen based on extensive experimentation. The training 
approach used was carried out within the TensorFlow Keras 
environment of a Kaggle notebook setup, which gave the 
computational capacity necessary for handling deep learning 
operations. 

The input images were resized to a fixed resolution of 224 × 
224 pixels, a size that is widely accepted to ensure compatibility 
with the input layer of most pre-trained CNN models, including 
VGG19 and EfficientNetB0. The data was divided into three 
sets: 70% for training, 15% for validation, and 15% for testing. 
This split allowed confident model estimation while still having 
sufficient data for training. 

The training procedure was established with a batch size of 
16 and a total of 24 epochs, which were empirically discovered 
to achieve an optimal trade-off between convergence rate and 
model generalization. The Adam optimizer [40] was utilized 
with learning rate set as 1e-5, enabling adaptive learning as well 
as stable training, particularly when fine-tuning the pre-trained 
networks. 

To prevent overfitting and ensure generalizability, early 
stopping was employed with patience of 10 epochs, monitoring 
the validation loss as the primary stopping point. This ensured 
that training would be stopped once the performance of the 
model stabilized, preventing unnecessary computation and 
overfitting. 

Besides, transfer learning was leveraged by loading the 
ImageNet pre-trained weights for VGG19 and EfficientNetB0. 
To train, the classification heads of both models were removed 
and only the shared feature maps were retained. Importantly, all 
convolutional layers in both networks were frozen to preserve 
the learned representations, except for the last classification 
block consisting of concatenated features and fully connected 
layers. This architecture, dubbed the “frozen heads” setup, takes 
advantage of powerful feature extractors while concentrating 
learning capacity on classification layers specific to the task. 

To ensure maximum performance of the proposed 
concatenated model, a group of experiments was conducted to 
optimize the training configuration. Certain combinations of 
hyperparameters were investigated, and the choice was based on 
validation performance, model generalizability, and 
computational efficiency. The set of optimal hyperparameters 
utilized in the training of the model is depicted in Table II. 

TABLE II.  OPTIMAL HYPERPARAMETERS USED FOR TRAINING THE 

PROPOSED MODEL 

Network 
Learning 

Rate 

Batch 

Size 
Optimizer 

Loss 

Function 
Epochs 

The 

Proposed 

Model 

1e-5 16 Adam 

Binary 

Cross 

entropy 

24 

These parameters were set based on empirical results of 
repeated training iterations in the Kaggle Notebooks platform. 
The selected parameters gave a balance between achieving high 
accuracy and minimizing overfitting, especially when working 
with a relatively limited medical imaging dataset. 

B. Training Results 

During the training phase, the performance of the proposed 
model was monitored closely with standard parameters, 
including training loss, training accuracy, validation loss, and 
validation accuracy. All these parameters were recorded over 24 
epochs to observe how the model learns and to detect evidence 
of overfitting or underfitting. 

Fig. 4 and Fig. 5 present the accuracy and loss curves of 
training and validation datasets. In Fig. 4, training and validation 
accuracy grew with every epoch, which reflects the model to 
learn discriminative features from input ultrasound images. Fig. 
5 exhibits the training and validation loss curves, which 
gradually came down over the period, reflecting convergence. 

 
Fig. 4. Accuracy of the proposed model. 

 
Fig. 5. Loss of the proposed model. 

The training results indicate that the model generalizes well 
and is not overfitting, as the gap between the training and 
validation metrics remained minimal throughout the training 
process. Early stopping was employed to prevent overfitting, 
halting the training if no improvement was observed in the 
validation loss after 10 consecutive epochs. 

These findings confirm the effectiveness of the proposed 
concatenated architecture in learning meaningful 
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representations from breast ultrasound images, contributing to 
robust classification performance. 

C. Testing Results 

To assess the generalization performance of the proposed 
model, the testing phase was conducted using the reserved 15% 
of the dataset. The model demonstrated strong predictive 
capabilities, as evidenced by the metrics summarized in 
Table III. These results highlight the model’s effectiveness in 
correctly identifying benign and malignant breast tumors from 
ultrasound images. 

TABLE III.  TESTING PERFORMANCE METRICS OF THE PROPOSED MODEL 

Metric 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 
AUC 

Proposed 

Model (VGG19 

+ 

EfficientNetB0) 

98.44 98.55 99.66 99.11 0.99 

The evaluation metrics were computed from the confusion 
matrix and the ROC curve. 

1) Confusion matrix: The confusion matrix shown in Fig. 

6 summarizes the classification outcomes: 

• True Positives (TP) = 886 malignant cases correctly 
predicted as malignant. 

• True Negatives (TN) = 902 benign cases correctly 
predicted as benign. 

• False Positives (FP) = 13 benign cases incorrectly 
classified as malignant. 

• False Negatives (FN) = 3 malignant cases incorrectly 
classified as benign. 

These results indicate a strong classification capability, 
especially with a very low false-negative rate, which is critical 
in clinical settings to avoid missing malignant cases. 

 
Fig. 6. The confusion matrix of the proposed model. 

2) ROC curve and AUC: The ROC curve, depicted in Fig. 

7, evaluates the model’s discriminative power by plotting the 

True Positive Rate (TPR) against the False Positive Rate (FPR). 

The Area Under the Curve (AUC) for the proposed model 

reached an impressive 0.9999, which signifies excellent 

reparability between the benign and malignant classes. 

 
Fig. 7. ROC curve finding for the proposed model. 

These findings confirm that the model not only achieves 
high accuracy (98.44%), but also maintains excellent precision 
(98.55%), recall (99.66%), and F1-score (99.11%), making it 
highly reliable for real-world breast cancer diagnosis using 
ultrasound imaging. 

D. Discussion 

The proposed dual-model CNN framework, based on the 
concatenation of VGG19 and EfficientNetB0, demonstrated 
notable improvements in breast cancer ultrasound image 
classification. This section discusses the significance of the 
obtained results, the visual interpretability provided by Grad-
CAM, comparative performance with prior studies, limitations, 
and clinical implications. While the model was specially 
designed and optimized for breast ultrasound images, it is 
specifically well-suited for medical imaging modalities with 
similar issues of low contrast, noise, and high intra-class 
variability. However, the architecture can easily be generalized 
to other imaging applications, provided sufficient annotated 
data, which proves its potential generalizability to breast 
ultrasound. 

1) Performance superiority of the proposed model: Our 

proposed model achieved an accuracy of 98.44%, a precision 

of 98.55%, a recall of 99.66%, an F1-score of 99.11%, and an 

AUC value of 0.9999. These accuracies beat those of individual 

backbone networks and most prior models reported in the 

literature. The complementarity of feature representations 

learned by EfficientNetB0 and VGG19 enabled the model to 

learn nuanced spatial and contextual patterns, resulting in a 

greatly improved classification performance. 

The improved performance of the proposed model owes to 
the complementary capability of the backbone networks. 
VGG19 captures deep spatial features, and EfficientNetB0 
offers parameter efficiency and enhanced generalizability. 
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Concatenation of both at the feature level increases the richness 
in the extracted features, enabling more precise classification. 

2) Grad-CAM visualizations for model interpretability 

a) Interpretation of the proposed model: To improve the 

interpretability of the proposed concatenated model (VGG19 + 
EfficientNetB0), Gradient-weighted Class Activation Mapping 
(Grad-CAM) was applied to visualize the discriminative 
regions that influence the model's classification decisions. 
Grad-CAM enables a qualitative assessment by projecting 
class-specific activation maps onto the original ultrasound 

images, thereby highlighting the areas the model focuses on 

when distinguishing between benign and malignant cases. 

Fig. 8 shows an original breast ultrasound image of a benign 
lesion. The grayscale image serves as a reference, showing the 
anatomical structures without any model-generated overlay. 

 
Fig. 8. Original breast ultrasound image showing a benign lesion. 

Fig. 9 shows the Grad-CAM visualization generated by the 
new model. The heatmap overlays reveal that the model is 
paying attention most of the time to the lesion itself, with the 
most intense activations marked in red and yellow. This pattern 
of activation is in line with clinical expectations for benign 
lesions, where the model's attention is contained within the 
lesion pattern, aligning with clinical expectations for benign 
lesions, as the model’s attention is confined within the lesion 
boundaries, avoiding unnecessary activation in adjacent healthy 
tissues. 

 
Fig. 9. Grad-CAM visualization from the proposed VGG19 + 

EfficientNetB0 model, emphasizing the lesion boundary influencing the 

benign classification decision. 

The model's accuracy in targeting the lesion area means that 
the concatenated structure is capable of encoding the salient 
aspects of benign cases. This contributes significantly towards 

encouraging both the interpretability and clinical validity of its 
predictions. Moreover, the Grad-CAM visualizations positively 
establish that the model arrives at decisions on the basis of 
anatomically relevant areas, rather than being confused by noise 
or noise-like image artifacts. 

This interpretability analysis places the model's clinical 
value into perspective by showing how accurately it can identify 
important diagnostic areas on ultrasound scans. Providing such 
visual feedback is crucial when integrating AI-based diagnostic 
systems into medical procedures, as it fosters transparency and 
credibility with clinicians who rely on these systems for well-
educated choices. 

b) Comparative Analysis with other CNN architectures: 
To further compare the interpretability analysis of the proposed 

dual-model architecture (VGG19 + EfficientNetB0), there was 
qualitative comparison against three top single standalone 
convolutional neural networks: VGG16, EfficientNetB0, and 
GoogleNet. Comparison was done for all the models using 
Grad-CAM heatmaps that were implemented on a 
corresponding benign breast ultrasound image, hence 

preserving consistency in comparative visual interpretation. 

Fig. 10 shows the corresponding Grad-CAM heatmaps in 
2×2 formation: top-left shows VGG16, top-right shows 
EfficientNetB0, bottom-left shows GoogleNet, and bottom-right 
shows the proposed model (VGG19 + EfficientNetB0). 

 
(a)                                                       (b) 

 
(c)                                                       (d) 

Fig. 10. Visualizations of benign lesion classification Grad-CAM comparison 

between different CNN architectures: (a) VGG16, (b) EfficientNetB0, 

(c) GoogleNet, (d) Proposed VGG19 + EfficientNetB0. 

These heat maps represent the spatial attention of each model 
in processing the same benign case. As one may observe, the 
proposed concatenated model has the most concentrated 
activation within the diseased area, with minimal interference 
from the surrounding tissue, suggesting good clinical 
concordance. 
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In contrast, VGG16 and EfficientNetB0 show moderate 
attention to the periphery, while GoogleNet tends to produce 
more dispersed activation maps, sometimes extending beyond 
the boundaries of the lesion. These distinctions highlight the 
value of combining complementary feature representations in 
the proposed model. 

To support the visual observations, a qualitative analysis was 
conducted based on four interpretability criteria: Activation 
Focus, Localization Precision, Background Noise, and Clinical 
Interpretability. The results are summarized in Table IV. 

TABLE IV.  QUALITATIVE COMPARISON OF GRAD-CAM 

INTERPRETABILITY ACROSS CNN MODELS 

Model 
Activatio

n Focus 

Localizati

on 

Precision 

Backgrou

nd Noise 

Clinical 

Interpretabili

ty 

VGG16 

Moderate 

focus on 

lesion 

Medium 
Low to 

medium 
Acceptable 

EfficientNet

B0 

Periphera

l focus 

High at 

edges 
Low Good 

GoogleNet 
Scattered 

focus 
Low High Limited 

Proposed 

Model 

Centered 

on lesion 
Very High Very Low Excellent 

This comparative analysis reinforces the superior 
interpretability and diagnostic accuracy of the proposed model. 
The combination of precise localization via heat maps and high 
classification metrics suggests that feature fusion via model 
concatenation can significantly improve the performance and 
clinical usability of AI-based diagnostic tools. This information 
is particularly relevant for real-world deployment, where model 
transparency and reliability are crucial factors for their 
integration into medical decision-making processes. 

3) Comparative analysis with prior work: In TABLE V. 

Table V, we provide a comparison of our proposed model, 

which leverages the concatenation of VGG19 and 

EfficientNetB0, against several recent state-of-the-art 

techniques designed for breast cancer classification using 

ultrasound imaging and related modalities. 

TABLE V.  COMPARISON WITH PREVIOUS WORK 

Author

s 
Approach 

Breast 

cancer data 

Accurac

y (%) 

F1-

Score 

(%) 

AU

C 

[9] 
VGG19 + 

ResNet152 

Breast US 

images 
90.90 89.20 0.95 

[10] 
VGG + 

ResNet + 

DenseNet 

Breast US 

images 
94.62 91.14 0.97 

[11] GoogleNet 

Ultrasound 

DICOM 

images 

92.50 N/A 0.91 

[12] VGG16 + 

InceptionV3 

AUTOMAT

ED BREAST 

ULTRASOU

ND 

91.90 N/A 0.93 

[13] VGG19 
Ultrasound 

images 
98.44 98.39 0.98 

This 

Work 

VGG19 + 

EfficientNetB

0 

Ultrasound 

images 
98.44 99.11 0.99 

As illustrated in Fig. 11, the proposed model achieved a 
classification accuracy of 98.44%, marking a clear improvement 
over earlier approach. For instance, the method presented in 
[25], which combined VGG19 and ResNet152, reported an 
accuracy of 90.90%, while the approach in [28] using VGG16 
with InceptionV3 reached 91.90%. In addition to accuracy, our 
model attained an F1-Score of 99.11%, reflecting a well-
balanced performance between precision and recall. This level 
of consistency in performance metrics was either not 
documented or was significantly lower in prior studies. 

The AUC (Area Under the ROC Curve) for our approach is 
0.99, demonstrating superior discriminative ability compared to 
other frameworks, with the closest being [10] at 0.97. This 
improvement confirms the benefit of our model's dual feature 
extraction mechanism, which leverages the strengths of both 
VGG19’s spatial depth and EfficientNetB0’s efficiency and 
generalization capabilities. 

 
Fig. 11. Comparison of accuracy and AUC for different approaches. 

In summary, these results confirm the stability and 
effectiveness of our proposed model. With the achievement of 
higher scores in all the measures of evaluation, the model is able 
to establish itself as suitable for valid clinical application in 
diagnosing breast cancer via ultrasound imaging. 

4) Limitations and clinical relevance: Despite its 

promising results, the proposed model has its limitations. While 

the current dataset provides a valuable foundation for model 

training and evaluation, it does not fully encompass the range 

of variations typically observed in clinical practice. Moreover, 

the generalization capabilities of the model require further 

assessment through rigorous testing on external and more 

diverse datasets. Moving forward, research efforts should 

prioritize domain adaptation strategies and conduct large-scale 

validation studies to ensure robustness across different clinical 

scenarios. Despite these considerations, the model's 

demonstrated accuracy and its capacity to visually explain 

predictions make it a promising tool to support radiologists, 

especially in settings where resources are limited and diagnostic 

expertise may not always be readily available. 

VI. CONCLUSIONS AND PERSPECTIVES 

This work suggests a deep learning architecture for 
enhancing the classification of breast lesions in ultrasound 
images. The approach leverages the complementary attributes of 
two pre-trained convolutional neural networks, VGG19 and 
EfficientNetB0, by combining their feature extraction layers. 
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Employing the dual-model fusion, the constructed system 
offered remarkable performance, with the classification 
accuracy being 98.44%, F1-score 99.11%, and AUC 0.99. 

One of the key arguments of this paper is placing emphasis 
on the interpretation of the model. Using Grad-CAM 
visualizations, we had identified and visualized the influential 
areas of ultrasound images that resulted in the model's 
classification outputs. These heatmaps provide valuable visual 
insights into the model's reasoning process and hence improve 
its transparency and integration into clinical workflow. This 
interpretability is essential to gaining the trust of medical 
practitioners since it implies that the choices made by AI are 
based on medically relevant features. 

The new model demonstrated enhanced accuracy and 
robustness when compared to the previous published methods. 
Such performance improvement is primarily due to careful 
blending of complementary CNN structures, combined with 
training techniques optimized for them. In addition, techniques 
such as dropout and early stopping were applied strategically to 
reduce overfitting, hence enabling the model to generalize to 
new data. 

Despite the positive results, there are certain limitations that 
should be appreciated. Even though the dataset used in the 
current study does include a heterogeneous collection of cases, 
future extension of the dataset to include a wider patient 
population and image qualities would further strengthen the 
model's robustness. Additional external validation by 
independent datasets from different clinical scenarios is also 
required to critically test the model's ability to generalize beyond 
the training scenario. 

There are some ways in which this work will be taken 
forward in the future. One of the main areas of focus is to expand 
the size of the present dataset using large-scale data collection 
and synthetic augmentation approaches. This will strengthen the 
resilience and flexibility of the model for various clinical 
scenarios. Also, adding other tools of explainability, such as 
SHAP and LIME, to work with Grad-CAM to gain a deeper 
insight into model behavior is also a potential area for study in 
the future. Lastly, the implementation of this system into a real-
time clinical decision support tool and determining the effect of 
the system on the accuracy and efficiency of the diagnosis will 
be the step required toward adoption and applied practice in the 
clinical environment. 

These advancements in the future will seek to unveil the 
relationship between experimental research and clinical 
application, thus advancing AI-based breast cancer imaging 
diagnostic tools. 
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