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Abstract—Entropy-based texture analysis has gained 

significant attention in medical imaging, computer vision, and 

material science. The purpose of this paper is to provide a 

bibliometric review that maps the evolution, key contributors, 

research trends, and emerging themes of entropy-based texture 

analysis from 1980 to 2025. Using the Scopus database, 1,482 

articles were initially retrieved and refined to 1,226 documents for 

analysis. VOSviewer was employed for bibliometric mapping, 

examining publication trends, authorship networks, keyword co-

occurrence, and citation patterns. Results indicate a notable 

increase in research activity between 2004 and 2021, followed by a 

decline in recent years. The analysis highlights leading 

contributors, with significant work focusing on medical imaging 

applications such as radiomics and tumor heterogeneity 

assessment. While Shannon entropy remains widely used, newer 

measures like sample entropy, permutation entropy, and 

dispersion entropy are gaining attention. The study also identifies 

major research clusters, demonstrating the interdisciplinary 

nature of entropy-based texture analysis across medicine, 

engineering, and artificial intelligence. Despite database and 

language limitations, this review provides valuable insights into 

the field’s evolution and future directions, encouraging further 

interdisciplinary collaborations and advancements. 
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I. INTRODUCTION 

Texture is a fundamental characteristic of images and plays 
a significant role in various image processing tasks [1]. 
Although no universally accepted definition of texture exists, it 
is commonly understood as a representation of pixel intensity or 
color variations that form recurring patterns [2]. Early 
computational studies on texture began with Julesz’s work, 
leading to extensive research in texture classification, 
segmentation, synthesis, and shape reconstruction [3]. Among 
these, classification involves assigning an image or a region to a 
predefined texture category, while segmentation focuses on 
partitioning an image into regions with homogeneous textures. 
Texture synthesis, on the other hand, aims to generate new 
images that closely resemble a given texture sample. 
Additionally, texture analysis has been explored for three-
dimensional shape reconstruction from images, although this 
aspect has received comparatively less attention [4]. 

The foundation of texture analysis lies in computing 
meaningful features that effectively describe texture patterns. 

Various mathematical models have been proposed to quantify 
texture, and over the years, numerous theories and algorithms 
have been developed to facilitate texture analysis. One of the 
earliest approaches was inspired by human visual perception, 
leading to the introduction of co-occurrence matrices. Human 
perception of texture has significantly influenced computer-
based analysis, particularly through the development of texton 
theory, which suggests that texture discrimination relies on 
specific fundamental elements called textons. Initially, these 
textons were described as basic components such as blobs, 
corners, and edges, but later, they were redefined as cluster 
centers in a filter response space. This reformulation provided a 
computational framework for automatic texton generation, 
enabling advancements in learning-based texture analysis [5]. 

Among the various methods developed for texture and signal 
characterization, entropy-based approaches have received 
widespread attention due to their ability to quantify the degree 
of randomness, uncertainty, and complexity inherent in data. 
Originating from Shannon’s foundational work in information 
theory [6], entropy has evolved into a core concept used 
extensively in analyzing one-dimensional (1D) time-series data. 

Over the years, a wide range of 1D entropy measures have 
been introduced and further refined, such as Approximate 
Entropy (ApEn) [7], Sample Entropy (SampEn) [8], 
Permutation Entropy (PermEn) [9], Dispersion Entropy 
(DispEn) [10], Distribution Entropy (DistrEn) [11], and 
Increment Entropy (IncrEn) [12]. These measures have 
demonstrated considerable utility across a variety of domains 
including biomedical signal analysis, financial time-series 
forecasting, fault diagnosis in mechanical systems, and acoustic 
signal processing, where they are employed to capture non-
linear dynamics, irregularities, and the underlying complexity of 
1D signals [13, 14, 15, 16]. 

Despite the success of entropy in 1D analysis, applying 
similar principles to two-dimensional (2D) image textures 
presents unique challenges. Images contain spatial dependencies 
and structural variations that differ fundamentally from time-
series data. To bridge this gap, several bi-dimensional entropy 
measures have been developed that extend the core ideas of 
entropy to better capture the spatial complexity and texture 
patterns present in images. Notable examples include 2D 
Sample Entropy [17], 2D Approximate Entropy [18], 2D 
Dispersion Entropy [19], 2D Distribution Entropy [20], 2D 
Permutation Entropy [9], 2D Fuzzy Entropy [21], and 2D 
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Increment Entropy [22]. These methods provide enhanced 
capabilities for texture analysis, making them particularly 
valuable for applications in medical image processing, industrial 
inspection, and remote sensing [23]. 

Few studies have attempted to review or quantitatively 
analyze entropy-related research. For example, Li et al. [24] 
provided a bibliometric overview of entropy research in general, 
while Lam et al. [25] conducted a bibliometric analysis of 
information-theoretic studies. Similarly, surveys on texture 
analysis [1, 4, 5] have discussed a variety of statistical and 
transform-based approaches. However, none of these works 
specifically examine the role of entropy-based methods in 
texture analysis and classification. Examining this aspect is 
crucial for guiding future research and encouraging 
interdisciplinary collaboration. This study addresses this gap by 
providing a bibliometric review of entropy-based texture 
analysis and classification methods from 1980 to 2025. The 
novelty of this review lies in its focused scope: unlike earlier 
bibliometric studies that addressed entropy in general or 
information-theoretic approaches, this work systematically 
analyzes entropy-based texture analysis and classification across 
four decades (1980–2025). By identifying research clusters, 
leading contributors, and underexplored areas such as the 
limited adoption of advanced bidimensional entropy measures 
in medical imaging, the study provides original insights and 
highlights opportunities for future research. 

By analyzing research publications, citation patterns, and 
emerging trends, this paper seeks to provide valuable insights 
into the development and application of entropy measures in 
texture analysis. The primary objectives of this study are 
threefold: 1) to analyze publication trends in entropy-based 
texture analysis, 2) to identify leading contributors and top-cited 
papers, and 3) to uncover emerging research themes and 
collaborative networks within the field. 

The remainder of this paper is structured as follows: 
Section II presents the methodology employed for bibliometric 
analysis, including data collection and analysis techniques. 
Section III discusses the results of analysis, highlighting the 
most influential studies, research collaborations, and emerging 
trends. Finally, Section IV concludes the paper by summarizing 
key findings and the future directions in entropy-based texture 
analysis. 

II. MATERIALS AND METHODS 

A. Search Strategy 

To conduct a comprehensive bibliometric analysis on texture 
analysis and classification, a systematic search strategy was 
employed. The Scopus database was selected as the primary 
source due to its extensive coverage of high-impact research 
publications in the domains of computer science, medical 
imaging, and artificial intelligence. 

A search string was formulated to include a broad spectrum 
of entropy-based methodologies relevant to texture analysis 
using the Scopus database. The keywords incorporated terms 
such as “texture analys” and “texture classification”, combined 
with various entropy measures, including “shannon entropy”, 
“bidimension* entropy”, “multiscale entropy”, “spatial 

qentropy”, “Renyi entropy”, “dispersion entropy”, “distribution 
entropy”, “increment entropy”, “permutation entropy”, “refined 
composite multiscale entropy”, “fuzzy entropy”, and “espinosa 
entropy”. The Boolean operator” OR” was used to maximize 
inclusion, and the search was restricted to titles, abstracts, and 
keywords (TITLE-ABS-KEY) to ensure precision. The final 
search query used in the Scopus database is shown in Table I. 

TABLE I.  SEARCH STRING 

Source Search string 

Scopus 

TITLE-ABS-KEY (“texture analysis” OR “texture 

classification”) AND TITLE-ABS-KEY (“entropy” OR 

“bidimension* entropy” OR “Shannon entropy” OR 

“multiscale entropy” OR “spatial entropy” OR “Renyi 

entropy” OR “dispersion entropy” OR “distribution entropy” 

OR “increment entropy” OR “permutation entropy” OR 

“refined composite multiscale” OR “fuzzy entropy” OR 

“espinosa entropy”) 

B. Data Collection and Filtering 

Using the specified search string, a total of 1,482 research 
articles were initially retrieved. To refine the dataset, the 
inclusion and exclusion criteria (outlined in Table II) were 
applied. After applying the inclusion-exclusion criteria, a total 
of 1226 documents were retrieved for further analysis. In this 
bibliometric review, the dataset consists of 1,226 research 
documents on entropy-based texture analysis retrieved from the 
Scopus database (1980–2025). This data set forms the basis for 
all subsequent bibliometric analyses. 

TABLE II.  SELECTION CRITERIA FOR BIBLIOMETRIC ANALYSIS 

Criterion Inclusion Exclusion 

Timeline 1980–2025 Before 1980 

Language English Non-English 

Document Type 

Journal articles and 

conference 

proceedings 

Books, book chapters, 

and review papers 

C. Bibliometric Analysis and Visualization 

The bibliometric analysis was conducted using VOSviewer 
version 1.6.19, a widely recognized tool developed by van Eck 
and Waltman at Leiden University [26]. VOSviewer enables 
advanced bibliometric mapping through co-authorship, co-
citation, and keyword cooccurrence analysis. The software 
specializes in network visualization, allowing the identification 
of emerging research trends and collaborations in the field of 
texture analysis. The dataset exported from Scopus was 
processed in Plaintext format and contained bibliometric 
information such as publication year, article title, author names, 
journal name, number of citations, and keywords. 

D. Analysis Procedures 

To gain a deeper understanding of the research landscape, 
the following analyses were conducted: 

• Publication trend analysis: Evaluating the growth of 
entropy-based research in texture analysis over time. 

• Authorship and collaboration analysis: Identifying 
influential researchers and co-authorship networks. 
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• Keyword co-occurrence analysis: Mapping frequently 
used terms to detect emerging research themes. 

• Citation and co-citation analysis: Identifying highly 
cited papers, leading authors, and influential journals. 

VOSviewer’s clustering algorithms were used to visualize 
the relationships among keywords and authors, offering insights 
into research trends. The density visualization features further 
highlighted the dominant research areas in the field. While this 
study provides valuable insights into the evolution of texture 
analysis and entropy-based methodologies, certain limitations 
must be acknowledged: 

 

Fig. 1. Publications trend from year 1980 to 2025. 

• Database bias: The analysis is restricted to the Scopus 
database, which may exclude relevant studies indexed in 
other databases such as Web of Science, IEEE Xplore, 
or PubMed. 

• Language restriction: Non-English publications were 
excluded, potentially omitting significant contributions 
from non-English-speaking researchers. 

• Document type restriction: Excluding books and review 
articles may limit the study’s scope regarding theoretical 
advancements in the field. 

Despite these limitations, the study ensures comprehensive 
and replicable bibliometric analysis, providing valuable insights 
into the evolution of entropy-based texture analysis 
methodologies. 

III. RESULTS AND DISCUSSION 

A. Publication Trends 

Fig. 1 presents the trend of document publications over the 
years 1980 to 2025. The analysis reveals an overall increasing 
trend in the number of documents published, with notable 
fluctuations at certain points. 

In the years 2004-2014, the number of published documents 
showed a gradual rise, with occasional minor fluctuations. 
Around 2016, a significant increase in publications indicated an 
increase in research activity during that period. This upward 

trend continued, reaching its peak between 2018 and 2021 when 
the number of publications exceeded 100 per year. 

Post-2021, the number of documents began to decline, 
showing a steady drop from 2022 onward. The decline is more 
pronounced in 2024 and 2025, with a sharp decrease in 
published documents. However, the low number of publications 
in 2025 can likely be attributed to the fact that the year has only 
recently begun, meaning that more documents may still be in the 
publication process and will be added later in the year. 

Overall, the trend shows strong research momentum during 
the late 2010s and early 2020s, followed by a recent decline in 
publications. 

B. Publications by Authors 

The leading contributors in entropy-based texture analysis 
are presented in Table III emphasizing their publication volume. 
A stark contrast is evident, with Ganeshan, B. significantly 
outpacing other researchers in terms of the number of published 
documents. This initially suggests a dominant influence in the 
field; however, upon closer examination of the search results, it 
becomes apparent that while Ganeshan’s work has had a 
profound impact on texture analysis, it does not predominantly 
focus on entropy-based methods. Instead, his contributions are 
more aligned with radiomics and broader quantitative imaging 
techniques. 

In contrast, the other authors listed, Laghi, A., Schieda, N., 
Horger, M., Humeau Heurtier, A., and others, have more 
explicitly engaged in research utilizing entropy-based 
methodologies. Their work focuses on applying various entropy 
measures to medical imaging and pattern recognition, 
suggesting a more targeted exploration of entropy-driven texture 
characterization. This distinction is crucial, as it highlights that 
while Ganeshan’s influence on texture analysis is significant, 
advances in entropy-based techniques are more directly 
attributable to the collective efforts of the remaining authors. 

TABLE III.  MOST CONTRIBUTING AUTHORS 

Ran

k 
Author Institution 

Count

ry 

T

P 
TC 

TP/ 

TC 

h-

ind

ex 

1 
Ganesha

n, Balaji 

University 

College 

London 

United 

Kingd

om 

4

8 

314

2 

0.0

15 
26 

2 
Laghi, 

Andrea 

Faculty of 

Medicine and 

Psychology 

Italy 
1

1 
417 

0.0

26 
10 

3 
Schieda, 

Nicola  

L’Hôpital 

d’Ottawa  

Canad

a 

1

1 
564 

0.0

20 
10 

4 

Costa, 

André 

Luiz 

Ferreira  

Postgraduate 

Program in 

Dentistry 

Brazil 
1

0 
82 

0.1

22 
6 

5 

Horger, 

Marius 

Stefan 

Universitätsklin

ikum und 

Medizinische 

Fakultät 

Tübingen 

Germa

ny 

1

0 
134 

0.0

75 
8 

6 
Humeau

-

Université 

d’Angers 
France 

1

0 
214 

0.0

47 
8 
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Heutier, 

Anne 

7 
Liu, 

Song 

Medical School 

of Nanjing 

University 

China 
1

0 
345 

0.0

29 
9 

8 
Pattichi

s, C. S. 

University of 

Cyprus 
Cyprus 

1

0 
210 

0.0

48 
6 

9 

Zhou, 

Zhengy

ang 

Nanjing 

University of 

Chinese 

Medicine 

China 
1

0 
341 

0.0

29 
9 

10 He, Jian 

Medical School 

of Nanjing 

University 

China 9 329 
0.0

27 
9 

TP = Total Publications; TC = Total Citations  

The presence of researchers such as Pattichis, C.S., Zhou, Z., 
and Costa, A.L.F., who have made substantial contributions to 
signal processing and biomedical image analysis, further 
reinforces the relevance of entropy-based approaches in these 
domains. Their work likely incorporates entropy measures for 
feature extraction, classification, and diagnosis, making direct 
contributions to methodological advancements. 

This observation underscores the importance of 
contextualizing publication volume with a research focus. While 
high publication counts can indicate strong influence, a more 
nuanced assessment reveals that true progress in entropy-based 
texture analysis is driven by a broader set of contributors. In the 
future, fostering collaborations among researchers specializing 
in entropy-based methods and those with expertise in broader 
radiomics approaches could lead to more comprehensive 
advancements in texture characterization. 

C. Leading Subject Areas 

The distribution of documents by subject area provides 
valuable insights into the interdisciplinary impact of entropy-
based texture analysis. Fig. 2 highlights that the majority of 
research contributions fall under Medicine (32.9%), followed by 
Computer Science (16.6%), Engineering (14.7%), and 
Biochemistry, Genetics, and Molecular Biology (8.3%). 

Entropy-based texture analysis is extensively used in 
medical imaging and diagnostics, particularly in radiology, 
histopathology, and MRI/CT scan analysis [27]. The ability of 
entropy measures to quantify texture variations in biomedical 
images makes them instrumental in disease detection, including 
cancer classification, neurological disorders, and cardiovascular 
abnormalities. The high percentage of publications in medicine 
underscores the growing adoption of entropy-driven 
methodologies in clinical research and healthcare applications. 

The significant presence of entropy-based texture analysis in 
computer science reflects its role in image processing, artificial 
intelligence, and machine learning applications. Researchers 
employ entropy as a key feature extraction technique in deep 
learning and pattern recognition models, contributing to 
advancements in automated medical diagnosis [28, 29], remote 
sensing [30, 31], and security-based image analysis [32]. 

Engineering applications of entropy-based texture analysis 
span multiple domains, including material characterization, 

structural health monitoring [33], and non-destructive testing 
[34]. Entropy measures help analyze surface textures in 
industrial applications, facilitating defect detection and quality 
control in manufacturing processes [35]. 

This distribution highlights the dominant role of entropy-
based texture analysis in medicine and computer science, 
demonstrating its significance in medical imaging, artificial 
intelligence, and material science applications. The 
interdisciplinary nature of entropy methods indicates their 
potential for further advancements across biomedical, 
engineering, and computational fields. 

 

Fig. 2. Statistics of entropy-based texture analysis with respect to area of 

application. 

D. Top Cited Papers 

Table IV presents highly cited papers in entropy-based 
texture analysis. A bibliometric analysis of highly cited papers 
in texture analysis and entropy reveals that while texture 
analysis is widely used for medical image analysis, explicit 
utilization of advanced entropy-based features remains limited. 
Most of these studies incorporate Shannon entropy as one of the 
texture features, indicating that entropy is recognized as an 
important measure for texture characterization. This reinforces 
the role of entropy in assessing image complexity and 
heterogeneity. However, the more recently emerged 
bidimensional entropy measures such as Sample Entropy 
(SampEn2D), Dispersion Entropy (DispEn2D), and Permutation 
Entropy (PermEn2D) are not extensively utilized in these highly 
cited works. 

The reason for this gap is likely the timeline of their 
development. Many of the papers in our analysis were published 
before these advanced entropy measures gained attraction in 
medical image analysis. As a result, traditional texture 
descriptors, particularly those derived from the Gray-Level Co-
occurrence Matrix (GLCM) [46] and statistical methods [47, 
48], remain dominant. This gap highlights an opportunity for 
future research: leveraging bidimensional entropy measures in 
texture-based radiomics could provide novel insights into tumor 
heterogeneity and improve classification performance. 
Exploring these measures further may enhance predictive 
modeling and disease characterization beyond the capabilities of 
conventional texture features. 
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TABLE IV.  TOP 10 HIGHLY CITED PAPERS IN ENTROPY-BASED TEXTURE 

ANALYSIS 

Title Authors Year Source Title Citations 

Assessment of 

primary 

colorectal cancer 

heterogeneity by 

using whole-

tumor texture 

analysis [36] 

Ng, F., 

Ganeshan, B., 

Kozarski, R., 

Miles, K.A., 

Goh, V. 

2013 Radiology 380 

Haralick texture 

analysis of 

prostate MRI: 

utility for 

differentiating 

non-cancerous 

prostate from 

prostate cancer 

[37] 

Wibmer, A., 

Hricak, 

H., Gondo, T., 

Sala, 

E., Vargas, 

H.A. 

2015 
European 

Radiology 
346 

Assessment of 

response to 

tyrosine kinase 

inhibitors in 

metastatic renal 

cell cancer [38] 

Goh, V., 

Ganeshan, B., 

Nathan, P., 

Vinayan, A., 

Miles, K.A. 

2011 Radiology 327 

Assessment of 

tumor 

heterogeneity by 

CT texture 

analysis: Can the 

largest 

crosssectional 

area be used as 

an alternative to 

whole tumor 

analysis? [39] 

Ng, F., 

Kozarski, R., 

Ganeshan, B., 

Goh, V. 

2013 

European 

Journal of 

Radiology 

316 

Reproducibility 

of tumor uptake 

heterogeneity 

characterization

 throug

h textural feature 

analysis in 18F-

FDG PET [40] 

Tixier, F., 

Hatt, M., Le 

Rest, C.C., 

Corcos, L., 

Visvikis, D. 

2012 

Journal of 

Nuclear 

Medicine 

289 

Tumour 

heterogeneity in 

oesophageal 

cancer assessed 

by CT texture 

analysis [41] 

Ganeshan, B., 

Skogen, K., 

Pressney, I., 

Coutroubis, 

D., Miles, K. 

2012 
Clinical 

Radiology 
278 

Texture analysis 

of non-small cell 

lung cancer on 

unenhanced CT 

[42] 

Ganeshan, B., 

Abaleke, S., 

Young, 

R.C.D.,

 Ch

atwin, 

C.R., Miles, 

K.A. 

2010 
Cancer 

Imaging 
277 

Practical

 guidel

ines for choosing 

GLCM textures 

for landscape 

classification 

[43] 

Hall-Beyer, 

M. 
2017 

International 

Journal of 

Remote 

Sensing 

276 

Can quantitative 

CT texture 

analysis 

differentiate fat-

poor renal 

angiomyolipoma 

from renal cell 

carcinoma? [44] 

Hodgdon, T., 

McInnes,

 M.

D.F., 

Schieda, N.,

 La

mb, 

L., Thornhill, 

R.E. 

2015 Radiology 246 

CT textural 

analysis of 

hepatic 

metastatic 

colorectal cancer 

[45] 

Lubner, M.G., 

Stabo, N., 

Lubner, S.J., 

Halberg, R.B., 

Pickhardt, 

P.J. 

2015 
Abdominal 

Imaging 
237 

E. Keyword Analysis 

Fig. 3 shows a network map of keyword co-occurrence of a 
published article on texture analysis. The keyword co-
occurrence network map provides an overview of the thematic 
structure in entropy-based texture analysis research. Larger 
nodes represent frequently occurring terms while connecting 
lines indicate co-occurrences in published studies. Different 
clusters, distinguished by color, reveal key research directions. 
The green cluster relates to imaging techniques, encompassing 
terms such as “magnetic resonance imaging (MRI)”, “neural 
networks”, and “microstructure”. The inclusion of “high entropy 
alloy” suggests that entropy-based texture analysis extends 
beyond medical imaging, playing a role in materials science for 
characterising microstructural patterns. At the center of the 
network, “texture analysis” emerges as the most dominant 
keyword, closely linked with “image processing”, “feature 
extraction”, and “classification”, reflecting the methodological 
focus on extracting meaningful features for applications in 
medical imaging and pattern recognition. Fig. 3 illustrates the 
keyword co-occurrence map for entropy-based texture analysis 
documents, whereas Table V lists the top 10 keywords along 
with their total link strengths. 

TABLE V.  TOP 10 KEYWORDS IN ENTROPY-BASED TEXTURE ANALYSIS 

Keyword Occurrence Link Strength 

Texture Analysis 501 673 

Magnetic Resonance Imaging 120 208 

Radiomics 70 135 

Computed Tomography 67 114 

Texture 62 96 

Entropy 58 87 

Image Processing 38 71 

Classification 35 66 

GLCM 34 43 

Texture Classification 34 28 

The red cluster represents the core computational 
techniques, featuring keywords such as “entropy”, “GLCM” 
(grey-level co-occurrence matrix), “feature extraction”, and 
“wavelet transform”. The inclusion of “fractal dimension” and 
“Gabor filters” highlights the mathematical approaches used to 
quantify texture complexity. The blue cluster focuses on medical 
imaging applications, with terms such as “Computed 
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Tomography (CT)”, “MRI”, “PET/CT”, and disease-related 
keywords like “lung cancer”, “glioblastoma”, and “metastasis”, 
demonstrating the increasing role of entropy-based texture 
analysis in radiomics and diagnostic imaging. Meanwhile, the 
yellow and orange clusters highlight its clinical relevance, 

featuring keywords such as “diagnosis”, “differential 
diagnosis”, “colorectal cancer”, and “gastric cancer”, which 
emphasize its role in quantitative imaging-based diagnostics to 
support clinical decision-making. 

 

Fig. 3. Keyword co-occurrence map. 

The overlay visualisation map in Fig. 4 illustrates the 
evolution of research trends in entropy-based texture analysis 
over time. Keywords shown in yellow represent emerging areas 
of interest, indicating the current focus of research. Recent 
studies highlight topics such as quantitative texture analysis, 
radiomics, lung cancer, MRI, computed tomography, and 
machine learning, suggesting a growing emphasis on advanced 
medical imaging techniques. In contrast, terms like entropy, 
feature extraction, and classification appear in green and blue, 
signifying their established role in the field. This progression 
suggests a shift from traditional texture analysis methods 

towards more sophisticated, imaging-driven diagnostics. Given 
these trends, future research is likely to further explore the 
integration of texture features with cutting-edge computational 
techniques, reinforcing their application in medical and 
technological advancements. The strong connections between 
feature extraction techniques and medical imaging terms suggest 
that the field is evolving towards automated and quantitative 
radiomics approaches. The presence of diverse methodological 
and application-focused clusters suggests that future research 
will continue refining computational techniques while 
expanding their use in clinical and material sciences.

 

Fig. 4. Keywords overlay visualization map. 
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F. Geographic Contribution Analysis 

The country co-authorship map presented in Fig. 5 illustrates 
the international collaborative landscape in the field, where each 
node represents a country and the lines (edges) indicate co-
authorship links. The size of the node corresponds to the volume 
of publications, while the thickness of the links reflects the 
strength of collaborative ties. Countries are grouped into clusters 
based on the strength and frequency of their co-authorship 
patterns, with each cluster represented by a distinct color. 
Notably, China, the United Kingdom, India, and Germany 
appear as central hubs with extensive co-authorship ties 
spanning across multiple clusters, underscoring their dominant 
roles in facilitating global research collaboration. The green 
cluster, which includes countries such as India, Poland, and 
Saudi Arabia, represents a growing network of emerging 
contributors, particularly from Asia and Eastern Europe. 

Similarly, the red cluster, dominated by France, Brazil, Canada, 
and Turkey, reflects strong intercontinental research 
partnerships, particularly between Europe and the Americas. 
The blue cluster, comprising Japan, Singapore, Taiwan, and 
Indonesia, highlights robust regional cooperation in East and 
Southeast Asia. Meanwhile, the yellow cluster, centered around 
China and the United Kingdom, demonstrates cross-regional 
collaboration that bridges Asia and Europe. Countries like Italy 
and Mexico form part of the orange cluster, indicating active 
participation in Europe-Asia scientific exchanges. The inclusion 
of Australia and Finland in separate clusters (purple) suggests 
their specialised contributions and unique collaborative 
pathways, often acting as bridges between regions. The map’s 
overall structure and the interconnectedness of nodes suggest a 
highly collaborative global research ecosystem, with developing 
nations increasingly integrated into international scholarly 
networks.

 

Fig. 5. Country co-authorship network. 

IV. CONCLUSION 

This bibliometric study provides a quantitative overview of 
entropy-based texture analysis, highlighting its growth, key 
contributors, and major applications. The results indicate that 
research in entropy-based texture analysis has experienced 
significant growth from 2004 to 2021, with peak activity 
between 2018 and 2021, followed by a decline in recent years. 
The findings reveal that medical imaging, particularly radiomics 
and tumor heterogeneity assessment, remains the dominant 
application area. Keyword analysis and citation mapping 
indicate that Shannon entropy continues to be widely used, but 
newer entropy measures such as sample entropy, permutation 
entropy, and dispersion entropy are emerging as promising 
techniques. 

Furthermore, the study identifies strong international 
collaborations, with China, the United Kingdom, India, and 
Germany being key contributors. The interdisciplinary nature of 
entropy-based texture analysis is evident, spanning domains 
such as artificial intelligence, biomedical imaging, and material 

science. Despite its established applications, the field faces 
challenges related to standardization, computational efficiency, 
and interpretability of entropy measures. 

A. Critical Insights and Future Directions 

While this bibliometric review identifies major trends and 
contributors in entropy-based texture analysis, several 
methodological gaps remain. First, many highly cited studies 
still rely heavily on Shannon entropy or GLCM-based 
descriptors, whereas more advanced measures such as sample 
entropy, dispersion entropy, permutation entropy, and 
bidimensional variants are underutilized. This indicates a need 
for more comparative studies that evaluate the relative strengths 
and limitations of different entropy measures in diverse 
applications. 

Second, there is a lack of standardized evaluation 
frameworks for entropy-based texture classification. Current 
studies often use different data sets, preprocessing pipelines, and 
classification methods, which makes direct comparisons 
difficult. Establishing benchmark datasets and protocols could 
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help ensure reproducibility and enable fair performance 
assessment across entropy measures. 

Third, emerging application areas remain relatively 
unexplored. Although medical imaging dominates, entropy-
based texture analysis also shows promise in materials science, 
industrial inspection, structural health monitoring, and security 
applications. For example, in industrial inspection, entropy 
measures can characterize surface roughness and detect micro-
defects in manufacturing processes, enabling non-destructive 
quality control. In remote sensing, entropy-based features have 
been employed to classify land cover types, monitor vegetation 
patterns, and detect environmental changes from satellite 
imagery. Similarly, in biometrics, entropy-driven texture 
analysis has shown promise in enhancing the accuracy of 
fingerprint, iris, and face recognition systems by capturing fine-
grained structural variations. Integrating entropy measures with 
deep learning and hybrid feature fusion approaches could further 
expand their impact, especially in radiomics and automated 
diagnostics. 

By addressing these gaps, future research can enhance 
methodological robustness and broaden the scope of entropy-
based texture analysis, ensuring its continued relevance in 
rapidly evolving technological domains. Future research should 
focus on improving entropy-based methods by integrating deep 
learning techniques, optimizing computational frameworks, and 
developing standardized benchmarks for texture classification. 
The increasing use of entropy in radiomics suggests potential for 
further exploration in automated diagnostics. Additionally, 
expanding entropy applications beyond medical imaging into 
remote sensing, industrial quality control, and biometrics can 
offer new avenues for research. Strengthening interdisciplinary 
collaborations will be crucial in advancing entropy-driven 
texture analysis and ensuring its relevance in emerging 
technological landscapes. 
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