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Abstract—The instability of algorithmic and hybrid 

stablecoins has become a systemic concern in decentralized 

finance. This paper proposes a unified, interpretable, and 

uncertainty-aware framework that integrates graph-based deep 

reinforcement learning, GARCH econometric modeling, and 

Bayesian inference. Multi-stage reinforcement learning agents 

simulate interactions between arbitrageurs and protocol 

mechanisms. GARCH models capture volatility dynamics, while 

Bayesian methods provide confidence intervals for peg deviation 

forecasts, enabling adaptive prediction and transparent risk 

interpretation. The framework is validated using over eight 

million on-chain and off-chain records across 120 scenarios 

involving USDT, USDC, and TerraUSD. It achieves 89 per cent 

crisis prediction accuracy and 83 per cent reflexivity modeling 

performance, significantly outperforming six benchmark models. 

Notably, the system issued early warnings up to 72 hours before 

the TerraUSD collapse. Ablation studies confirm the unique 

contribution of each module. In addition to technical 

improvements, the framework outputs a stability index and 

dynamic reserve recommendations to support policy response 

and supervisory planning. Compared to existing approaches, this 

is the first framework to combine dynamic simulation, 

interpretability, and probabilistic forecasting in a single 

architecture. It offers practical value for stablecoin monitoring 

and establishes a methodological foundation for future research 

in digital asset risk assessment. 
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I. INTRODUCTION 

While the first stablecoins were launched in 2014, their 
actual adoption and market relevance only began in 2017 with 
the rise of USDT [1]. The rise of stablecoins as critical 
infrastructure in decentralized finance (DeFi) has exposed 
fundamental vulnerabilities in their stability mechanisms, most 
notably demonstrated by the collapse of TerraUSD in 2022. 
Stablecoins peg to a national currency, typically the US dollar, 
and are used to transact in non-stable cryptoassets more 
efficiently than using national currencies [2]. DeFi has joined 
FinTech (financial technology), RegTech (regulatory 
technology), cryptocurrencies, and digital assets as one of the 
most discussed emerging technological evolutions in global 
finance [3]. DeFi is a new financial paradigm that leverages 
distributed ledger technologies to offer services such as 
lending, investing, or exchanging cryptoassets without relying 

on traditional centralized intermediaries [4]. Designed to 
maintain pegs through algorithmic adjustments or reserve 
backing, stablecoins face multifaceted risks ranging from 
liquidity shocks to speculative attacks. Stablecoins are a brand 
of cryptocurrency that are pegged to fiat currencies or assets 
that are relatively stable, such as the US dollar [5]. Traditional 
assessment methods predominantly rely on static metrics such 
as collateralization ratios or linear econometric models, which 
fail to capture the dynamic interplay between market stress 
events, arbitrageur behavior, and protocol governance. This 
limitation becomes particularly acute during crisis periods 
when nonlinear feedback loops dominate market dynamics, as 
seen in the death spiral of algorithmic stablecoins. Algorithmic 
stablecoins are inherently fragile [6]. The absence of adaptive 
evaluation frameworks leaves regulators and market 
participants ill-equipped to anticipate stability breaches or 
implement timely interventions. Existing cryptocurrencies are 
too volatile to be used as currencies for daily payments. 
Stablecoins, which are cryptocurrencies pegged to other stable 
financial assets, are desirable for payments within blockchain 
networks, often being called the “Holy Grail of cryptocurrency.” 
[7]. 

Addressing these gaps requires a paradigm shift toward 
dynamic, interpretable, and uncertainty-aware modeling. 
Current approaches exhibit three critical shortcomings. First, 
static analyses cannot simulate how market participants adapt 
their strategies under evolving conditions, missing cascading 
effects like coordinated sell-offs. Second, black-box machine 
learning models, while powerful in prediction, offer limited 
insights into the drivers of instability, hindering regulatory 
decision-making. Black box machine learning models are 
currently being used for high-stakes decision making 
throughout society [8]. But black box machine learning models 
can be dangerous for high-stakes decisions [9]. Third, 
conventional point estimates of risk fail to quantify the 
probability distribution of stability violations, leaving 
stakeholders unprepared for tail events. These deficiencies 
underscore the need for a unified framework that combines 
real-time adaptability with economic interpretability and 
probabilistic risk assessment. 

This study proposes a novel hybrid architecture that 
integrates graph-based deep reinforcement learning (DRL), 
GARCH econometrics, and Bayesian inference to assess 
stablecoin stability in a dynamic, interpretable, and 
uncertainty-aware manner. The methodological pipeline covers 
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end-to-end integration of data collection, graph construction, 
model training, ablation analysis, and policy scenario 
simulation. Multi-stage DRL agents are employed to simulate 
adaptive decision-making under stress, while GARCH models 
capture volatility dynamics, and Bayesian inference quantifies 
predictive uncertainty through confidence intervals. 

The framework brings together agent-based simulation, 
volatility modeling, and probabilistic forecasting in a cohesive 
design, addressing key methodological gaps left by earlier 
studies. In contrast to static or opaque models, the proposed 
system generates interpretable outputs via graph attention and 
volatility decomposition, enabling transparent tracing of risk 
propagation. The framework is empirically validated on over 
eight million data points across 120 real-world scenarios, 
achieving 89 per cent crisis prediction accuracy and providing 
early warnings up to 72 hours before major depegging events. 
These results significantly outperform traditional econometric 
and deep learning baselines. 

From a policy perspective, the framework produces 
actionable outputs such as stability indices and adaptive reserve 
requirement tools, supporting macroprudential supervision. 
Overall, this work bridges algorithmic finance and regulatory 
science, setting a new benchmark for evaluating stablecoin 
stability as a time-varying, topology-dependent phenomenon. It 

contributes to closing the gap between predictive performance, 
model transparency, and regulatory relevance in digital asset 
risk assessment. 

II. RELATED WORKS 

The evolution of stablecoin risk assessment methodologies 
has progressed through three distinct generations, each 
addressing specific aspects of stability evaluation while 
revealing critical limitations. Given the novelty of stablecoins, 
no universal assessment framework exists [10]. Fig. 1 presents 
a knowledge graph mapping these methodological 
relationships, demonstrating how existing approaches fail to 
capture the tripartite requirements of dynamic adaptation, 
interpretability, and uncertainty quantification in stablecoin 
markets. This visualization highlights the research gap at the 
intersection of graph theory (GT), reinforcement learning (RL), 
and econometrics that the current study aims to address. RL is 
a machine learning (ML) technique to learn sequential 
decision-making in complex problems [11]. Deep Learning 
(DL) and RL methods seem to be a part of indispensable 
factors to achieve human-level or super-human AI systems 
[12]. GT concepts are potentially applicable in the field of 
computer science (CS) for many purposes [13]. GT is a 
growing area as it is applied to areas of mathematics, science, 
and technology [14]. 

 

Fig. 1. Methodological evolution in stablecoin risk assessment. 
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Despite their widespread use, traditional risk models often 
fall short in capturing complex dynamics during crisis periods, 
limiting their effectiveness in supervisory contexts. 
Collateralization ratio analysis, exemplified by Tether's reserve 
reports, provides static snapshots of asset backing but cannot 
anticipate liquidity crises caused by reflexive market behaviors. 
Time-series methods like Vector Autoregression (VAR) 
models attempt to capture price-volume relationships, yet their 
linear assumptions prove inadequate when dealing with the 
nonlinear dynamics of decentralized finance. VAR is a 
multivariate time series model and can be used to model more 
than one variable jointly [15]. Decentralized financial 
applications (DeFi) are a new breed of consumer-facing 
financial applications composed as smart contracts, deployed 
on permissionless blockchain technologies [16]. Table I 
quantitatively compares these traditional approaches against 
the proposed framework's capabilities, showing particularly 
poor performance in reflexivity modeling (under 10% accuracy) 
during stress events such as the May 2022 stablecoin crisis. 

TABLE I.  PERFORMANCE COMPARISON ACROSS METHODOLOGICAL 

GENERATIONS 

Evaluation 

Dimension 

Traditional 

Models 

Deep 

Learning 

Hybrid 

Methods 
Proposed 

Crisis Prediction 

Accuracy 
38% 62% 71%  89%*  

Reflexivity 

Modeling 
9% 35% 52% 83%*  

Policy Impact 

Sensitivity 
21% 28% 45% 77%*  

Computational 

Cost 
Low Very High High Medium 

Recent advances in DL have introduced more sophisticated 
analytical tools, particularly through graph neural networks 
applied to cryptocurrency transaction topologies. DL is a class 
of ML that performs much better on unstructured data [17]. DL 
had been analysed and implemented in various applications 
and had shown remarkable results [18]. These approaches 
successfully identify money flow patterns and liquidity pool 
dynamics, as demonstrated in Ethereum transaction network 
analyses. However, Fig. 2's radar chart reveals a striking 
imbalance in DRL applications across financial domains, with 
stablecoin peg mechanisms receiving disproportionately little 
attention compared to stock market prediction and algorithmic 
trading. 

DRL, which is an in-depth combination of artificial neural 
network (ANN) and RL, has achieved great success in various 
kinds of complex tasks, namely, Chinese Go game, Atari 
games, and StarCraft [19]. RL has become of particular interest 
to financial traders ever since the program AlphaGo defeated 
the strongest human contemporary Go board game player, Lee 
Sedol in 2016 [20]. This visualization underscores the 
untapped potential for adapting DRL to model the unique 
feedback loops between arbitrageurs and algorithmic 
stablecoin mechanisms. 

 

Fig. 2. DRL application distribution across financial domains. 

The emerging hybrid paradigm attempts to bridge these 
disciplinary divides by combining econometric techniques with 
machine learning. GARCH-enhanced reinforcement learning 
systems in foreign exchange markets have shown 18-22% 
improvement in volatility forecasting accuracy over pure 
statistical models. Bayesian neural networks (BNNs) have 
similarly advanced uncertainty quantification in cryptocurrency 
price prediction. The posterior over BNN parameters is 
extremely high-dimensional and non-convex [21]. Inference in 
BNNs usually requires posterior approximations due to 
intractable integrals and high computational cost [22]. 
Cryptocurrencies are decentralized electronic counterparts of 
government-issued money [23]. Accurate predictions can assist 
cryptocurrency investors towards the right investment 
decisions and lead to potential increased profits [24]. Fig. 3's 
flowchart deconstructs a representative hybrid stablecoin 
analysis pipeline, exposing three critical limitations: the 
absence of integrated on-chain/off-chain data fusion, 
insufficient modeling of reflexivity loops, and a lack of policy 
impact simulation modules. These gaps collectively motivate 
the current study's integrated architecture. 

 

Fig. 3. Limitations of current hybrid approaches. 

III. METHODOLOGY 

The proposed methodology establishes an integrated 
framework for stablecoin stability assessment through three 
synergistic components: dynamic adaptive prediction, 
interpretable hybrid modeling, and uncertainty quantification. 

The architectural novelty lies in the seamless coupling of 
graph-based DRL, enabling adaptive agent interaction 
modeling, with econometric GARCH modules and Bayesian 
inference, jointly delivering both interpretability and real-time 
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risk quantification. Notably, the reward function innovatively 
incorporates both microstructural trading signals and 
macroprudential policy triggers, representing a significant 
advancement over conventional approaches. 

The overall workflow encompasses the ingestion and 
preprocessing of over 8 million records from both on-chain and 
off-chain sources, multi-stage model training and tuning, 
module-wise ablation, and multi-regime scenario simulation, 
amounting to more than 120 independent experimental runs. 

The integrated ecosystem and continuous feedback 
mechanisms of the proposed framework are illustrated in Fig. 4, 
capturing the interplay between data, analytics, outputs, and 
policy response. Methodologically, the framework formalizes 
stablecoin risk as a time-varying, network-dependent process, 
advancing the theoretical modeling of reflexive financial 
systems and enabling rigorous, explainable risk quantification 
for digital assets. 

 

Fig. 4. Circular ecosystem of integrated stablecoin risk assessment. 

We adopt Proximal Policy Optimization (PPO) with a 
clipped surrogate objective for its stability under non-stationary 
environments and compatibility with both discrete and 
continuous actions. Policies and value functions are 
parameterized by graph neural networks over the transaction-
liquidity graph. 

Fig. 5 presents the comprehensive system architecture, 
illustrating how raw data transforms into policy-relevant risk 
metrics through sequential processing layers. The data layer 
ingests both on-chain transactional records and conventional 
market feeds, constructing a temporal graph representation 
where nodes represent liquidity pools and edges encode capital 
flow dynamics. 

At decision time t,  the environment state 𝑠𝑡  aggregates: 
1) node-level features capturing reserves, liabilities, traded 
volume, peg deviation, and local volatility; 2) edge-level 
features 𝑤𝑖𝑗

𝑡  encoding arbitrage intensity with exponential 

temporal decay; and 3) system features (market-wide liquidity 
depth, CEX–DEX spreads, funding rates). Node and edge 

features are embedded via a GAT encoder, producing a graph 
state embedding ℎt. 

Inputs are the multi-source streams forming 𝑠𝑡  (on-chain 
reserves, off-chain prices, graph flows). The DRL outputs are 
1) action vector 𝑎𝑡 , 2) an agent-implied peg deviation path 
from the policy rollout, and 3) a stability index 𝑆𝑡 ∈ [0, 100] 
computed as a monotone transformation of the value function 
and predicted breach probability. Uncertainty intervals are 
produced downstream by the Bayesian module. 

 

Fig. 5. System architecture diagram. 

To enhance computational efficiency, the framework 
employs sparse graph representations and batch-wise parallel 
training, significantly reducing memory footprint and training 
time. This design improves computational efficiency, reducing 
peak memory usage by 40% and accelerating convergence by 
22% relative to conventional DRL pipelines. 

For dynamic adaptive prediction, the state space formalizes 
market microstructure through node-level and system-wide 
features. Given a transaction graph Gt = (Vt ,Et) at time t, each 
node vi ∈ Vt embeds reserve adequacy and trading anomalies: 

ϕ(vi) = [
Ri

Di
,

Vi−μV

σV
,

|∆pi|

ppeg
]  (1) 

where, R i denotes reserves, Di liabilities, Vi trading volume, 
and ∆pi  price deviation. Edge weights ωij ∈ Et  quantify 

arbitrage intensity between entities with temporal decay: 

ωij =
∑ arbk

ijn
k=1

∑ txk
ijn

k=1

∙ exp(−
t−tlast

ij

τ
)  (2) 

The DRL reward function combines multiple stability 
objectives: 

rt = −(α|∆t| + βLt
−1 + γ‖∇At‖2 + δ ∙ Ⅱ

TW
) (3) 
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where, Lt  measures liquidity depth, At  arbitrage activity, 
and ⅡTW  penalizes time-window violations. Multi-phase 
training employs curriculum learning across market regimes as 
specified in Table II. 

TABLE II.  DRL TRAINING REGIME PARAMETERS 

Regime Duration 
Peg 

Deviation 

Volume 

Change 

Liquidity 

Shock 

Normal 60 days <1% <1σ  <5% 

FUD 15 days 1-3% 1-3σ 5-15% 

Crisis 5 days >5% >3σ >15% 

The interpretable hybrid modeling component decomposes 
volatility sources through an augmented GARCH process: 

σt
2 = α0 + ∑ αiϵt−i

2 + ∑ βjσt−j
2 + ΓTZt + η ∙ GNN(Gt)q

j=1
p
i=1  (4) 

Graph attention mechanisms identify critical risk pathways 
through learned edge importance: 

αij = softmax(
(WQℎi )T(WKℎj)

√dk
)  (5) 

where, WQ and WK are learned projection matrices. Graph 

attention networks (GATs) have emerged as a powerful and 
versatile framework in this direction, inspiring numerous 
extensions and applications in several areas [25]. Graph-based 
learning is a rapidly growing sub-field of machine learning 
with applications in social networks, citation networks, and 
bioinformatics. One of the most popular models is graph 
attention networks [26]. Fig. 6 visualizes the dominant risk 
contagion path during a simulated bank run scenario. Bank 
runs are situations where depositors withdraw their deposits 
from banks for the fear of the safety of their deposits [27]. 

 

Fig. 6. Risk contagion pathway. 

Uncertainty quantification employs Bayesian deep learning 
with Monte Carlo dropout: 

p(y|x, D) ≈
1

T
∑ p(y|x,θt),     θt~q(θ|D)T

t=1  (6) 

Extreme value theory models tail risks through the 
generalized Pareto distribution: 

F(y) = 1 − (1 + ξ
y−u

β
)−1/ξ    for y > u (7) 

Additionally, the framework estimates the probability of a 
stability breach within the time horizon τ: 

Pbreacℎ(τ) = 1 − exp(− ∫ λ(s)ds
t+τ

t
)  (8) 

where, λ(t) is the hazard rate derived from historical and 
simulated stress events. This comprehensive methodology 
addresses all key requirements through Eq. (1)-(8), with 
architectural integration visualized in Fig. 5 and empirical 
validation discussed in Section IV. The framework’s 
architecture supports seamless adaptation to various stablecoin 
structures and market scenarios, with stress-testing and cross-
domain validation built into the experimental protocol to 
ensure consistent reliability. 

IV. CASE STUDY AND RESULTS 

We employ strict temporal splits to prevent leakage. 
Training uses Jan-2020 to Dec-2022 and testing uses Jan-2023 
to Jun-2023. For robustness, we further adopt a rolling-origin 
evaluation: train on the first T months, validate on month T+1, 
test on month T+2, sliding the window by one month (no 
feature re-estimation across test months). Normalization 
parameters (robust z-scores) are fit on training only and applied 
to validation/test. Any feature requiring future information (e.g., 
realized volatility) is lagged to ensure causality. Hyper-
parameter tuning uses validation periods distinct from test 
months. 

The experimental evaluation focuses on three stablecoin 
ecosystems: centralized (USDT), hybrid (USDC), and 
algorithmic (TerraUSD), covering the turbulent period from 
January 2020 to June 2023. This multi-ecosystem validation 
spans both tranquil and highly volatile periods, including 
market-wide crashes and black swan events, rigorously testing 
the framework’s robustness and generalizability. Black Swan 
events are rare and seemingly random in nature [28]. Stress 
tests and ablation studies further confirm that predictive 
performance is stable even under conditions outside the typical 
data distribution. In total, the study processes more than 8 
million transactions and market records spanning multiple 
sources and platforms, with extensive data cleaning and feature 
extraction for 14 core indicators. Fig. 7 illustrates the 
heterogeneous data integration process, combining on-chain 
reserves data from Etherscan with minute-level market feeds 
from Binance and Coinbase. The prepared dataset captures 14 
critical features across liquidity depth, arbitrage activity, and 
macroeconomic conditions, standardized using robust z-score 
normalization to mitigate outlier effects. 

 

Fig. 7. Data integration pipeline. 

We compare against: (B1) GARCH(1,1) with exogenous 
macro factors; (B2) VAR(p) on peg, volume, spreads; (B3) 
LSTM (2 layers, 128 units, dropout 0.2); (B4) Transformer (4 
heads, 2 encoder layers); (B5) Gradient-Boosted Trees on 
engineered lags; (B6) BNN (variational). 

All baselines use the same train/test splits, the same input 
features available to our method at forecast time, and identical 
horizons. Hyperparameters are tuned via nested validation with 
early stopping. 

We evaluate 1) crisis classification (breach > 2% for ≥ 6h) 
with Accuracy/Precision/Recall and AUROC; 2) peg deviation 
regression (MSE/MAE); 3) reflexivity modeling via sequence 
labeling accuracy of stress-propagation episodes. 
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Where a baseline cannot ingest graphs, we supply graph-
pooled statistics (degree-weighted aggregates, top-k flow 
moments) so that information content—not format—remains 
aligned. 

Training budget. Each model trains under a matched wall-
clock budget (±10%) and parameter scale (±20%) to avoid 
capacity confounds; see Appendix E for exact settings and 
seeds. 

Comparative analysis against baseline models reveals the 
framework's superior performance during stress events, 
achieving 89% crisis prediction accuracy (vs. 62% for deep 
learning baselines) and 83% reflexivity modeling capability 
(Table III). The system’s early warnings for TerraUSD’s 

collapse were triggered 72 hours pre-crash, with probabilistic 
confidence intervals narrowing from ±12% to ±3% as the 

event approached (Table IV). Fig. 8 illustrates the temporal 
evolution of the model’s stability index, which fell below the 
intervention threshold approximately 48 hours before the 
depegging event. The shaded area highlights the model-
identified high-risk window. Beyond performance, the 
framework uniquely enables scenario-based early warning and 
risk contagion tracing, which, to the best of our knowledge, has 
not been realized in prior stablecoin assessment literature. 

TABLE III.  MODEL PERFORMANCE COMPARISON (120 EXPERIMENTAL 

RUNS) 

Metric 
Proposed 

Framework 

LSTM 

Baseline 
GARCH (1,1) 

Crisis Prediction 

Accuracy 
89% 62% 38%  

Reflexivity 

Modeling 
83% 35% 9%  

Policy Impact 

Sensitivity 
77% 28% 21% 

TABLE IV.  TERRAUSD COLLAPSE EARLY WARNING SIGNALS 

(CONFIDENCE INTERVALS) 

Time Before Collapse 
Predicted Peg 

Deviation 

95% Confidence 

Interval 

72 hours 2.1% ±12% 

48 hours 4.7% ±8%  

24 hours 9.3% ±3% 

 

Fig. 8. Stability index evolution up to the TerraUSD collapse. 

The index crossed the predefined intervention threshold 
(60) approximately two days prior to the crash, providing an 
actionable early warning. The shaded region marks the high-
risk period identified by the framework. 

To further quantify the contribution of each core module, 
we conduct an ablation study as illustrated in Fig. 9. The 
ablation analysis includes 11 unique scenarios, each designed 
to isolate the effect of specific modules or parameters, 
reflecting a substantial workload in model validation and 
component diagnosis. The results demonstrate that removal of 
any single component leads to significant drops in predictive 
performance, confirming the complementary value of the 
integrated framework. 

The statistical significance of the model’s performance 
advantage is further demonstrated in Fig. 10, where the 
proposed framework outperforms all baselines across key 
metrics with robust margins. 

 

Fig. 9. Ablation study and module contribution analysis. 
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Fig. 10. Statistical comparison of competing models. 

Table V documents the mean squared error (MSE) for peg 
deviation prediction across different market regimes, showing 
the proposed approach maintains 38-52% lower error rates 
during FUD and crisis periods compared to Long Short Term 
Memory (LSTM) and GARCH benchmarks. Additional 
experiments demonstrate that the model retains high accuracy 
and early warning capability even when applied to unseen 
stablecoins and stress conditions, illustrating strong out-of-
sample generalization and resistance to data drift. LSTM has 
transformed both machine learning and neurocomputing fields 
[29]. When it comes to time-series prediction, LSTM has 
attracted much attention recently [30]. 

TABLE V.  PREDICTION ERROR COMPARISON (MSE) 

Model Normal Period FUD Period Crisis Period 

Proposed 0.0012 0.0038 0.0071 

LSTM 0.0015 0.0062 0.0129 

GARCH(1,1) 0.0021 0.0087 0.0183 

Stress Test 0.0033 0.0104 0.0220 

Interpretability analysis through SHAP values identifies 
arbitrage intensity as the dominant stability predictor, 
contributing 41.7% of the model's decision weight during 
crises. These results validate the theoretical insight that 
stablecoin fragility is an emergent property of both market 
microstructure and protocol design, a principle that can inform 
future theoretical and empirical research in the digital finance 
domain. 

As shown in Fig. 11, the attention mechanism visually 
highlights high-risk nodes and transmission pathways within 

the transaction network, providing interpretable evidence for 
regulatory oversight. 

 

Fig. 11. Visualization of model interpretability. 

Fig. 12's force plot demonstrates how the attention 
mechanism disproportionately focuses on CEX-DEX price 
gaps when the peg deviation exceeds 2%. This aligns with 
post-mortem analyses of TerraUSD's collapse, where arbitrage 
failure between Anchor Protocol and centralized exchanges 
exacerbated the death spiral. 

 

Fig. 12. Feature importance analysis. 

Uncertainty quantification proves particularly valuable in 
anticipating black swan events. The Bayesian DRL module's 
95% credibility intervals successfully captured TerraUSD's 
pre-collapse abnormal volatility 72 hours in advance, as shown 
in Fig. 13's temporal uncertainty bands. This early warning 
capability stems from the model's dual sensitivity to both 
market microstructure anomalies and reserve depletion signals. 

 

Fig. 13. Uncertainty band visualization. 
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The framework's policy translation capability is 
demonstrated through its stability index output, which crossed 
the pre-defined intervention threshold (60/100) 48 hours before 
major depegging events in the test set. 

Fig. 14 displays the temporal evolution of key system 
variables during a simulated crisis, highlighting how the 
model’s stability index provides advance warning before 
critical failures in peg and reserves occur. 

 

Fig. 14. Dynamic multi-variable trajectory during extreme market events. 

This metric combines the DRL's action-value estimates 
with GARCH volatility projections, offering regulators a 
compound signal for macroprudential decision-making. 
Empirical results confirm the model's practical utility in 
scenarios ranging from routine monitoring to systemic risk 
containment. Notably, preliminary transfer experiments 
indicate that the model can be rapidly adapted to monitor other 
stablecoin variants and novel market infrastructures with 
limited retraining, reflecting strong algorithmic extensibility. 
Overall, the empirical section comprises comparative 
evaluation against six state-of-the-art baseline models and 
stress testing under more than 120 different market conditions, 
ensuring the reliability and robustness of all findings. 

V. POLICY IMPLICATIONS 

The analytical framework produces actionable outputs for 
financial regulators and stablecoin issuers through two primary 
channels: early warning signal generation and dynamic policy 
toolkit development. The stability index, ranging from 0 to 
100, synthesizes model outputs into an intuitive metric for 
monitoring systemic risk. As demonstrated in Table VI, index 
values correlate with historical depegging events, providing 
empirical justification for intervention thresholds. Values 
below 60 consistently precede stability breaches, suggesting 
this threshold should trigger mandatory reserve audits and 
enhanced disclosure requirements. 

TABLE VI.  STABILITY INDEX PERFORMANCE 

Index 

Range 

Historical 

Accuracy 
Recommended Action 

Avg. Lead 

Time 

80-100 98% Stable Routine Monitoring - 

60-80 85% Stable Enhanced Surveillance 14 days 

40-60 72% Warning 
Reserve Audit + 

Liquidity Injection 
72 hours 

0-40 91% Crisis 
Circuit Breaker 

Activation 
<24 hours 

Graph-based risk contagion analysis identifies structural 
vulnerabilities in stablecoin ecosystems. The framework 
automatically flags over-concentrated liquidity nodes, where a 
single exchange accounts for more than 35% of arbitrage 
volume, as high-risk transmission channels. During the May 
2022 Terra collapse simulation, the model successfully traced 
83% of instability cascades back to three centralized exchanges 
with inadequate reserve buffers. This diagnostic capability 
enables targeted oversight of systemically important nodes 
before crises emerge. 

For regulatory toolkits, the framework proposes dynamic 
reserve requirements tied to predicted liquidity stress levels. 

Fig. 15 presents the sensitivity analysis of the model’s risk 
metrics to varying reserve policy parameters, demonstrating 
that stricter requirements yield substantial improvements in 
stability and early warning capacity. 

 

Fig. 15. Policy toolkit sensitivity analysis. 

Table VII outlines a tiered reserve regime where 
collateralization ratios adjust based on DRL-predicted market 
conditions. This mechanism would have reduced reserve 
shortfalls by an estimated 47% during the March 2020 market 
crash, according to backtesting results. The adaptive approach 
contrasts with current static reserve mandates that fail to 
respond to real-time market dynamics. 

TABLE VII.  DYNAMIC RESERVE REQUIREMENT PROPOSAL 

Stress Level Collateralization Ratio Additional Measures 

Normal 100% Monthly Attestations  

Elevated 120% Weekly Proof-of-Reserves  

High 150% 
Daily Reporting + Escrow 

Accounts 

Extreme 200% 
Trading Limits + Redemption 

Suspension 

Algorithmic stablecoins require specialized safeguards due 
to their reflexivity risks. The model recommends a circuit 
breaker mechanism that automatically suspends rebase 
operations when two conditions coincide: 1) peg deviation 
exceeds 5% for more than six hours, and 2) arbitrage volume 
drops below 30% of its 30-day average. Historical simulation 
shows this rule would have delayed TerraUSD's collapse by 
approximately nine days, providing critical time for corrective 
interventions. 

The framework also generates macroprudential insights by 
quantifying policy impact scenarios. For instance, analysis 
suggests that a 25 basis point increase in Fed interest rates 
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typically induces a 1.2 point decline in the stability index for 
fiat-backed stablecoins, while algorithmic variants experience 
3.5 point drops due to their sensitivity to arbitrageur funding 
costs. These differential effects underscore the need for tailored 
regulatory approaches across stablecoin architectures. 

Implementation pathways involve phased adoption, 
beginning with non-binding stability index publication to 
establish market credibility, followed by mandatory integration 
into stress testing regimes for systemically important 
stablecoins. Central banks could incorporate the framework's 
outputs into their monetary policy operational frameworks, 
particularly when assessing stablecoin substitution effects on 
traditional banking systems. The proposed measures 
collectively address the trilemma of innovation preservation, 
financial stability, and consumer protection in digital asset 
markets. 

VI. CONCLUSION 

This study establishes an integrated framework for 
stablecoin stability assessment that fundamentally addresses 
the limitations of traditional static evaluation models through 
three key innovations. First, the dynamic adaptive prediction 
component overcomes the fragility of conventional approaches 
by incorporating DRL to simulate real-time interactions 
between market shocks and arbitrage behaviors. Second, the 
hybrid interpretability design successfully bridges the gap 
between black-box predictions and actionable insights, with 
GARCH modules quantifying exogenous policy impacts and 
graph attention mechanisms visually tracing risk contagion 
pathways through centralized exchanges. Third, the Bayesian 
uncertainty quantification provides regulators with 
probabilistic stability estimates rather than binary warnings, as 
evidenced by the system's ability to generate 95% confidence 
intervals covering 72-hour pre-collapse anomalies in the 
TerraUSD case study. The framework's policy translation 
capability further enhances its practical value, offering tiered 
intervention thresholds linked to quantifiable stability indices 
and data-driven reserve requirement adjustments. The proposed 
methodology contributes a unified paradigm that combines 
adaptive agent modeling, economic topology, and probabilistic 
inference, offering a structured foundation for future research 
in digital asset risk. This framework not only enhances our 
understanding of systemic stability in decentralized systems 
but also offers a reproducible blueprint for future regulatory 
science. 

The framework’s demonstrated robustness and 
generalizability across different asset structures, time periods, 
and extreme market scenarios highlight its practical utility for a 
broad spectrum of digital asset stability monitoring tasks. 
While the current implementation focuses on individual 
stablecoin ecosystems, future extensions could explore cross-
chain data integration to capture interoperability risks and 
model competitive dynamics in multi-stablecoin environments. 
Owing to its modular and generic system architecture, the 
framework can be readily extended to accommodate multi-
chain, multi-asset, and even CBDC risk assessment, as well as 
integration of new policy levers and regulatory requirements, 
making it well-suited for evolving digital finance landscapes. 

Additional research directions include incorporating miner 
extractable value (MEV) in arbitrage cost calculations and 
adapting the framework for central bank digital currency 
stability monitoring. The methodology's success in backtesting 
historical crises while maintaining computational tractability 
suggests it could serve as a foundational tool for both real-time 
market surveillance and macroprudential policy formulation in 
the rapidly evolving digital asset landscape. Its efficient 
algorithmic design supports both research-scale simulation and 
low-latency, real-time policy intervention, making it practical 
for integration into existing regulatory infrastructures. By 
simultaneously addressing dynamic adaptation, interpretability, 
and uncertainty awareness, this research provides a 
comprehensive solution to the trilemma of stablecoin risk 
assessment that balances theoretical rigor with regulatory 
practicality. In summary, this study proposes a hybrid 
modeling paradigm that unifies multi-stage graph-based 
reinforcement learning, volatility-aware econometric analysis, 
and Bayesian risk quantification within a cohesive and 
interpretable system. This methodology fundamentally 
advances the theoretical foundation of algorithmic financial 
risk management and regulatory technology. 
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