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Abstract—The growth of cloud computing has heightened the 

demand for replication strategies that ensure strong consistency, 

high availability, and low communication cost across distributed 

infrastructures. Existing systems such as DynamoDB, 

FoundationDB, and GeoGauss illustrate different design trade-

offs but face limitations in balancing latency, correctness, and 

resilience under dynamic workloads. This study proposes the 

Binary Vote Assignment in Cloud (BVAC), a cloud-native 

replication algorithm re-engineered from the Binary Vote 

Assignment on Grid Quorum (BVAGQ). BVAC organizes replicas 

in a logical grid structure and employs binary voting weights with 

a Commit Coordination (BCC) mechanism to enforce quorum-

validated commits, representing a form of quorum-based 

replication. This design maintains serializable consistency, 

minimizes replication conflicts, and reduces low communication 

cost through fixed-size quorums of three to five replicas. 

Experimental results demonstrate that BVAC sustains fault 

tolerance, achieves cloud database replication efficiency, and 

sustains high data availability via multiple valid quorum paths. By 

avoiding the heavy coordination cost and infrastructure footprint 

of current systems, BVAC provides a scalable and cost-efficient 

replication strategy tailored for modern cloud workloads. The 

study establishes BVAC as an advancement in distributed data 

management and a foundation for future adaptive and multi-cloud 

replication frameworks. 
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I. INTRODUCTION 

Distributed computing environments present significant 
challenges, particularly in maintaining high availability and 
reliability of data. Data replication has long been recognized as 
a fundamental technique to address these challenges, as it 
enables systems to provide fault tolerance, load balancing, and 
continuous access to critical information [1, 2, 3, 4]. 

In traditional grid computing environments, data replication 
was introduced to enhance availability and dependability by 
distributing replicas across multiple grid nodes. This approach 
allowed systems to tolerate node failures, support concurrent 
access, and reduce the risk of data loss in large-scale scientific 
and computational applications [5]. Techniques such as static 
replication and dynamic replication policies were widely 
deployed to ensure that frequently accessed data remained 
available across geographically dispersed resources [6]. 

While grid-based replication strategies achieved significant 
success in improving fault tolerance and data accessibility, they 
also exhibited several limitations. Grid environments are 
inherently tightly coupled and resource-constrained, which often 
restricts scalability and adaptability. Furthermore, replication 
overhead was difficult to manage, and consistency across 
replicas was not always guaranteed due to network 
heterogeneity and limited elasticity of grid resources [7]. These 
challenges made grid-based replication less suitable for modern 
workloads that demand real-time responsiveness and global 
accessibility. 

Several replication strategies have been proposed to address 
the challenges of managing data in cloud environments. 
Broadly, these methods can be categorized into synchronous 
replication and asynchronous replication. Synchronous 
replication ensures strong consistency by updating all replicas 
simultaneously, which is suitable for mission-critical 
applications but often introduces high latency, especially in 
geographically distributed clouds [5]. On the other hand, 
asynchronous replication reduces latency by allowing updates to 
propagate to replicas at a later stage, thereby improving 
performance but at the cost of potential data inconsistency 
during failures [6]. 

In addition to these traditional methods, several hybrid 
approaches have been developed to strike a balance between 
consistency and performance. For example, techniques such as 
quorum-based replication and majority consensus protocols 
allow systems to achieve partial synchrony, ensuring data 
reliability without incurring the full latency penalty of 
synchronous models [7]. Multi-cloud replication frameworks 
have also been explored to enhance disaster recovery and reduce 
the risk of vendor lock-in, but these often come with additional 
management complexity and resource overhead [8, 9]. 

Despite these advances, current replication approaches 
remain limited in handling the highly elastic and dynamic nature 
of modern cloud workloads [2, 10]. In practice, cloud 
environments introduce additional challenges such as multi-
tenancy, where multiple independent users share the same 
infrastructure, often leading to unpredictable performance 
interference. Moreover, geo distribution of cloud datacenters 
creates latency asymmetries and raises the difficulty of 
maintaining consistency across regions. Cost-efficiency also 
becomes a critical factor, as replication policies directly affect 
storage, bandwidth, and operational costs in pay-as-you-go 
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models. Traditional replication mechanisms often fail to adapt 
to these requirements, as they were not originally designed to 
optimize for resource elasticity, cost sensitivity, and tenant 
isolation. This gap underscores the importance of designing new 
replication strategies that can simultaneously ensure high 
availability, strong consistency, and performance while 
remaining cost-aware and adaptable to real-time workload 
dynamics. 

With the rise of cloud computing, replication challenges 
have become more complex. Cloud infrastructures demand 
solutions that can handle multi-tenant environments and flexible 
resource allocation while maintaining low latency and strong 
consistency [7, 10]. Existing replication mechanisms do not 
adequately address these requirements, leaving a gap for 
innovative approaches that balance consistency, availability, 
and performance in large-scale, globally distributed cloud 
systems. 

To address these challenges, this study proposes the Binary 
Vote Assignment on Cloud (BVAC) algorithm, by re-
engineering BVAGQ [11] for cloud environments. BVAC is 
designed to improve data consistency and availability by 
leveraging a binary voting mechanism in quorum-based 
replication, where replica servers are assigned voting weights to 
determine the validity of transactions. This voting scheme 
minimizes replication conflicts, enhances fault tolerance, and 
reduces the communication overhead typically associated with 
quorum-based replication. Unlike previous grid 
implementations, the proposed BVAC adapts its design to the 
elasticity and scalability of cloud infrastructures, enabling 
efficient replica placement across geographically distributed 
nodes. By re-engineering BVAGQ for cloud environments, this 
research aims to bridge the gap between traditional quorum-
based replication in grids and the dynamic requirements of 
modern cloud systems. Unlike existing approaches, the 
proposed BVAC explicitly addresses multi-tenancy, geo-
distributed deployments, and cost-efficiency by incorporating a 
lightweight voting mechanism that adapts to workload 
variability while minimizing communication overhead. This 
makes BVAC particularly well-suited for cloud infrastructures 
where scalability, elasticity, and operational costs are as critical 
as data consistency and availability. 

The remainder of this paper is organized as follows. 
Section II presents the literature review on replication strategies 
in grid and cloud environments. Section III describes the design 
of the proposed Binary Vote Assignment on Cloud (BVAC) 
algorithm, including its voting scheme and replica placement 
strategy. Section IV presents the experimental setup and 
evaluation methodology, and discusses the results in terms of 
consistency, availability, and performance. Finally, Section V 
concludes the paper and outlines directions for future research. 

II. LITERATURE REVIEW 

Data replication in cloud environments integrates diverse 
sub-strategies, techniques, and algorithms into cohesive 
frameworks that sustain system dependability. The replication 
process is commonly structured around three fundamental 
phases: identifying frequently accessed data, determining the 
number of replicas, and selecting their optimal placement. 
Extensive research has introduced algorithms targeting each of 

these phases to enhance performance, consistency, and fault 
tolerance [12, 13]. Modern cloud platforms translate these 
conceptual strategies into operational practice through protocol-
level implementations and system design choices. DynamoDB, 
for instance, represents a production-grade system in which 
phase-level replication decisions are directly embedded within 
concrete protocol mechanisms, thereby exemplifying the 
alignment of theoretical models with practical deployment. 

DynamoDB integrates a tunable-consistency read model 
into its replication design, providing eventual reads by default 
for latency reduction and permitting per-request strong reads 
within a region under ACID semantics with serializable 
isolation [14, 15]. In multi-region deployments, Global Tables 
employ asynchronous propagation, which yields eventual cross-
region consistency while decoupling regions during inter-region 
disturbances [15]. The communication path per write remains 
bounded, as a leader disseminates the update to followers across 
three (3) availability zones and commits upon a two-of-three 
quorum, so the critical path corresponds to one intra-region 
round-trip time with message complexity linear in the replica 
count, O(n) for n = 3. Read placement adheres to the consistency 
objective, whereby strong reads are directed to the leader and 
eventual reads may be served by any replica; transactional 
operations introduce additional coordination rounds via two-
phase commit, and any synchronous cross-region configuration, 
when enabled, elevates both the critical-path round-trip time and 
the message fan-in. With respect to availability, the three-replica 
topology tolerates a single replica failure per partition and 
supports rapid leader re-election, while asynchronously 
replicated Global Tables allow regional autonomy under wide-
area impairments at the expense of temporary divergence; 
conversely, synchronous multi-region modes trade some write 
availability to secure stronger cross-region guarantees [15]. 

Alongside DynamoDB, two further systems illustrate 
alternative trade-offs, namely FoundationDB and GeoGauss. 
FoundationDB advances strict serializability across the 
keyspace through an unbundled control and storage plane 
comprising commit proxies, resolvers, and log servers, with 
synchronous replication in a primary region and frequent 
inclusion of satellite replicas as well as an asynchronous 
secondary region for disaster recovery [16]. The communication 
path per writes traverses coordination services and multiple log 
replicas, often including satellites, which introduces additional 
hops relative to a three (3) replica quorum and can elevate tail 
latency under load or under cross-region safety requirements. 
Steady-state reads obtain a read version from the primary path 
and avoid extra wide-area round trips. With respect to 
availability, the architecture tolerates multiple component 
failures inside a region and supports automatic failover to a 
secondary region upon primary loss, delivering strong reliability 
at the expense of additional coordination and replica footprint 
[16]. 

GeoGauss pursues strong global consistency for geo-
distributed SQL through a full-replica, multi-master architecture 
that combines epoch-driven optimistic coordination with Raft-
style membership, enabling write origination in any region while 
enforcing a global commit order [17]. The communication cost 
exceeds single-region designs, since each transaction issues 
cross-region control traffic for epoch advancement and 
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validation and ships data to full replicas, which embeds wide-
area round-trip time and extra coordination in the commit path, 
particularly under contention or reconfiguration. Regarding 
availability, complete replicas across regions furnish resilience 
and locality for reads and writes, and service can continue 
through regional failures, while long-haul coordination under 
partitions or congestion lengthens commit time until quorum 
and ordering guarantees are satisfied. 

A. Comparative Analysis of Cloud Replication Systems 

Despite considerable progress, DynamoDB, FoundationDB, 
and GeoGauss continue to reveal structural limitations along the 
consistency–latency–availability frontier. DynamoDB’s 
configurable consistency model achieves low latency but risks 
stale reads; strong reads are restricted to regional scope, and 
globally strong modes require wide-area coordination. Its 
otherwise lightweight two-of-three quorum inflates latency 
under synchronous multi-region deployment, while the three-
replica design tolerates only a single failure, reducing write 
availability during WAN impairments [14]. FoundationDB 
delivers strict serializability yet relies on a multi-role control 
path involving commit proxies, resolvers, and log servers. This 
design increases coordination sensitivity and tail latency under 
load. Although failover is robust, sustaining cross-region safety 
typically demands five or more replicas, thereby elevating 
resource cost [16]. GeoGauss ensures strong global consistency 
through full replicas and epoch-based OCC ordering under Raft 
membership, but wide-area validation and full data movement 
in the commit path increase coordination overhead. While 

regional failures can be absorbed, partitions delay progress until 
global ordering and quorum are re-established, imposing the 
heaviest infrastructure burden due to per-region full replicas 
[17]. 

In our previous studies, BVAGQ found that write-query 
availability might be enhanced with minimal communication 
costs by employing a limited replication quorum [18]. 
Nonetheless, that methodology did not encompass cloud-native 
environments. This paper introduces the Binary Vote 
Assignment in Cloud (BVAC), a re-engineered variant designed 
to support synchronous replication across fragmented databases, 
with BVAGQ providing disjoint partitioning of data. BVAC 
enforces strong-by-default consistency by validating commits 
through vote-based quorums of constant size, thereby preserving 
serializability without incurring continuous wide-area 
coordination. Communication overhead is bounded by a fixed 
quorum of three to five servers, which reduces message 
complexity and constrains commit round-trip latency. Data 
availability is sustained through a binary vote assignment that 
admits multiple valid quorum paths, ensuring resilience under 
failures. In this way, BVAC retains the lightweight advantages 
of BVAGQ while extending its applicability to cloud 
infrastructures with explicit support for fragmentation and cross-
region fault tolerance. The primary strategies for database 
fragmentation are horizontal fragmentation and vertical 
fragmentation. Horizontal fragmentation grants users’ access to 
all attributes. Vertical fragmentation partitions the database 
based on properties, rather than entire rows [19, 20, 21] 
(Table I). 

TABLE I.  THIS SECTION ANALYSES EXISTING CLOUD DATABASE SYSTEMS 

System Method Data Consistency Commit Path Communication Cost 

Dynamo DB 

Configurable consistency model: 

default eventual consistency, 

optional strong consistency per 

request, with ACID serializable 

transactions. 

- Primary replica handles write with 2-of-3 quorum  

- Strong reads from primary, eventual reads from any secondary. 

- Transactions require 2PC. 

- Async global tables reduce cost, while synchronous multi-region  

adds cross-region latency and coordination. 

3 replicas per partition 

(regional); extra regions for 

global tables. 

Foundation DB 

Strict serializability through 

synchronous replication across 

primary and secondary roles. 

- Strict serializability via synchronous replication. 

- Writes coordinated through commit proxies and multiple log 

servers (primary + secondaries), 

- Strong correctness and failover support, but higher coordination 

overhead and resource cost. 

Often ≥5 replicas incl. 

satellites/coordinators 

(configurable). 

GeoGauss 

Strong global consistency through 

full-replica multi-primary with  

epoch-based OCC. 

- Multi-primary architecture with full replicas in all regions.  

- Any primary can accept writes, but global commit order requires 

cross-region coordination. 

- Strong global consistency and resilience. 

Full replica per region - high  

communication cost and cost 

overhead. 

 

III. METHODOLOGY 

The fundamental concept of replication is creating numerous 
copies of identical data or replicas across various storage 
locations. This research introduces the Binary Vote Assignment 
in Cloud (BVAC) method. In BVAC, all servers are 
systematically arranged in a two-dimensional grid 
configuration. If BVAC comprises twenty-five servers, they will 
be systematically arranged in a 5 x 5 grid format. 

A. BVAC Algorithm Definition 

In this section, the Binary Vote Assignment in Cloud 
(BVAC) is proposed by considering the distributed database 
fragmentation. The following notations are defined: 

i. C is a table within the database. 
ii. c’ is the instance in C and C’ 

iii. T(C)1 is the four servers in the corners 
iv. T(C)2 is the alternative locations on the peripheries 
v. T(C)3 is the central locations  

vi. T is a transaction. 
vii. x is a variable in C that gets altered by element of T. 
viii. y is a variable in C that expected to remain unaltered 

by element of T. 
ix. C1 is a vertical fragmented table with data x. 
x. C2 is a horizontal fragmented table with data x. 

xi. Pk is a primary key. 
xii. Pk,x is a primary key with data x. 
xiii. Pk,y is a primary with data y, where y  x 
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xiv. 𝐶1(𝑃𝑘,𝑥)
 and  𝐶1(𝑃𝑘,𝑦)

 are a horizontal fragmentation 

relation. 

xv. η and ψ are groups for the transaction T. 

xvi.  =  or 𝜓  where it represents different 

transaction T (before and until get quorum). 

xvii. 𝑇𝜂  is a set of transactions that comes before 𝑇𝜓 , 

while 𝑇𝜓 is a set of transactions that comes after 𝑇𝜂.  

xviii. D is a union of all data objects managed by all 

transactions T of BVAC.  
xix. BVAC transaction element 𝑇𝜆 is an element either 

in different set of transactions 𝑇𝜂 or 𝑇𝜓. 

xx. w𝑇𝜆 is write counter for the transaction.  

xxi. 𝑉̂𝜆𝑥
 is a transaction that is transformed from 𝑇𝜆𝑥

 

xxii. 𝑇µ𝑥
 represents the transaction feedback from a 

neighbour site.  

xxiii. 𝑇µ𝑥
 exists if either 𝑇𝜆𝑥

 or 𝑉̂𝜆𝑥
 exists.  

xxiv. Successful transaction at primary site 𝑇𝜆𝑥
 = 0 where 

𝑇𝜆𝑥
  D (i.e., the transaction locked an instant x at 

primary). Meanwhile, successful transaction at 

neighbour site T(µ𝑥) = 0, where µ𝑥  D (i.e., the 

transaction locked a data x at neighbour). 

xxv. ⌈
𝑛

2
⌉ is the greatest integer function (i.e., n=9, ⌈

9

2
⌉ =

5. 

B. Data Replication in BVAC 

The Algorithm 1 details the replication process for BVAC 
via BVAC Commit Coordination (BCC), showing how a 
commit initiated at a primary and a neighbour server is executed. 

Algorithm 1: The BCC Algorithm: Data Replication 

1 manage_bvaqgar_transaction ( ) 

2 { 

3 while (InComplete)  

4 do 

5   while (transStat ”Abort”) 

6   do 

7    /* receive 𝑇𝜆𝑥
 || 𝑉̂𝜆𝑥

 || 𝑇µ𝑥
 where 𝜆 = η, ψ either 

from client or any BTM of replica i  T(C)*/ 

8      receive (client @ BCC of  i  T(C): 𝑇𝜆𝑥
 || 𝑉̂𝜆𝑥

); 

9      pid_𝑇𝜆𝑥
 = process id of 𝑇𝜆𝑥

; 

10      log_t𝑇𝜆𝑥
 = login time of 𝑇𝜆𝑥

;  

11    /*recognize replica task either to be as primary or 
neighbour processing for 𝑇𝜆𝑥

, 𝜆 = η, ψ */ 

12      switch { 

13       case (receive(client @ BCC of neighbour: 𝑇𝜆𝑥
 || 𝑉̂𝜆𝑥

|| 

𝑇µ𝑥
): 

14         primary_replica_processing ( ); 

15     break; 

16     case (receive(BCC of primary: 𝑇𝜆𝑥
 || 𝑉̂𝜆𝑥

)): 

17   neighbour_replica_processing ( ); 

18         break; 

19         } 

20      receive (BCC: 𝑉̂𝜆𝑥
, x$erv_Vote || 𝑉̂𝜆𝑥

, x$erv_Vote,  

21       $_LCount,𝑢𝑇𝜆𝑥
); 

22      if (x$erv_Vote = 1) then  

23    Commit 𝑉̂𝜆𝑥
 ; 

24      endif 

25      if (x$erv_Vote = 0);  

26      Endif 

27   /*On receiving transStat = ”Abort” from other replica and 
needs to release its lock*/ 

28   if (receive (BCC: 𝑉̂𝜆𝑥
 ,  𝑇𝜂 transStat, PrimaryID)) then  

29     𝑇𝜆𝑥
 𝑉𝜓  =𝑇𝜆𝑥

; /*current 𝑇𝜆𝑥
become𝑇𝜆𝑥

 𝑇𝜓  */ 

30     𝑉̂𝜆𝑥
 =𝑉̂λx  𝑇𝜂  ; /*𝑉̂𝜆𝑥

  𝑇𝜂  that BCC received will 

survive*/  

31 Abort 𝑇𝜆𝑥
;  

32     Rollback; 

33    𝑇𝜆𝑥
= 1; /*Target Set is equal to 1, means primary 

already gets lock*/  

34  endif 

Every server comprises a primary data file. A server is either 
functional or nonfunctional, and the status (functional or 
nonfunctional) of each site is significantly uncorrelated with the 
others. When a site is functional, the data at the server is 
accessible; otherwise, it is inaccessible. 

For example, in Fig. 1, data from site A (a) is duplicated to 
its adjacent servers B and D. Consequently, site A possesses 
three replica servers. Site E has four adjacent servers, which are 
B, D, F, and H. Therefore, site E possesses five replica servers. 
Simultaneously, data from site F is duplicated to servers C, E, 
and I, indicating that server F possesses four clones. 

 
Fig. 1. BVAC framework. 
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The primary replica at a specific data x is the replica that 
acknowledges the client's request. In the BVAC algorithm, each 
replica of T(C) can simultaneously function as both a primary 
and a neighbor replica. Any replica i   T(C) may be 

designated as the primary replica, whereas additional replicas, j
 T(C) where i ≠ j are considered neighbours. Line 7 processes 

a transaction 𝑇𝜆𝑥
 that requests an update of data x from any 

replica of T(C). Line 8-18 establish that the replica will serve as 
the primary, while the others will function as neighboring 
replicas to execute 𝑇𝜆𝑥

. 

Recall our previous work, let T(C) be the set of replicas with 
replicated copies are stored corresponding to the assignment C 
for particular instant x, T(Cx) = {m(i,j), m(i-1,j), m(i,j-1), 
m(i,j+1), m(i+1,j)}. Two sets of transactions, 𝑇𝜂 request instant 

x from m(i,j) replica, while 𝑇𝜓 request instant x from m(i-1,j) 

respectively. The m(i,j) replica functions as the primary replica 
for processing 𝑇𝜂, where m(i-1,j), m(i,j-1), m(i,j+1), m(i+1,j) are 

neighbour replicas for processing 𝑇𝛾𝑥
 𝑇𝜂 . Simultaneously, 

m(i-1,j) replica functions as the primary replica for processing 
𝑇𝜓, while m(i,j-1), m(i,j+1), m(i+1,j) and m(i,j) are neighbour 

replicas for processing 𝑉𝛾𝑥
 𝑇𝜓 . Both m(i,j) and m(i-1,j) 

replicas execute two different processing tasks concurrently. 
The m(i,j) replica is the primary replica managing 𝑇𝜂  and its 

adjacent replica managing 𝑇𝜓, whereas the m(i-1,j) replica is the 

primary replica for processing 𝑇𝜓  and neighbour replica for 

processing 𝑇𝜂 . BVAC model considers different sets of 

transactions 𝑇𝜂  and 𝑇𝜓 . 𝑇𝜂  is a set of transactions that comes 

before 𝑇𝜓, while 𝑇𝜓 is a set of transactions that comes after 𝑇𝜂. 

The effect of BVAC transaction is defined as the processing of 
one instance of the transaction. 

IV. EXPERIMENTAL RESULTS 

A. BVAC Algorithm Definition 

To illustrate the operation of commit coordination under the 
BVAC Commit Coordination (BCC) mechanism, consider the 
case where two distinct transaction sets, T_η and T_ψ, 
concurrently request access to data file e at replicas E and B, 
respectively. 

A cluster of five replication servers, interconnected as shown 
in Fig. 2, is used to illustrate the BVAC mechanism. Each 
primary replica propagates its database state to neighbouring 
replicas, allowing clients to access data from any server holding 
a replica. Consider two distinct transaction sets, 𝑇𝜂 and 𝑇𝜓 both 

requesting access to data file e at replicas E and B, respectively. 
When 𝑇𝜂 and 𝑇𝜓 attempt to update e, they must first issue update 

requests to their respective primary replicas, B and E. Both 𝑇𝜂 

and 𝑇𝜓 propagate lock requests, but only the first transaction to 

acquire the lock proceeds, while the other is aborted. 
Consequently, replicas B and E maintain pending transactions, 
yet neither can read or update e concurrently. Primary node E, 

𝑇𝜂,𝑒
= 1 propagates lock requests to neighbours B, D, F, and H, 

while primary node B 𝑇𝜓,𝑒
propagates locks to neighbours E, D, 

F, and H. The transaction that first secures a majority quorum is 
transformed into 𝑉̂𝜆𝑥

   𝑉𝜂 , 𝑉𝜓 . The details of experimental 

outcomes are summarized in Table II. 

Assertion: If the transaction gets all locks from replica i 
T(C), then the transactions will be executed successfully. 

Proof: The only way that a transaction gets a lock in initiate 
lock is when 𝑇𝜆𝑥

= 1 with 𝑇𝜆𝑥 
 𝑇𝜂. After 𝑇𝜆𝑥

 𝑇𝜂 success to 

initiate lock at a server, then, 𝑇𝜆+1𝑥
, ..., 𝑇𝜆+𝑞𝑥

 which are the 

elements that exist in 𝑇𝜂 will be queued. To get majority 

quorum, w𝑇𝜆𝑥
≥ ⌈

𝑛

2
⌉ is required. This means that the primary 

server needs to get the majority locks from its neighbour servers 
by calling request lock from the neighbours servers. Each 
neigbours i  T(C) will send feedback to the primary to notify 

it is in free lock or not. If the primary gets the majority locks of 
instant x, it means that 𝑉̂𝜆𝑥

 = 𝑇µ𝑥
= 𝑇𝜂 where 𝑉̂𝜆𝑥

 gets a quorum. 

Next, the primary will send error notification to other neighbours 
i  T(C) in the quorum. Consequently, when 𝑇𝜆𝑥  


𝑇𝜓  releases its lock, 𝑇𝜆𝑥  

 𝑇𝜂 gets the lock from every 

neighbour i  T(Cx). After 𝑇𝜆𝑥
 gets majority quorum, relation 

T is fragmented into T1 and T2 using vertical fragmentation. 
Again, T1 is fragmented into 𝑇1(𝑃𝑘,𝑥)

 and 𝑇1(𝑃𝑘,𝑦)
 using horizontal 

fragmentation. When a user finishes updating the instant, 
𝑉̂𝜆𝑥

 commit (send the fragmented data) to ∀ neighbour i 
T(Cx). Therefore, all replicas of T(Cx) will perform and execute 
the update successfully. 

 
Fig. 2. An example of BVAC transaction requests. 
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TABLE II.  AN EXAMPLE OF HOW BVAC HANDLE CONCURRENT TRANSACTIONS 

REP LICA E B D F H 

TIME      

t1 Unlock (e) unlock (e) unlock (e) unlock (e) unlock (e) 

t2 Request update     

t3 
write l(e) 

counter_w(e)=1 
Request update    

t4 wait 
write lock(e) 

counter_w(e)=1 
   

t5 propagate lock:B     

t6 propagate lock:D propagate lock:D    

t7   lock(e) from E   

t8 
get lock:7 

counter_w(e)=2 
propagate lock:F    

t9 propagate lock:F   lock(e) from B  

t10 propagate lock:H 
get lock:F 

counter_w(e)=2 
   

t11  propagate lock:H   lock(e) from E 

t12 
get lock:H 

counter_w(e)=3 
propagate lock:E    

t13 
obtain quorum 

release lock:3 
propagate lock:H    

t14  

abort 

𝑇𝜆𝑒
   𝑇𝜓 

& rollback, 

lock(e) from 8 

 
rollback, 

lock(e) from E 
 

t15 update e     

t16 fragment T’ And T’1     

t17 
commit 

𝑉𝜆𝑒
 𝑉𝜂  

commit 

𝑉𝜆𝑒
 𝑉𝜂  

commit 

𝑉𝜆𝑒
 𝑉𝜂  

commit 

𝑉𝜆𝑒
 𝑉𝜂  

commit 

𝑉𝜆𝑒
 𝑉𝜂  

t18 Unlock (e) Unlock (e) Unlock (e) Unlock (e) Unlock (e) 
 

B. Communication Cost Comparison 

In this section, we compare the storage usage of BVAC, 
DynamoDB, FoundationDB, and GeoGauss. In BVAC, 
replication is bound to a fixed quorum size of three to five 
servers. This allows transactions to commit using a constant 
quorum, which limits the storage overhead even when the 
number of servers increases. In DynamoDB, each partition is 
synchronously replicated across three replicas within a region. 
When Global Tables are enabled, data is further replicated 
asynchronously across multiple regions, meaning the storage 
requirement increases proportionally with the number of 
regions. FoundationDB, by contrast, relies on a more complex 
configuration involving commit proxies, resolvers, and log 
servers. To ensure cross-region durability and strict 
serializability, the system often requires five or more replicas, 
including satellites, which elevates the storage footprint. 
GeoGauss employs the most storage-intensive approach, as it 
maintains a full replica of the database in every region. This 
design provides strong global consistency and resilience but 
comes at the cost of replicating the entire dataset across all 
regions. Table III shows the comparison between BVAC, 
DynamoDB, FoundationDB, and GeoGauss in terms of storage 
use. 

From Table III, it is apparent that BVAC requires the least 
storage overhead by restricting replication to a small, constant 
quorum size of three to five servers. DynamoDB demands three 
replicas per partition in each region, and the storage requirement 
expands with the number of regions deployed in Global Tables. 
FoundationDB requires at least five replicas to preserve strict 
serializability and cross-region fault tolerance, thereby 
consuming more resources. GeoGauss incurs the heaviest 
storage cost since every region maintains a complete replica of 
the database. Consequently, BVAC demonstrates superior 
storage efficiency compared with DynamoDB, FoundationDB, 
and GeoGauss, making it a practical option for large-scale cloud 
systems where both consistency and resource optimization are 
critical. 

TABLE III.  STORAGE USAGE COMPARISON OF BVAC, DYNAMODB, 
FOUNDATIONDB, AND GEOGAUSS 

Replication 

Techniques 
Number of Servers Storage Use 

BVAC 3–5 replicas (constant quorum) 3–5 

DynamoDB 

3 replicas per partition 

(regional); extra regions for 

global tables 

3 per region, grows 

with Global Tables 

FoundationDB 
≥5 replicas (primary, 

secondaries, satellites) 
5 or more 

GeoGauss Full replica in every region 
Equal to number of 

regions (high cost) 
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V. CONCLUSION 

The rapid evolution of cloud computing has increased the 
significance of replication systems that can concurrently 
guarantee consistency, availability, and efficiency at scale. 
Conventional grid-based methodologies and commercial cloud 
platforms have advanced replication practices, but they continue 
to face inherent limitations within the consistency, latency and 
availability spectrum. This research presents the Binary Vote 
Assignment in Cloud (BVAC) as a cloud-native advancement of 
the BVAGQ replication model to tackle these ongoing 
challenges. BVAC integrates binary vote assignment into a 
quorum-based structure and utilizes the BVAC Commit 
Coordination (BCC) mechanism to authenticate transactions on 
fixed-size quorums across distributed replicas. This approach 
maintains robust consistency, minimizes communication 
complexity, ensures reliable fault tolerance with low latency, 
and improves storage efficiency by requiring fewer replicas than 
existing systems. Collectively, these contributions demonstrate 
BVAC as a scalable, reliable, and economical replication 
framework for extensive cloud settings. While the results of this 
study are promising, several aspects warrant further 
investigation. The current evaluation of BVAC is limited to 
specific workloads; its scalability and adaptability under highly 
dynamic and heterogeneous cloud conditions remain to be 
explored. In particular, BVAC could be extended with adaptive 
quorum resizing and workload-aware strategies to dynamically 
respond to shifting read/write ratios and latency requirements. 
Furthermore, future research should consider strengthening 
security and trust mechanisms, such as integrating Byzantine 
fault tolerance or lightweight blockchain-inspired auditing, to 
protect against adversarial conditions like malicious voting or 
quorum manipulation. Potential trade-offs, such as the 
complexity of quorum management, deployment across multi-
cloud environments, and performance under real-world 
changeable workloads, need deeper analysis. 
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