
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

653 | P a g e
www.ijacsa.thesai.org

Re-engineering Grid-Based Quorum Replication into

Binary Vote Assignment on Cloud: A Scalable

Approach for Strong Consistency in Cloud Databases

Ainul Azila Che Fauzi1, Noor Ashafiqa2, Asiah Mat3, Syerina Azlin Md Nasir4, A. Noraziah5

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Kelantan, Machang, Kelantan 1, 2, 3, 4
Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, Pahang, Malaysia5

Abstract—The growth of cloud computing has heightened the

demand for replication strategies that ensure strong consistency,

high availability, and low communication cost across distributed

infrastructures. Existing systems such as DynamoDB,

FoundationDB, and GeoGauss illustrate different design trade-

offs but face limitations in balancing latency, correctness, and

resilience under dynamic workloads. This study proposes the

Binary Vote Assignment in Cloud (BVAC), a cloud-native

replication algorithm re-engineered from the Binary Vote

Assignment on Grid Quorum (BVAGQ). BVAC organizes replicas

in a logical grid structure and employs binary voting weights with

a Commit Coordination (BCC) mechanism to enforce quorum-

validated commits, representing a form of quorum-based

replication. This design maintains serializable consistency,

minimizes replication conflicts, and reduces low communication

cost through fixed-size quorums of three to five replicas.

Experimental results demonstrate that BVAC sustains fault

tolerance, achieves cloud database replication efficiency, and

sustains high data availability via multiple valid quorum paths. By

avoiding the heavy coordination cost and infrastructure footprint

of current systems, BVAC provides a scalable and cost-efficient

replication strategy tailored for modern cloud workloads. The

study establishes BVAC as an advancement in distributed data

management and a foundation for future adaptive and multi-cloud

replication frameworks.

Keywords—Binary Vote Assignment in Cloud (BVAC); cloud

database replication; fault tolerance; high availability; quorum-

based replication; strong consistency

I. INTRODUCTION

Distributed computing environments present significant
challenges, particularly in maintaining high availability and
reliability of data. Data replication has long been recognized as
a fundamental technique to address these challenges, as it
enables systems to provide fault tolerance, load balancing, and
continuous access to critical information [1, 2, 3, 4].

In traditional grid computing environments, data replication
was introduced to enhance availability and dependability by
distributing replicas across multiple grid nodes. This approach
allowed systems to tolerate node failures, support concurrent
access, and reduce the risk of data loss in large-scale scientific
and computational applications [5]. Techniques such as static
replication and dynamic replication policies were widely
deployed to ensure that frequently accessed data remained
available across geographically dispersed resources [6].

While grid-based replication strategies achieved significant
success in improving fault tolerance and data accessibility, they
also exhibited several limitations. Grid environments are
inherently tightly coupled and resource-constrained, which often
restricts scalability and adaptability. Furthermore, replication
overhead was difficult to manage, and consistency across
replicas was not always guaranteed due to network
heterogeneity and limited elasticity of grid resources [7]. These
challenges made grid-based replication less suitable for modern
workloads that demand real-time responsiveness and global
accessibility.

Several replication strategies have been proposed to address
the challenges of managing data in cloud environments.
Broadly, these methods can be categorized into synchronous
replication and asynchronous replication. Synchronous
replication ensures strong consistency by updating all replicas
simultaneously, which is suitable for mission-critical
applications but often introduces high latency, especially in
geographically distributed clouds [5]. On the other hand,
asynchronous replication reduces latency by allowing updates to
propagate to replicas at a later stage, thereby improving
performance but at the cost of potential data inconsistency
during failures [6].

In addition to these traditional methods, several hybrid
approaches have been developed to strike a balance between
consistency and performance. For example, techniques such as
quorum-based replication and majority consensus protocols
allow systems to achieve partial synchrony, ensuring data
reliability without incurring the full latency penalty of
synchronous models [7]. Multi-cloud replication frameworks
have also been explored to enhance disaster recovery and reduce
the risk of vendor lock-in, but these often come with additional
management complexity and resource overhead [8, 9].

Despite these advances, current replication approaches
remain limited in handling the highly elastic and dynamic nature
of modern cloud workloads [2, 10]. In practice, cloud
environments introduce additional challenges such as multi-
tenancy, where multiple independent users share the same
infrastructure, often leading to unpredictable performance
interference. Moreover, geo distribution of cloud datacenters
creates latency asymmetries and raises the difficulty of
maintaining consistency across regions. Cost-efficiency also
becomes a critical factor, as replication policies directly affect
storage, bandwidth, and operational costs in pay-as-you-go

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

654 | P a g e
www.ijacsa.thesai.org

models. Traditional replication mechanisms often fail to adapt
to these requirements, as they were not originally designed to
optimize for resource elasticity, cost sensitivity, and tenant
isolation. This gap underscores the importance of designing new
replication strategies that can simultaneously ensure high
availability, strong consistency, and performance while
remaining cost-aware and adaptable to real-time workload
dynamics.

With the rise of cloud computing, replication challenges
have become more complex. Cloud infrastructures demand
solutions that can handle multi-tenant environments and flexible
resource allocation while maintaining low latency and strong
consistency [7, 10]. Existing replication mechanisms do not
adequately address these requirements, leaving a gap for
innovative approaches that balance consistency, availability,
and performance in large-scale, globally distributed cloud
systems.

To address these challenges, this study proposes the Binary
Vote Assignment on Cloud (BVAC) algorithm, by re-
engineering BVAGQ [11] for cloud environments. BVAC is
designed to improve data consistency and availability by
leveraging a binary voting mechanism in quorum-based
replication, where replica servers are assigned voting weights to
determine the validity of transactions. This voting scheme
minimizes replication conflicts, enhances fault tolerance, and
reduces the communication overhead typically associated with
quorum-based replication. Unlike previous grid
implementations, the proposed BVAC adapts its design to the
elasticity and scalability of cloud infrastructures, enabling
efficient replica placement across geographically distributed
nodes. By re-engineering BVAGQ for cloud environments, this
research aims to bridge the gap between traditional quorum-
based replication in grids and the dynamic requirements of
modern cloud systems. Unlike existing approaches, the
proposed BVAC explicitly addresses multi-tenancy, geo-
distributed deployments, and cost-efficiency by incorporating a
lightweight voting mechanism that adapts to workload
variability while minimizing communication overhead. This
makes BVAC particularly well-suited for cloud infrastructures
where scalability, elasticity, and operational costs are as critical
as data consistency and availability.

The remainder of this paper is organized as follows.
Section II presents the literature review on replication strategies
in grid and cloud environments. Section III describes the design
of the proposed Binary Vote Assignment on Cloud (BVAC)
algorithm, including its voting scheme and replica placement
strategy. Section IV presents the experimental setup and
evaluation methodology, and discusses the results in terms of
consistency, availability, and performance. Finally, Section V
concludes the paper and outlines directions for future research.

II. LITERATURE REVIEW

Data replication in cloud environments integrates diverse
sub-strategies, techniques, and algorithms into cohesive
frameworks that sustain system dependability. The replication
process is commonly structured around three fundamental
phases: identifying frequently accessed data, determining the
number of replicas, and selecting their optimal placement.
Extensive research has introduced algorithms targeting each of

these phases to enhance performance, consistency, and fault
tolerance [12, 13]. Modern cloud platforms translate these
conceptual strategies into operational practice through protocol-
level implementations and system design choices. DynamoDB,
for instance, represents a production-grade system in which
phase-level replication decisions are directly embedded within
concrete protocol mechanisms, thereby exemplifying the
alignment of theoretical models with practical deployment.

DynamoDB integrates a tunable-consistency read model
into its replication design, providing eventual reads by default
for latency reduction and permitting per-request strong reads
within a region under ACID semantics with serializable
isolation [14, 15]. In multi-region deployments, Global Tables
employ asynchronous propagation, which yields eventual cross-
region consistency while decoupling regions during inter-region
disturbances [15]. The communication path per write remains
bounded, as a leader disseminates the update to followers across
three (3) availability zones and commits upon a two-of-three
quorum, so the critical path corresponds to one intra-region
round-trip time with message complexity linear in the replica
count, O(n) for n = 3. Read placement adheres to the consistency
objective, whereby strong reads are directed to the leader and
eventual reads may be served by any replica; transactional
operations introduce additional coordination rounds via two-
phase commit, and any synchronous cross-region configuration,
when enabled, elevates both the critical-path round-trip time and
the message fan-in. With respect to availability, the three-replica
topology tolerates a single replica failure per partition and
supports rapid leader re-election, while asynchronously
replicated Global Tables allow regional autonomy under wide-
area impairments at the expense of temporary divergence;
conversely, synchronous multi-region modes trade some write
availability to secure stronger cross-region guarantees [15].

Alongside DynamoDB, two further systems illustrate
alternative trade-offs, namely FoundationDB and GeoGauss.
FoundationDB advances strict serializability across the
keyspace through an unbundled control and storage plane
comprising commit proxies, resolvers, and log servers, with
synchronous replication in a primary region and frequent
inclusion of satellite replicas as well as an asynchronous
secondary region for disaster recovery [16]. The communication
path per writes traverses coordination services and multiple log
replicas, often including satellites, which introduces additional
hops relative to a three (3) replica quorum and can elevate tail
latency under load or under cross-region safety requirements.
Steady-state reads obtain a read version from the primary path
and avoid extra wide-area round trips. With respect to
availability, the architecture tolerates multiple component
failures inside a region and supports automatic failover to a
secondary region upon primary loss, delivering strong reliability
at the expense of additional coordination and replica footprint
[16].

GeoGauss pursues strong global consistency for geo-
distributed SQL through a full-replica, multi-master architecture
that combines epoch-driven optimistic coordination with Raft-
style membership, enabling write origination in any region while
enforcing a global commit order [17]. The communication cost
exceeds single-region designs, since each transaction issues
cross-region control traffic for epoch advancement and

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

655 | P a g e
www.ijacsa.thesai.org

validation and ships data to full replicas, which embeds wide-
area round-trip time and extra coordination in the commit path,
particularly under contention or reconfiguration. Regarding
availability, complete replicas across regions furnish resilience
and locality for reads and writes, and service can continue
through regional failures, while long-haul coordination under
partitions or congestion lengthens commit time until quorum
and ordering guarantees are satisfied.

A. Comparative Analysis of Cloud Replication Systems

Despite considerable progress, DynamoDB, FoundationDB,
and GeoGauss continue to reveal structural limitations along the
consistency–latency–availability frontier. DynamoDB’s
configurable consistency model achieves low latency but risks
stale reads; strong reads are restricted to regional scope, and
globally strong modes require wide-area coordination. Its
otherwise lightweight two-of-three quorum inflates latency
under synchronous multi-region deployment, while the three-
replica design tolerates only a single failure, reducing write
availability during WAN impairments [14]. FoundationDB
delivers strict serializability yet relies on a multi-role control
path involving commit proxies, resolvers, and log servers. This
design increases coordination sensitivity and tail latency under
load. Although failover is robust, sustaining cross-region safety
typically demands five or more replicas, thereby elevating
resource cost [16]. GeoGauss ensures strong global consistency
through full replicas and epoch-based OCC ordering under Raft
membership, but wide-area validation and full data movement
in the commit path increase coordination overhead. While

regional failures can be absorbed, partitions delay progress until
global ordering and quorum are re-established, imposing the
heaviest infrastructure burden due to per-region full replicas
[17].

In our previous studies, BVAGQ found that write-query
availability might be enhanced with minimal communication
costs by employing a limited replication quorum [18].
Nonetheless, that methodology did not encompass cloud-native
environments. This paper introduces the Binary Vote
Assignment in Cloud (BVAC), a re-engineered variant designed
to support synchronous replication across fragmented databases,
with BVAGQ providing disjoint partitioning of data. BVAC
enforces strong-by-default consistency by validating commits
through vote-based quorums of constant size, thereby preserving
serializability without incurring continuous wide-area
coordination. Communication overhead is bounded by a fixed
quorum of three to five servers, which reduces message
complexity and constrains commit round-trip latency. Data
availability is sustained through a binary vote assignment that
admits multiple valid quorum paths, ensuring resilience under
failures. In this way, BVAC retains the lightweight advantages
of BVAGQ while extending its applicability to cloud
infrastructures with explicit support for fragmentation and cross-
region fault tolerance. The primary strategies for database
fragmentation are horizontal fragmentation and vertical
fragmentation. Horizontal fragmentation grants users’ access to
all attributes. Vertical fragmentation partitions the database
based on properties, rather than entire rows [19, 20, 21]
(Table I).

TABLE I. THIS SECTION ANALYSES EXISTING CLOUD DATABASE SYSTEMS

System Method Data Consistency Commit Path Communication Cost

Dynamo DB

Configurable consistency model:

default eventual consistency,

optional strong consistency per

request, with ACID serializable

transactions.

- Primary replica handles write with 2-of-3 quorum

- Strong reads from primary, eventual reads from any secondary.

- Transactions require 2PC.

- Async global tables reduce cost, while synchronous multi-region

adds cross-region latency and coordination.

3 replicas per partition

(regional); extra regions for

global tables.

Foundation DB

Strict serializability through

synchronous replication across

primary and secondary roles.

- Strict serializability via synchronous replication.

- Writes coordinated through commit proxies and multiple log

servers (primary + secondaries),

- Strong correctness and failover support, but higher coordination

overhead and resource cost.

Often ≥5 replicas incl.

satellites/coordinators

(configurable).

GeoGauss

Strong global consistency through

full-replica multi-primary with

epoch-based OCC.

- Multi-primary architecture with full replicas in all regions.

- Any primary can accept writes, but global commit order requires

cross-region coordination.

- Strong global consistency and resilience.

Full replica per region - high

communication cost and cost

overhead.

III. METHODOLOGY

The fundamental concept of replication is creating numerous
copies of identical data or replicas across various storage
locations. This research introduces the Binary Vote Assignment
in Cloud (BVAC) method. In BVAC, all servers are
systematically arranged in a two-dimensional grid
configuration. If BVAC comprises twenty-five servers, they will
be systematically arranged in a 5 x 5 grid format.

A. BVAC Algorithm Definition

In this section, the Binary Vote Assignment in Cloud
(BVAC) is proposed by considering the distributed database
fragmentation. The following notations are defined:

i. C is a table within the database.
ii. c’ is the instance in C and C’

iii. T(C)1 is the four servers in the corners
iv. T(C)2 is the alternative locations on the peripheries
v. T(C)3 is the central locations

vi. T is a transaction.
vii. x is a variable in C that gets altered by element of T.
viii. y is a variable in C that expected to remain unaltered

by element of T.
ix. C1 is a vertical fragmented table with data x.
x. C2 is a horizontal fragmented table with data x.

xi. Pk is a primary key.
xii. Pk,x is a primary key with data x.
xiii. Pk,y is a primary with data y, where y x

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

656 | P a g e
www.ijacsa.thesai.org

xiv. 𝐶1(𝑃𝑘,𝑥)
 and 𝐶1(𝑃𝑘,𝑦)

 are a horizontal fragmentation

relation.

xv. η and ψ are groups for the transaction T.

xvi.  = or 𝜓 where it represents different

transaction T (before and until get quorum).

xvii. 𝑇𝜂 is a set of transactions that comes before 𝑇𝜓 ,

while 𝑇𝜓 is a set of transactions that comes after 𝑇𝜂.

xviii. D is a union of all data objects managed by all

transactions T of BVAC.
xix. BVAC transaction element 𝑇𝜆 is an element either

in different set of transactions 𝑇𝜂 or 𝑇𝜓.

xx. w𝑇𝜆 is write counter for the transaction.

xxi. 𝑉̂𝜆𝑥
 is a transaction that is transformed from 𝑇𝜆𝑥

xxii. 𝑇µ𝑥
 represents the transaction feedback from a

neighbour site.

xxiii. 𝑇µ𝑥
 exists if either 𝑇𝜆𝑥

 or 𝑉̂𝜆𝑥
 exists.

xxiv. Successful transaction at primary site 𝑇𝜆𝑥
 = 0 where

𝑇𝜆𝑥
  D (i.e., the transaction locked an instant x at

primary). Meanwhile, successful transaction at

neighbour site T(µ𝑥) = 0, where µ𝑥  D (i.e., the

transaction locked a data x at neighbour).

xxv. ⌈
𝑛

2
⌉ is the greatest integer function (i.e., n=9, ⌈

9

2
⌉ =

5.

B. Data Replication in BVAC

The Algorithm 1 details the replication process for BVAC
via BVAC Commit Coordination (BCC), showing how a
commit initiated at a primary and a neighbour server is executed.

Algorithm 1: The BCC Algorithm: Data Replication

1 manage_bvaqgar_transaction ()

2 {

3 while (InComplete)

4 do

5 while (transStat ”Abort”)

6 do

7 /* receive 𝑇𝜆𝑥
 || 𝑉̂𝜆𝑥

 || 𝑇µ𝑥
 where 𝜆 = η, ψ either

from client or any BTM of replica i  T(C)*/

8 receive (client @ BCC of i  T(C): 𝑇𝜆𝑥
 || 𝑉̂𝜆𝑥

);

9 pid_𝑇𝜆𝑥
 = process id of 𝑇𝜆𝑥

;

10 log_t𝑇𝜆𝑥
 = login time of 𝑇𝜆𝑥

;

11 /*recognize replica task either to be as primary or
neighbour processing for 𝑇𝜆𝑥

, 𝜆 = η, ψ */

12 switch {

13 case (receive(client @ BCC of neighbour: 𝑇𝜆𝑥
 || 𝑉̂𝜆𝑥

||

𝑇µ𝑥
):

14 primary_replica_processing ();

15 break;

16 case (receive(BCC of primary: 𝑇𝜆𝑥
 || 𝑉̂𝜆𝑥

)):

17 neighbour_replica_processing ();

18 break;

19 }

20 receive (BCC: 𝑉̂𝜆𝑥
, x$erv_Vote || 𝑉̂𝜆𝑥

, x$erv_Vote,

21 $_LCount,𝑢𝑇𝜆𝑥
);

22 if (x$erv_Vote = 1) then

23 Commit 𝑉̂𝜆𝑥
 ;

24 endif

25 if (x$erv_Vote = 0);

26 Endif

27 /*On receiving transStat = ”Abort” from other replica and
needs to release its lock*/

28 if (receive (BCC: 𝑉̂𝜆𝑥
 ,  𝑇𝜂 transStat, PrimaryID)) then

29 𝑇𝜆𝑥
 𝑉𝜓 =𝑇𝜆𝑥

; /*current 𝑇𝜆𝑥
become𝑇𝜆𝑥

 𝑇𝜓 */

30 𝑉̂𝜆𝑥
 =𝑉̂λx  𝑇𝜂 ; /*𝑉̂𝜆𝑥

  𝑇𝜂 that BCC received will

survive*/

31 Abort 𝑇𝜆𝑥
;

32 Rollback;

33 𝑇𝜆𝑥
= 1; /*Target Set is equal to 1, means primary

already gets lock*/

34 endif

Every server comprises a primary data file. A server is either
functional or nonfunctional, and the status (functional or
nonfunctional) of each site is significantly uncorrelated with the
others. When a site is functional, the data at the server is
accessible; otherwise, it is inaccessible.

For example, in Fig. 1, data from site A (a) is duplicated to
its adjacent servers B and D. Consequently, site A possesses
three replica servers. Site E has four adjacent servers, which are
B, D, F, and H. Therefore, site E possesses five replica servers.
Simultaneously, data from site F is duplicated to servers C, E,
and I, indicating that server F possesses four clones.

Fig. 1. BVAC framework.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

657 | P a g e
www.ijacsa.thesai.org

The primary replica at a specific data x is the replica that
acknowledges the client's request. In the BVAC algorithm, each
replica of T(C) can simultaneously function as both a primary
and a neighbor replica. Any replica i  T(C) may be

designated as the primary replica, whereas additional replicas, j
 T(C) where i ≠ j are considered neighbours. Line 7 processes

a transaction 𝑇𝜆𝑥
 that requests an update of data x from any

replica of T(C). Line 8-18 establish that the replica will serve as
the primary, while the others will function as neighboring
replicas to execute 𝑇𝜆𝑥

.

Recall our previous work, let T(C) be the set of replicas with
replicated copies are stored corresponding to the assignment C
for particular instant x, T(Cx) = {m(i,j), m(i-1,j), m(i,j-1),
m(i,j+1), m(i+1,j)}. Two sets of transactions, 𝑇𝜂 request instant

x from m(i,j) replica, while 𝑇𝜓 request instant x from m(i-1,j)

respectively. The m(i,j) replica functions as the primary replica
for processing 𝑇𝜂, where m(i-1,j), m(i,j-1), m(i,j+1), m(i+1,j) are

neighbour replicas for processing 𝑇𝛾𝑥
 𝑇𝜂 . Simultaneously,

m(i-1,j) replica functions as the primary replica for processing
𝑇𝜓, while m(i,j-1), m(i,j+1), m(i+1,j) and m(i,j) are neighbour

replicas for processing 𝑉𝛾𝑥
 𝑇𝜓 . Both m(i,j) and m(i-1,j)

replicas execute two different processing tasks concurrently.
The m(i,j) replica is the primary replica managing 𝑇𝜂 and its

adjacent replica managing 𝑇𝜓, whereas the m(i-1,j) replica is the

primary replica for processing 𝑇𝜓 and neighbour replica for

processing 𝑇𝜂 . BVAC model considers different sets of

transactions 𝑇𝜂 and 𝑇𝜓 . 𝑇𝜂 is a set of transactions that comes

before 𝑇𝜓, while 𝑇𝜓 is a set of transactions that comes after 𝑇𝜂.

The effect of BVAC transaction is defined as the processing of
one instance of the transaction.

IV. EXPERIMENTAL RESULTS

A. BVAC Algorithm Definition

To illustrate the operation of commit coordination under the
BVAC Commit Coordination (BCC) mechanism, consider the
case where two distinct transaction sets, T_η and T_ψ,
concurrently request access to data file e at replicas E and B,
respectively.

A cluster of five replication servers, interconnected as shown
in Fig. 2, is used to illustrate the BVAC mechanism. Each
primary replica propagates its database state to neighbouring
replicas, allowing clients to access data from any server holding
a replica. Consider two distinct transaction sets, 𝑇𝜂 and 𝑇𝜓 both

requesting access to data file e at replicas E and B, respectively.
When 𝑇𝜂 and 𝑇𝜓 attempt to update e, they must first issue update

requests to their respective primary replicas, B and E. Both 𝑇𝜂

and 𝑇𝜓 propagate lock requests, but only the first transaction to

acquire the lock proceeds, while the other is aborted.
Consequently, replicas B and E maintain pending transactions,
yet neither can read or update e concurrently. Primary node E,

𝑇𝜂,𝑒
= 1 propagates lock requests to neighbours B, D, F, and H,

while primary node B 𝑇𝜓,𝑒
propagates locks to neighbours E, D,

F, and H. The transaction that first secures a majority quorum is
transformed into 𝑉̂𝜆𝑥

  𝑉𝜂 , 𝑉𝜓 . The details of experimental

outcomes are summarized in Table II.

Assertion: If the transaction gets all locks from replica i 
T(C), then the transactions will be executed successfully.

Proof: The only way that a transaction gets a lock in initiate
lock is when 𝑇𝜆𝑥

= 1 with 𝑇𝜆𝑥
 𝑇𝜂. After 𝑇𝜆𝑥

 𝑇𝜂 success to

initiate lock at a server, then, 𝑇𝜆+1𝑥
, ..., 𝑇𝜆+𝑞𝑥

 which are the

elements that exist in 𝑇𝜂 will be queued. To get majority

quorum, w𝑇𝜆𝑥
≥ ⌈

𝑛

2
⌉ is required. This means that the primary

server needs to get the majority locks from its neighbour servers
by calling request lock from the neighbours servers. Each
neigbours i  T(C) will send feedback to the primary to notify

it is in free lock or not. If the primary gets the majority locks of
instant x, it means that 𝑉̂𝜆𝑥

 = 𝑇µ𝑥
= 𝑇𝜂 where 𝑉̂𝜆𝑥

 gets a quorum.

Next, the primary will send error notification to other neighbours
i  T(C) in the quorum. Consequently, when 𝑇𝜆𝑥


𝑇𝜓 releases its lock, 𝑇𝜆𝑥

 𝑇𝜂 gets the lock from every

neighbour i  T(Cx). After 𝑇𝜆𝑥
 gets majority quorum, relation

T is fragmented into T1 and T2 using vertical fragmentation.
Again, T1 is fragmented into 𝑇1(𝑃𝑘,𝑥)

 and 𝑇1(𝑃𝑘,𝑦)
 using horizontal

fragmentation. When a user finishes updating the instant,
𝑉̂𝜆𝑥

 commit (send the fragmented data) to ∀ neighbour i 
T(Cx). Therefore, all replicas of T(Cx) will perform and execute
the update successfully.

Fig. 2. An example of BVAC transaction requests.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

658 | P a g e
www.ijacsa.thesai.org

TABLE II. AN EXAMPLE OF HOW BVAC HANDLE CONCURRENT TRANSACTIONS

REP LICA E B D F H

TIME

t1 Unlock (e) unlock (e) unlock (e) unlock (e) unlock (e)

t2 Request update

t3
write l(e)

counter_w(e)=1
Request update

t4 wait
write lock(e)

counter_w(e)=1

t5 propagate lock:B

t6 propagate lock:D propagate lock:D

t7 lock(e) from E

t8
get lock:7

counter_w(e)=2
propagate lock:F

t9 propagate lock:F lock(e) from B

t10 propagate lock:H
get lock:F

counter_w(e)=2

t11 propagate lock:H lock(e) from E

t12
get lock:H

counter_w(e)=3
propagate lock:E

t13
obtain quorum

release lock:3
propagate lock:H

t14

abort

𝑇𝜆𝑒
  𝑇𝜓

& rollback,

lock(e) from 8

rollback,

lock(e) from E

t15 update e

t16 fragment T’ And T’1

t17
commit

𝑉𝜆𝑒
 𝑉𝜂

commit

𝑉𝜆𝑒
 𝑉𝜂

commit

𝑉𝜆𝑒
 𝑉𝜂

commit

𝑉𝜆𝑒
 𝑉𝜂

commit

𝑉𝜆𝑒
 𝑉𝜂

t18 Unlock (e) Unlock (e) Unlock (e) Unlock (e) Unlock (e)

B. Communication Cost Comparison

In this section, we compare the storage usage of BVAC,
DynamoDB, FoundationDB, and GeoGauss. In BVAC,
replication is bound to a fixed quorum size of three to five
servers. This allows transactions to commit using a constant
quorum, which limits the storage overhead even when the
number of servers increases. In DynamoDB, each partition is
synchronously replicated across three replicas within a region.
When Global Tables are enabled, data is further replicated
asynchronously across multiple regions, meaning the storage
requirement increases proportionally with the number of
regions. FoundationDB, by contrast, relies on a more complex
configuration involving commit proxies, resolvers, and log
servers. To ensure cross-region durability and strict
serializability, the system often requires five or more replicas,
including satellites, which elevates the storage footprint.
GeoGauss employs the most storage-intensive approach, as it
maintains a full replica of the database in every region. This
design provides strong global consistency and resilience but
comes at the cost of replicating the entire dataset across all
regions. Table III shows the comparison between BVAC,
DynamoDB, FoundationDB, and GeoGauss in terms of storage
use.

From Table III, it is apparent that BVAC requires the least
storage overhead by restricting replication to a small, constant
quorum size of three to five servers. DynamoDB demands three
replicas per partition in each region, and the storage requirement
expands with the number of regions deployed in Global Tables.
FoundationDB requires at least five replicas to preserve strict
serializability and cross-region fault tolerance, thereby
consuming more resources. GeoGauss incurs the heaviest
storage cost since every region maintains a complete replica of
the database. Consequently, BVAC demonstrates superior
storage efficiency compared with DynamoDB, FoundationDB,
and GeoGauss, making it a practical option for large-scale cloud
systems where both consistency and resource optimization are
critical.

TABLE III. STORAGE USAGE COMPARISON OF BVAC, DYNAMODB,
FOUNDATIONDB, AND GEOGAUSS

Replication

Techniques
Number of Servers Storage Use

BVAC 3–5 replicas (constant quorum) 3–5

DynamoDB

3 replicas per partition

(regional); extra regions for

global tables

3 per region, grows

with Global Tables

FoundationDB
≥5 replicas (primary,

secondaries, satellites)
5 or more

GeoGauss Full replica in every region
Equal to number of

regions (high cost)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

659 | P a g e
www.ijacsa.thesai.org

V. CONCLUSION

The rapid evolution of cloud computing has increased the
significance of replication systems that can concurrently
guarantee consistency, availability, and efficiency at scale.
Conventional grid-based methodologies and commercial cloud
platforms have advanced replication practices, but they continue
to face inherent limitations within the consistency, latency and
availability spectrum. This research presents the Binary Vote
Assignment in Cloud (BVAC) as a cloud-native advancement of
the BVAGQ replication model to tackle these ongoing
challenges. BVAC integrates binary vote assignment into a
quorum-based structure and utilizes the BVAC Commit
Coordination (BCC) mechanism to authenticate transactions on
fixed-size quorums across distributed replicas. This approach
maintains robust consistency, minimizes communication
complexity, ensures reliable fault tolerance with low latency,
and improves storage efficiency by requiring fewer replicas than
existing systems. Collectively, these contributions demonstrate
BVAC as a scalable, reliable, and economical replication
framework for extensive cloud settings. While the results of this
study are promising, several aspects warrant further
investigation. The current evaluation of BVAC is limited to
specific workloads; its scalability and adaptability under highly
dynamic and heterogeneous cloud conditions remain to be
explored. In particular, BVAC could be extended with adaptive
quorum resizing and workload-aware strategies to dynamically
respond to shifting read/write ratios and latency requirements.
Furthermore, future research should consider strengthening
security and trust mechanisms, such as integrating Byzantine
fault tolerance or lightweight blockchain-inspired auditing, to
protect against adversarial conditions like malicious voting or
quorum manipulation. Potential trade-offs, such as the
complexity of quorum management, deployment across multi-
cloud environments, and performance under real-world
changeable workloads, need deeper analysis.

ACKNOWLEDGMENT

This research was funded by the Fundamental Research
Grant Scheme – Early Career (FRGS-EC), Ministry of Higher
Education Malaysia, under Grant Nos. FRGS-
EC/1/2024/ICT08/UITM/02/3, 600-RMC/FRGS-EC 5/3
(053/2024). The authors also acknowledge the support of
Universiti Malaysia Pahang Al-Sultan Abdullah under Grant
No. RDU253002.

REFERENCES

[1] J. Eom, “Efficient data replication for fault tolerance in distributed

computing environments,” Int. J. Distrib. Syst. Technol., vol. 8, no. 3, pp.

1–15, 2017.

[2] R. Dugyani and D. Govardhan, “Data replication and scheduling in the

cloud with optimization assisted workflow management,” Web

Intelligence, vol. 22, no. 1, pp. 55–72, 2024.

[3] K. Acquah, “Empirical insights into replication models for distributed

database environments,” Int. J. Comput. Appl. (IJCA), vol. 186, no. 53,

pp. 1–7, 2024.

[4] T. Taipalus, “Database management system performance comparisons: A

systematic literature review,” J. Syst. Softw., vol. 208, pp. 111–123, 2024.

[5] T. Hamrouni, R. Mokadem, and A. Khelifa, “Review on data replication

strategies in single vs. interconnected cloud systems: Focus on data

correlation-aware strategies,” Concurrency Computat.: Pract. Exper.,

vol. 35, no. 11, pp. e7612, 2023.

[6] A. Tahir, S. U. Khan, and N. Min-Allah, “Dynamic replication strategies

in data grid systems: A survey,” Future Gener. Comput. Syst., vol. 111,

pp. 654–667, 2020.

[7] S. Rehman, M. A. Jan, and S. Khan, “Survey on data replication in cloud

systems,” Cluster Comput., vol. 25, pp. 1105–1124, 2022.

[8] M. M. Alshammari, A. A. Alwan, A. Nordin, and A. Z. Abualkishik,

“Data backup and recovery with a minimum replica plan in a multi-cloud

environment,” Procedia Comput. Sci., vol. 141, pp. 45–52, 2018.

[9] J. Alonso, R. Garcia -Castro, J. Cubo, et al., “Understanding the challenges

and novel architectural models for multi-cloud native applications,” J.

Cloud Comput., vol. 12, no. 1, pp. 1–22, 2023.

[10] G. Girau, “Towards adaptive replication policies for elastic cloud

workloads,” IEEE Access, vol. 12, pp. 45112–45126, 2024.

[11] A. Noraziah, A. A. C. Fauzi, S. H. S. A. Ubaidillah, B. Alkazemi, and J.

B. Odili, “BVAGQ-AR for fragmented database replication

management,” IEEE Access, vol. 9, pp. 56168–56177, 2021, doi:

10.1109/ACCESS.2021.3065944.

[12] M. A. Fazlina, R. Latip, H. Ibrahim, and A. Abdullah, “Replication

strategy with comprehensive data center selection method in cloud

environments,” Computers, Materials & Continua , vol. 74, no. 2, pp.

4139–4155, 2023

[13] A. Kaur, P. Gupta, M. Singh and A. Nayyar, “Data placement in era of

cloud computing: A survey, taxonomy and open research issues,”

Scalable Computer, vol. 20, no. 2, pp. 377–398, 2019.

[14] V. Gupta, S. Kharche, A. Lakshman, S. Mittal, and R. Sumbaly, “Amazon

DynamoDB: A scalable, predictably performant, and fully managed

NoSQL database service,” Proc. USENIX Annu. Tech. Conf. (ATC), pp.

511–525, 2022.

[15] J. Idziorek, A. Keyes, C. Lazier, et al., “Distributed transactions at scale

in Amazon DynamoDB,” Proc. USENIX Annu. Tech. Conf. (USENI X

ATC), pp. 675–690, 2023.

[16] Y. J. Zhou, M. Xu, A. Shraer, et al., “FoundationDB: A distributed

unbundled transactional key-value store,” Proc. ACM SIGMOD Int.

Conf. Manag. Data (SIGMOD), pp. 2653–2666, 2021.

[17] G. Li, L. Zhou, Z. Zhang, et al., “GeoGauss: Strongly consistent and light-

coordinated OLTP for geo-replicated SQL database,” Proc. ACM Manag.

Data (PACMMOD), pp. 1–25, 2023.

[18] A. Noraziah, A. A. C. Fauzi, W. M. W. Mohd, et al., “Managing

MyGRANTS fragmented database using Binary Vote Assignment Grid

Quorum with Association Rule (BVAGQ-AR) replication model,” Proc.

Int. Conf. Data Eng. (DaEng-2015), Lect. Notes Electr. Eng., vol. 520,

2019.

[19] A. A. Che Fauzi, W. F. Wan Abdul Rahman, A. Fauzi, et al., “Managing

fragmented database in distributed database environment,” J. Math.

Comput. Sci. (JMCS), vol. 7, no. 1, pp. 8–14, 2021.

[20] M. Aggarwal, S. B. Bajaj, and V. Jaglan, “Performance analysis of degree

of redundancy for replication in distributed database system,” Proc. Int.

Conf. Informatics (ICI), pp. 176–180, 2022.

[21] M. Goel and S. B. Bajaj, “Comparative analysis of vertical fragmentation

techniques in distributed environment,” Int. J. Electr. Electron. Comput.

Sci. Eng., vol. 5, no. 1, pp. 48–52, Feb. 2018.

