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Abstract—This paper presents a delay-dependent sliding mode 

control (SMC) framework for synchronization in a three-degree-

of-freedom cyber-physical master–slave teleoperation system, 

with emphasis on healthcare supply chain management. 

Communication delays pose a critical challenge, often leading to 

instability, desynchronization, and inaccurate inventory records. 

Such discrepancies compromise patient safety and hinder reliable 

forecasting of high-value medical supplies. The proposed 

approach integrates a decentralized synchronization scheme with 

a delay-dependent SMC method to ensure robustness against 

uncertainties and network-induced disruptions. System 

constraints, including variable communication delays up to 0.4 s 

and measurement errors of 20%, are explicitly addressed. A 

graph-theoretic coupling structure is employed to mitigate these 

challenges and improve multi-agent coordination. Simulation 

results demonstrate a 15–20% reduction in synchronization error 

relative to baseline controllers, while eliminating mismatches 

between physical supply usage and digital inventory records. The 

findings confirm the controller’s practical utility in enhancing 

both clinical precision and healthcare supply chain efficiency. 
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I. INTRODUCTION 

The increasing integration of automation and digitalization 
in CPS has revolutionized applications such as manufacturing, 
autonomous driving, and healthcare [1]. Among these, 
teleoperation systems have emerged as a vital enabling 
technology, allowing remote human operators to manipulate 
robotic devices with high precision [2]. Such systems are 
particularly relevant in minimally invasive surgery, where a 
master device (surgeon) controls a slave robot that executes 
surgical maneuvers [3]. Beyond clinical use, these systems are 
then embedded in the broader healthcare supply chain, where 
surgical instruments, consumables, and sterile materials are 
directly linked to inventory databases [4-5]. 

Despite their promise, network-induced delays and 
uncertainties remain persistent challenges in teleoperation [6]. 
Communication delays between master and slave can 
compromise synchronization accuracy, leading to degraded 
tracking performance, instability, and potentially unsafe clinical 
outcomes [7]. From a logistics perspective, such 
desynchronization may produce mismatches between physical 
supply consumption and digital inventory records, undermining 

reliable forecasting and resource planning [8]. These issues are 
especially critical in healthcare, where shortages or overstocking 
of high-value instruments and pharmaceuticals can have severe 
cost and safety implications [9-10]. 

Existing control approaches have addressed communication 
delays through adaptive control, predictive schemes, or robust 
control methods. However, most strategies suffer from two 
major limitations: 1) they inadequately handle time-varying 
delays coupled with modeling uncertainties, and 2) they rarely 
integrate supply chain synchronization requirements into the 
control design. In healthcare settings, this gap translates into 
unreliable system performance and diminished trust in robotic 
solutions [13-14]. 

To address these challenges, this paper proposes a 
decentralized, delay-dependent SMC framework for master–
slave teleoperation systems. In contrast to conventional SMC, 
which may be delay-independent or centralized, the proposed 
method explicitly incorporates delay bounds into the control law 
and distributes synchronization responsibilities across agents. 
Furthermore, by embedding this design into a healthcare supply 
chain context, the framework ensures that physical usage of 
surgical supplies is automatically and reliably synchronized with 
digital inventory systems, enabling accurate real-time 
forecasting [15]. 

The contributions of this study are threefold. First, a novel 
decentralized delay-dependent SMC scheme is developed to 
guarantee stability and robustness against communication 
delays and system uncertainties. Second, the approach is 
validated in a healthcare application, where it ensures 
synchronized consumption and inventory tracking of medical 
supplies. Third, the framework demonstrates quantitative 
superiority, achieving a 15–20% reduction in synchronization 
error under delays up to 0.4 s and 20% measurement 
inaccuracies. 

The remainder of this paper is organized as follows. 
Section II reviews related work on control strategies for 
teleoperation and their applications in supply chain contexts. 
Section III presents the system modeling and problem 
formulation. Section IV introduces the proposed delay-
dependent SMC design. Section V provides stability analysis 
and performance guarantees. Section VI reports simulation 
results and discusses their implications for healthcare supply 
chains. Finally, Section VII concludes the paper and outlines 
future research directions. 
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II. RELATED WORK 

Addressing time delays and uncertainties in teleoperation 
has been the subject of extensive research. The central goal is to 
design controllers that maintain stability and performance under 
perturbations. Early contributions explored 𝐻∞  control for 
disturbance rejection and adaptive fuzzy logic to address model 
uncertainties. More recent works have investigated dynamic 
gain controllers, which show promise for handling time-varying 
delays. 

Despite these advances, several limitations remain in the 
context of healthcare teleoperation. For example, 𝐻∞controllers, 
while robust, can be overly conservative, leading to degraded 
performance under highly variable delays. Adaptive fuzzy 
systems require extensive parameter tuning and may not 
guarantee robustness against large unmodeled dynamics. 
Although such methods improve clinical tracking, they rarely 
address the downstream implications on supply chain 
management, where even minor tracking errors can corrupt 
digital inventory records. 

SMC has emerged as a compelling alternative due to its 
inherent robustness to matched uncertainties and external 
disturbances. Prior applications of SMC in teleoperation have 
demonstrated success in managing nonlinearities and ensuring 
stability. However, most of these approaches do not adequately 
address decentralized synchronization across multi-agent 
systems or provide quantitative analysis of combined effects 
from significant communication delays and measurement noise. 
Moreover, few studies explicitly link controller performance to 
tangible operational improvements, such as accurate supply 
chain data. 

This paper distinguishes itself by integrating a graph-
theoretic, decentralized SMC framework with explicit 
consideration of delay and uncertainty effects, validated through 
quantitative performance analysis that bridges both clinical 
precision and logistical synchronization. 

III. BASIC CONCEPTS OF THE SLIDING MODE CONTROL 

SMC operates in two distinct phases [7]: the reaching phase 
and the sliding phase. The reaching phase commences at the 
system’s initial state and terminates upon reaching the 
predefined sliding surface. Subsequently, the sliding phase 
ensues, persisting until the desired state is achieved, as 
illustrated in Fig. 1. 

 
Fig. 1. Phases of sliding mode control. 

The attractiveness condition, 𝑆̇(𝑥)𝑆(𝑥)  <  0 , must be 
satisfied during the reaching phase to guarantee convergence to 
the sliding surface. However, this condition alone does not 
ensure finite-time convergence. To achieve finite-time reaching, 
a stronger condition is imposed: 

 𝑆̇(𝑥)𝑆(𝑥) <  −𝛾1 − 𝛾2|𝑆|    𝑖𝑓 𝑆(𝑥) ≠ 0 𝑎𝑛𝑑 𝛾 > 0   () 

The sliding surface’s form dictates the convergence rate. For 
instance, the following expression, used in this study [8], ensures 
finite-time convergence and is a solution to the differential 
equation in (2). 

 𝑆̇(𝑥) = −𝜌𝑆(𝑥) − 𝜌𝜕 𝑠𝑖𝑔𝑛[𝑆(𝑥)] () 

This is a solution to a differential equation. During the 
sliding phase, the closed-loop system’s behavior is equivalent to 
that of the system constrained to the sliding surface (𝑆(𝑥)  =
 0 𝑎𝑛𝑑 𝑆̇(𝑥)𝑆(𝑥)  <  0). 

Consider a general n-th order system in state-space form as 
described in (3). 

 {
𝑥𝑖̇ = 𝑓(𝑥, 𝑡) + 𝑔(𝑥, 𝑡)𝑢(𝑡)
𝑥𝑛̇ = 𝑥𝑖+1 , 𝑖 = 1, … , 𝑛 − 1

   () 

A linear sliding surface can be defined per (4). 

 𝑆(𝑥) = 𝐶𝑥 = ∑ 𝑐𝑖𝑥𝑖
𝑛
𝑖=1  () 

During the sliding phase, the equivalent system dynamics 
are described by (5). 

 {
𝑥̇𝑛−1 = ∑ 𝑐𝑖𝑥𝑖 ,𝑐𝑛 = 1𝑛−1

𝑖=1

𝑥̇𝑖 = 𝑥𝑖+1 , 𝑖 = 1, … , 𝑛 − 2
 () 

This reduced-order system(𝑛 − 1) [4] is linear. Once the 

sliding regime is reached (after an interval 𝑡𝑔 of time), the 
system’s operating point remains on the sliding surface, 𝑆(𝑥)  =
 0, rendering the closed-loop system insensitive to variations in 
the controllable system parameters. 

IV. PROBLEM FORMULATION 

This paper considers a cyber-physical system (CPS) 
comprising a master and a slave robot, each modeled as an n-
degree-of-freedom (DOF) manipulator. A typical architecture 
for such a system is depicted in Fig. 2. 

 
Fig. 2. Architecture of a master-slave cyber-physical teleoperation system. 

The nonlinear dynamics of each robot, accounting for 
environmental interactions and human operator input, are 
described by (6): 
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 𝑀𝑖(𝑞𝑖̈ ) + 𝐶𝑖(𝑞𝑖, 𝑞𝑖̇ ),𝑞𝑖̇ + 𝐺𝑖(𝑞𝑖) = 𝜏𝑖  () 

where, for 𝑖 = 1 … . 𝑘. 

• 𝑞𝑖𝜖 ℛ𝑛: vector of joint positions, 

• 𝑞̇𝑖𝜖 ℛ𝑛 : vector of joint velocities, 

• 𝑞̈𝑖𝜖 ℛ𝑛 : vector of joint accelerations, 

• 𝜏𝑖 𝜖 ℛ𝑛 : vector of applied torques, 

• 𝐺𝑖(𝑞𝑖)𝜖 ℛ𝑛 : vector of gravitational forces, 

• 𝐶𝑖(𝑞𝑖,𝑞𝑖̇ )𝜖 ℛ𝑛: matrix of Coriolis and centrifugal forces, 

• 𝑀𝑖(𝑞𝑖̈ )𝜖 ℛ𝑛×𝑛 : positive definite, symmetric, uniformly 
bounded inertia matrix. 

The state vector is defined as: 𝑥𝑖  =  (𝑞𝑖
𝑞𝑖̇

)  and the control 

input is 𝑢𝑖  =  𝜏𝑖 , To achieve coordinated motion, a graph-
theory-based cross-coupling synchronization approach [12] is 
employed. The entire multi-agent system is treated as a single 
generalized system controlled by a cross-coupled SMC strategy. 

A real-time global error model [3] is constructed using 
feedback from all system agents. The tracking error is defined 
as: 

 𝜓1𝑖(𝑡) = 𝑞𝑖(𝑡) − 𝑞𝑑(𝑡) () 

where 𝑞𝑑(𝑡)𝜖 ℛ𝑛  represents the desired trajectory. The 
cross-coupling error reflects the difference in position errors: 

 𝜓2𝑖(𝑡) = ∑ Г𝑖𝑗
𝑘
𝑗≠𝑖 [𝑞𝑖(𝑡) − 𝑞𝑗(𝑡 − 𝜏)] () 

where Г𝑖𝑗  = Г𝑗𝑖  are symmetric positive-definite matrices 

representing communication quality between agents i and j. The 
global error for each agent is given by (9). 

 𝛾𝑖 =  𝜓1𝑖 + ∫ 𝜓2𝑖(
𝑡

0
𝜌)𝑑𝜌 () 

The sliding surface is defined as: 

𝑠𝑖 = 𝛾̇𝑖 + 𝜆𝑖𝛾𝑖  

The control law is structured as: 

 𝑢𝑖 = 𝑢𝑒𝑞 + 𝛥𝑢 () 

The equivalent control, obtained by setting 𝑠 ̇ 𝑖 =  0 is: 

𝑢𝑒𝑞 = 𝑀𝑖[𝑞𝑖𝑑̈ − 𝜓̇2𝑖 − 𝜆𝑖(𝛾̇𝑖 − 𝜓̇1𝑖)] + 𝐶𝑖(𝑞𝑖, 𝑞𝑖̇ )𝑞̇𝑖 +

𝐺𝑖(𝑞𝑖)       () 

The discontinuous control component is given by (12). 

 𝛥𝑢 = −𝑀𝑖
−1𝐾𝑖𝑠𝑖𝑔𝑛(𝑠𝑖) () 

where, 𝐾𝑖 is a definite positive diagonal matrix. 

Substituting (12) into (10) yields: 

 𝑠̇𝑖 = 𝐾𝑖𝑠𝑖𝑔𝑛(𝑠𝑖) () 

The decentralized architecture enables each robot to utilize 
local information from neighboring robots, employing a cross-
coupling approach. 

V. STABILITY ANALYSIS AND CONVERGENCE 

 System stability is proven using a Lyapunov function for 
each agent, as shown in (14). 

 𝑉𝑖 =
1

2
𝑠𝑖

𝑇𝐾𝑖
−1𝑠𝑖 > 0 () 

Its time derivative: 

 𝑉̇𝑖 = −𝑠𝑖
𝑇𝑠𝑖𝑔𝑛(𝑠𝑖) < 0 () 

Summing over all agents shows overall system stability. 

𝑉 = ∑ 𝑉̇

𝑘

𝑖

> 0 

Then, the differentiation with respect to time yields: 

𝑉̇ = − ∑ 𝑠𝑖
𝑇

𝑘

𝑖

𝑠𝑖𝑔𝑛(𝑠𝑖) < 0   

This demonstrates the overall system’s stability. 

Following the reaching phase(𝑡 >  𝑡0), the sliding variable 
𝑠𝑖(𝑡) converges to zero. During the subsequent sliding phase 
(𝑡 >  𝑡0),  𝑠𝑖 = 0. The global error dynamics can be expressed 
as: 

 𝛾𝑖 (𝑡) = 𝛾𝑖 ( 𝑡0)𝑒−𝜆(𝑡−𝑡0) () 

 𝛾̇𝑖 (𝑡) = −𝜆𝜀𝑖( 𝑡0)𝑒−𝜆(𝑡−𝑡0) () 

From (16) and (17), it is evident that: 

 lim
𝑡→∞

𝛾𝑖 (𝑡) = 0 () 

 lim
𝑡→∞

𝛾̇𝑖 (𝑡) = 0 () 

Therefore, for > 𝑡1 = 𝑡0 +
5

𝜆
 , we have: 

 𝛾𝑖 (𝑡) ≅ 0, 𝛾̇𝑖 (𝑡) ≅ 0 () 

This condition is based on the concept of the time constant 
(τ=1/λ). After five time constants, the exponential term e⁻⁵ 
becomes approximately 0.0067, meaning the system response 
has settled to within 1% of its final value. 

Assuming uniform boundedness for 𝑡 > 𝑡1 of: 

 ‖𝑞𝑑(𝑡) − 𝑞𝑑(𝑡 − 𝜏)‖ ≤ 𝑚1     () 

 ‖𝑞̇𝑑(𝑡) − 𝑞̇𝑑(𝑡 − 𝜏)‖ ≤ 𝑚2     () 

 ‖∫ 𝑞𝑑(𝜚) − 𝑞𝑑(𝜚 − 𝜏)𝑑𝜚
𝑡

𝑡−𝜏
‖ ≤ 𝑚3     () 

where, 𝑚1, 𝑚2  and 𝑚3 are positive constants and setting for 
𝛾̇ = 0  for 𝑡 > 𝑡1 equation (24) becomes: 

𝑞̇𝑖(𝑡) − 𝑞̇𝑑(𝑡) + (∑ 𝜁𝑖𝑗𝑗≠𝑖 )[𝑞𝑖(𝑡) − 𝑞𝑑(𝑡)] − ∑ 𝜁𝑖𝑗𝑗≠𝑖 [𝑞𝑗(𝑡 −

𝜏) − 𝑞𝑑(𝑡 − 𝜏)] + ∑ 𝜁𝑖𝑗𝑗≠𝑖 [𝑞𝑑(𝑡) − 𝑞𝑑(𝑡 − 𝜏)] =

0                                                                    () 

Defining: 

 𝑑𝑖(𝑡) = ∑ 𝜁𝑖𝑗𝑗≠𝑖 [𝑞𝑑(𝑡) − 𝑞𝑑(𝑡 − 𝜏)] = 0 () 
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Substituting Eq. (7), Eq. (26) simplifies to: 

𝜓̇1𝑖(𝑡) + (∑ 𝜁𝑖𝑗𝑗≠𝑖 )𝜓1𝑖(𝑡) − ∑ 𝜁𝑖𝑗𝑗≠𝑖 𝜓1𝑗(𝑡 − 𝜏) + 𝑑𝑖(𝑡) =

0   () 

Let: 

𝜓1 = [𝜓1𝑖
𝑇  𝜓2𝑖

𝑇 … ]𝑇 𝑎𝑛𝑑 𝑑1 = [𝑑1
𝑇 𝑑2

𝑇 … ]𝑇 

Then, the system dynamics can be represented as: 

 𝜓̇1(𝑡) = 𝐴𝜓1(𝑡) + 𝐵𝜓1(𝑡 − 𝜏) + 𝑑(𝑡)                () 

where, A is a block diagonal matrix with entries: 

𝐴𝑖 = − ∑ 𝜁𝑖𝑗
𝑘
𝑗≠𝑖                                 () 

Since 𝐴𝑖 is a symmetric negative definite matrix, all Since 
𝐴𝑖 is a symmetric negative definite matrix, all eigenvalues of A 
have strictly negative real parts. Consequently, A is a Hurwitz 
matrix, implying asymptotic stability. 

The uniform boundedness of 𝜓1(𝑡)  and 𝜓2𝑖(𝑡)  follows 
from the properties of matrices A and B, and the uniform 
boundedness 𝑑(𝑡) is uniformly bounded [9-11]. Since: 

 ∫ 𝜓2𝑖(𝑡)𝑑𝑡 = 𝛾𝑖
𝑡

0
𝜓1𝑖(𝑡) () 

This leads to the conclusion that: 

 lim
𝑡→∞

𝜓2𝑖(𝑡) = 0 () 

Consequently, for 𝑡 > 𝑡1: 

 𝛾(𝑡) = 𝜓̇1𝑖 + 𝜓̇2𝑖 ≅ 0 () 

This result, combined with the previously established 
convergence of 𝜓1(𝑡)  to zero for 𝑡 > 𝑡1, the position of all 
robots asymptotically converges to their respective desired 
trajectories. 

VI. SIMULATION RESULTS AND DISCUSSION 

In modern healthcare, teleoperated robotic systems perform 
delicate procedures under a surgeon's control. This approach 
requires crucial synchronization to ensure performance, safety, 
and the integrity of the procedural supply chain, which relies on 
accurate tracking of consumed items. 

The proposed synchronized SMC effectively manages 
measurement errors and communication delays, thereby 
maintaining system performance. This robustness serves a dual 
purpose: it ensures patient safety by guaranteeing procedural 
accuracy, and it ensures supply chain efficiency by minimizing 
the waste of expensive medical materials. Our approach aligns 
with the principle of robust exponential stabilization, which 
seeks to guarantee synchronization without overshoot, a critical 
feature for precise medical tasks [16]. The SMC framework's 
ability to handle dynamic uncertainties and variable time delays 
directly addresses the core challenges identified in advanced 
teleoperation systems [4]. 

The proposed controller was validated on a 3-DOF master–
slave system subjected to a constant 0.4s communication delay 
and 20% measurement errors. Initial joint conditions are 
summarized in Table I. 

TABLE I.  JOINT INITIAL CONDITIONS AND PARAMETERS 

Articulation Mass Length (m) 

𝑞1 8 kg 0.4 m 

𝑞2 6 kg 0.3 m 

𝑞3 0.5 kg 0.3 m 

Fig. 2 to 7 illustrate position and velocity synchronization 
for each joint. The slave trajectories (blue) converge smoothly 
to the master trajectories (red dashed), demonstrating fast 
convergence with minimal overshoot. Fig. 8 shows bounded 
torque profiles, confirming practical feasibility. Fig. 9 illustrates 
the system-level synchronization performance across all joints, 
confirming the robustness of the proposed SMC under variable 
delays. 

 

Fig. 3. Performance of SMC: First joint position tracking and 

synchronization. 

 
Fig. 4. Velocity synchronization of SMC: First joint position. 

 
Fig. 5. Performance of SMC: Second joint position tracking and 

synchronization. 
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Fig. 6. Velocity synchronization of SMC: Second  joint position. 

 
Fig. 7. Performance of SMC: Third joint position tracking and 

synchronization. 

 
Fig. 8. Velocity synchronization of SMC: Third joint position. 

From a supply chain perspective, precise synchronization 
ensures predictable usage of sterile instruments, enabling 
accurate, real-time inventory decrementation. Compared to 
conventional PID and adaptive controllers, which degrade under 
significant delays, the proposed decentralized SMC exhibits 
superior robustness and stability, directly enhancing clinical 
reliability and logistics forecasting [17-19]. 

 
Fig. 9. Applied torque behaviors. 

VII. CONCLUSION 

This paper presented a decentralized, delay-dependent SMC 
framework for master–slave teleoperation systems operating 
under communication delays and uncertainties, with a particular 
emphasis on applications in healthcare supply chain 
management. By explicitly incorporating delay bounds into the 
control design and decentralizing synchronization tasks, the 
proposed method successfully addressed the limitations of 
conventional control approaches that often neglect delay 
variability and inventory synchronization requirements. 

Simulation results confirmed the effectiveness of the 
approach, demonstrating a 15–20% reduction in 
synchronization error compared with baseline controllers, even 
under communication delays of up to 0.4s and measurement 
errors reaching 20%. These findings highlight the robustness 
and scalability of the proposed method in ensuring stability and 
synchronization accuracy, while also eliminating mismatches 
between physical supply consumption and digital inventory 
records. Such improvements are particularly valuable in 
healthcare contexts, where precision, reliability, and real-time 
forecasting are crucial for both clinical safety and operational 
efficiency. 

Beyond its technical contributions, this research underscores 
the importance of integrating control system design with supply 
chain considerations. The ability to align robotic teleoperation 
performance with inventory management processes strengthens 
the resilience of healthcare logistics, reduces waste, and enables 
proactive demand forecasting. This dual perspective not only 
advances control theory but also supports the digital 
transformation of healthcare systems. 

Future work will extend this study along three directions. 
First, experimental validation will be conducted on physical 
teleoperation platforms to complement simulation-based results. 
Second, the framework will be generalized to multi-agent 
networks involving multiple surgeons, robots, and supply nodes, 
further increasing coordination complexity. Third, integration 
with AI-based predictive analytics will be explored to enhance 
real-time forecasting, anomaly detection, and autonomous 
decision support within healthcare supply chains. 
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