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Abstract—Sentiment analysis is a fundamental task in natural 

language processing with wide-ranging applications, from 

customer feedback monitoring to healthcare and social media 

analytics. While recent research has mainly emphasized predictive 

accuracy, computational efficiency has remained largely 

overlooked, despite its importance for large-scale and real-time 

deployment. This study addresses this gap by conducting a 

comparative evaluation of classical machine learning algorithms 

(Logistic Regression, Naïve Bayes, Random Forest) and deep 

learning architectures [Convolutional Neural Networks (CNNs) 

and Long Short-Term Memory (LSTM)]. Experiments were 

carried out on two benchmark datasets, IMDB and Yelp Polarity, 

with evaluation based on accuracy, precision, recall, F1-score, 

training time, and a novel Efficiency Score. Results on IMDB show 

that Logistic Regression and LSTM both achieved 88% accuracy, 

but with radically different costs: Logistic Regression trained in 

0.25 seconds, whereas LSTM required more than 2600 seconds. 

On Yelp Polarity, Logistic Regression improved to 91.6% 

accuracy, outperforming LSTM (86.2%) while remaining over 

300 times faster. By integrating both predictive metrics and 

efficiency measures, the Efficiency Score highlighted the practical 

advantages of Logistic Regression and Naïve Bayes in resource-

constrained environments. This dual evaluation framework 

demonstrates that classical models remain highly competitive 

when both accuracy and efficiency are considered, providing a 

practical alternative to computationally expensive neural 

architectures and offering practitioners clear guidelines for model 

selection under real-world constraints. 
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I. INTRODUCTION 

Sentiment analysis, also known as opinion mining, has 
emerged as a central task in natural language processing (NLP) 
due to the exponential growth of digital platforms such as social 
networks, e-commerce, and online review systems. It is widely 
applied across domains such as marketing, reputation 
management, healthcare, and education, where it supports 
decision-making by extracting and classifying opinions or 
emotions from text [1]. However, the inherently noisy, 
ambiguous, and context-dependent nature of textual data 
continues to pose major challenges for classification algorithms 
[2]. 

Traditional machine learning approaches such as Logistic 
Regression, Naïve Bayes, and Random Forest have long been 

popular for sentiment classification. Their effectiveness stems 
from simple vector space representations like Bag-of-Words and 
TF-IDF, which enable efficient training and competitive 
accuracy. Yet, their inability to capture contextual dependencies 
limits their performance on longer or more complex texts [3]. In 
contrast, deep learning models—including Convolutional 
Neural Networks (CNNs) and Long Short-Term Memory 
(LSTM) networks—have achieved significant progress by 
modeling local and sequential relationships in text [4]. Despite 
these advances, neural models are computationally expensive, 
requiring substantial resources and long training times, which 
restrict their deployment in real-time or resource-constrained 
settings. 

More recently, Transformer-based architectures such as 
BERT [6], DistilBERT [7], and ALBERT [8] have set new 
performance standards in sentiment analysis by providing 
superior contextual representations. However, their efficiency 
challenges—particularly in terms of memory requirements, 
inference latency, and energy consumption—remain well 
documented [9]. As a result, the practical question of balancing 
predictive performance and computational cost has become 
increasingly relevant. 

In this study, we address this gap by conducting a systematic 
comparison of classical machine learning algorithms and neural 
architectures for sentiment analysis, evaluated through a multi-
metric framework that integrates both predictive performance 
(Accuracy, Precision, Recall, and F1-score) and efficiency 
measures (Training Time and Efficiency Score). While the first 
set of metrics provides a rigorous view of classification quality, 
the second emphasizes feasibility for real-world applications 
where resources are limited and rapid response is critical. 

The contributions of this work are threefold: 

1) We provide a controlled empirical benchmark of 

classical algorithms (Logistic Regression, Naïve Bayes, 

Random Forest) and neural architectures (CNN, LSTM) on two 

benchmark datasets (IMDB and Yelp Polarity). 

2) We introduce an Efficiency Score, defined as the ratio of 

accuracy to training time, as a composite indicator for jointly 

assessing predictive power and computational cost. 

3) We highlight the robustness and practicality of classical 

models, demonstrating that they remain highly competitive 

when evaluated across multiple metrics, making them suitable 

for real-time and resource-constrained applications. 
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By establishing efficiency as a key criterion alongside 
accuracy, precision, recall, and F1-score, this work contributes 
a comprehensive evaluation framework that moves beyond 
traditional accuracy-centered approaches, providing both 
researchers and practitioners with a practical methodology for 
model selection in sentiment analysis. 

To situate this study within the broader context of existing 
approaches, the following section reviews related work on 
classical machine learning, deep learning, and Transformer-
based models for sentiment analysis, with a focus on their 
strengths, limitations, and reported evaluation practices. 

The remainder of this paper is organized as follows. 
Section II provides a review of related work, covering classical, 
deep, and Transformer-based sentiment classification 
approaches. Section III presents the datasets, preprocessing 
steps, selected models, and evaluation framework, including the 
proposed Efficiency Score. Section IV reports and analyzes the 
experimental results obtained from applying the models to 
benchmark datasets. Finally, Section V concludes the study and 
discusses potential directions for future research. 

II. RELATED WORKS 

Machine learning models have long been widely applied in 
sentiment analysis. Logistic Regression has consistently 
demonstrated competitive performance across diverse domains, 
typically achieving accuracies above 80% [7]. Random Forest 
has also shown robustness in handling noisy and heterogeneous 
data [10], [12], [13] [14],[15], while Naïve Bayes remains 
valued for its lightweight training and stability across contexts 
[16], [17]. However, the main limitation of these models is their 
inability to capture contextual relationships between words, 
which reduces their effectiveness on longer or more complex 
text. Moreover, prior studies evaluating these models have often 
relied solely on accuracy, neglecting complementary predictive 
metrics such as precision, recall, and F1-score. 

Deep learning architectures have significantly advanced 
sentiment analysis by incorporating sequential and contextual 
modeling. Convolutional Neural Networks (CNNs) [3], [22] 
were adapted to capture local dependencies, while Long Short-
Term Memory (LSTM) networks have consistently achieved 
strong performance in modeling long-range dependencies 
[4],[5], [19], [20]. For example, some studies have demonstrated 
the effectiveness of LSTM models when initialized with word 
embeddings, such as Word2Vec [5] or GloVe [21]. Studies such 
as Kaya and Fidan (2020) reported accuracies above 90% on 
Turkish and IMDB reviews using LSTM. However, these 
improvements come at the cost of significantly higher 
computational demands, which limit their deployment in real-
time or resource-constrained settings. Importantly, most 
evaluations of deep learning models emphasize accuracy and, at 
best, F1-score, without systematically assessing training time or 
computational feasibility [28] [29]. 

More recently, Transformer-based models such as BERT 
[6], DistilBERT [8], and ALBERT [26] have achieved state-of-
the-art accuracy in multiple sentiment benchmarks. DistilBERT, 
for instance, reduces computation while retaining approximately 
95% of BERT’s performance, whereas ALBERT improves 
memory efficiency through parameter sharing. Nevertheless, 

even lightweight Transformers remain resource-intensive 
compared to classical algorithms, raising concerns about their 
scalability for large-scale or low-latency applications [9], [25]. 

Infrastructure-level approaches for distributed NLP 
processing have also been considered [27], offering insights into 
how metadata management and storage layers can impact large-
scale model deployment. While some studies mention inference 
cost, few provide a systematic comparison that integrates 
efficiency metrics alongside predictive performance. 

Table I summarizes representative studies in sentiment 
analysis, highlighting the predominant reliance on accuracy as 
the principal evaluation criterion. Although a few works have 
reported precision, recall, or F1-score, computational efficiency 
is rarely benchmarked rigorously, leaving a gap between 
theoretical performance and practical applicability. 

TABLE I  SUMMARY OF REPRESENTATIVE SENTIMENT ANALYSIS 

STUDIES 

Author(s) 

& Year 

Models 

tested 
Dataset 

Evaluation 

criteria 
Limitations 

Kim (2014) 

[23] 
CNN 

Movie 

reviews 
Accuracy 

Ignores 

computational 

cost 

Tang et al. 

(2015) [24] 

GRNN, 

LSTM 
IMDB Accuracy 

No efficiency 

evaluation 

Kaya & 

Fidan 

(2020)[20] 

LSTM 

Turkish 

reviews, 

IMDB 

Accuracy, 

F1 

Lacks 

comparison 

with 

lightweight 

models 

Abdirahman 

et al. (2023) 

[30] 

ML (SVM, 

NB), DL 

(LSTM) 

Somali 

dataset 
Accuracy 

Efficiency not 

considered 

Jahan et al. 

(2024) [31] 

ML (SVM, 

RF, LR, 

NB) 

Twitter, 

Facebook 

posts 

Accuracy, 

Precision, 

Recall 

No efficiency 

analysis 

Varone et 

al. (2023) 

[32] 

Word 

embeddings 

+ DL 

Arabic 

reviews 

Accuracy, 

F1 

Lacks 

efficiency 

study 

Sanh et al. 

(2019) [8] 
DistilBERT 

GLUE, 

SST-2 
Accuracy 

Efficiency 

mentioned but 

not 

benchmarked 

Lan et al. 

(2020) [26] 
ALBERT 

GLUE, 

sentiment 

datasets 

Accuracy 

Memory 

efficiency 

only partially 

discussed 

As summarized in Table I, prior research has predominantly 
focused on predictive accuracy [33], with limited consideration 
of complementary performance metrics and little to no 
integration of computational efficiency [18]. While deep 
learning and Transformer-based models achieve state-of-the-art 
accuracy, their high training and inference costs limit their 
suitability for large-scale or real-time deployment. Conversely, 
classical algorithms provide faster training and lower resource 
consumption but are frequently dismissed as mere baselines 
without sufficient attention to their efficiency advantage. 
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This gap underscores the need for a comprehensive 
evaluation framework that jointly considers accuracy, precision, 
recall, F1-score, training time, and efficiency. In this work, we 
directly address this issue by benchmarking classical models 
(Logistic Regression, Naïve Bayes, Random Forest) against 
neural architectures (CNN, LSTM) across two benchmark 
datasets (IMDB and Yelp Polarity). Unlike most comparative 
studies, we explicitly integrate efficiency metrics into the 
evaluation, providing a more holistic perspective and practical 
guidelines for model selection under real-world computational 
constraints. 

III. METHODOLOGY 

To ensure a fair and reproducible comparison between 
classical and neural approaches to sentiment analysis, this study 
followed a structured experimental pipeline covering dataset 
selection, preprocessing, feature extraction, model 
implementation, training, and evaluation. 

A. Datasets 

The two widely used benchmark datasets were employed to 
ensure robustness and cross-domain validation: 

• IMDB Movie Reviews: This dataset contains 50,000 
annotated reviews, evenly distributed between positive 
and negative sentiments, with 25,000 reviews used for 
training and 25,000 for testing Maas et al. [11]. Its 
balanced structure makes it a standard benchmark for 
sentiment analysis. 

• Yelp Polarity Reviews: To test generalization across 
domains, a subset of 25,000 reviews (20,000 for training 
and 5,000 for testing) was extracted. The dataset consists 
of highly polarized reviews, making it a complementary 
benchmark to IMDB. 

Both datasets were chosen due to their public availability, 
balanced class distribution, and wide adoption in related work. 

B. Preprocessing 

Textual Preprocessing was designed to standardize inputs 
and reduce noise: 

1) Text normalization: Lowercasing and removal of 

punctuation, numbers, and special characters. 

2) Tokenization: Splitting sentences into tokens. 

3) Stop-word removal (for classical models only). 

4) Sequence handling: For neural models, all sequences 

were truncated or padded to a fixed length of 200 tokens. 

5) Feature representation: 

• For classical models: TF-IDF vectors were extracted 
with a vocabulary limited to the 10,000 most frequent 
terms to reduce sparsity. 

• For neural models: Tokens were mapped to 50-
dimensional GloVe embeddings, allowing semantic 
relationships between words to be captured. 

C. Feature Extraction and Models 

Two families of models were evaluated: 

• Machine learning algorithms: 

- Logistic Regression (with L2 regularization). 

- Naïve Bayes (multinomial version). 

- Random Forest (with balanced class weights). 

• Deep learning algorithms: 

- Convolutional Neural Network (CNN) adapted for 
text classification using 1D convolutions, batch 

normalization, and dropout. 

- Long Short-Term Memory (LSTM) with dropout 

layers and L2 penalties to mitigate overfitting. 

These models were selected based on three primary criteria: 

• Methodological diversity: The set includes both classical 
models that rely on sparse, vectorized inputs (TF-IDF, 
Bag-of-Words) and deep neural architectures capable of 
modeling local and sequential dependencies in text. This 
ensures that the evaluation covers different learning 
paradigms. 

• Empirical popularity: All five models are frequently used 
in both academic and applied sentiment analysis tasks. 
They are well-established benchmarks and form the 
backbone of many open-source sentiment analysis 
pipelines and toolkits. 

• Practical relevance: These models exhibit a wide 
spectrum of computational complexity and scalability. 
While deep models offer high accuracy at greater cost, 
classical models like LR and NB are known for their 
efficiency and interpretability—critical in real-time or 
resource-constrained applications. 

Hyperparameters were chosen based on prior literature and 
preliminary experiments to ensure fair comparisons. 

D. Training and Optimization 

Traditional models were trained using 5-fold cross-
validation to reduce sampling bias. Neural models were 
optimized with the Adam optimizer, using a batch size of 64. 
Early stopping was applied when validation accuracy did not 
improve for two consecutive epochs, and the learning rate was 
dynamically adjusted using the ReduceLROnPlateau strategy. 
Dropout rates between 0.5 and 0.6 and L2 penalties were 
employed to prevent overfitting. 

All experiments were conducted on Google Colab Pro, 
which provides a cloud-based environment with access to both 
CPU and GPU resources. Specifically, training was performed 
using an NVIDIA Tesla T4 GPU (16 GB VRAM) with 12 GB 
of RAM. Hardware specifications are reported to contextualize 
training times and to ensure reproducibility of results. 

E. Evaluation Metrics 

The effectiveness of the models was assessed using four 
widely adopted classification metrics: 

• Accuracy: Overall correctness of predictions. 

• Precision: Ratio of correctly predicted positive instances 
to all predicted positives. 
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• Recall: Ratio of correctly predicted positive instances to 
all actual positives. 

• F1-score: Harmonic mean of precision and recall. 

To complement predictive performance, training time (in 
seconds) was systematically recorded as a measure of 
computational efficiency. Unlike prior studies, this work 
introduces a dual evaluation perspective, where accuracy and 
efficiency are analyzed together. 

Additionally, we propose a simple composite indicator, the 
Efficiency Score, defined as: 

Efficiency Score =
Accuracy Training Time 

Training Time (s)
 

This metric highlights the trade-off between predictive 
power and computational cost, allowing for a more practical 
comparison of models. 

 

Fig. 1. Experimental pipeline for sentiment analysis. 

The experimental workflow followed in this study is 
illustrated in Fig. 1. The pipeline provides a high-level overview 
of the process, starting with dataset selection, followed by data 
preprocessing and feature extraction, which transform raw text 
into machine-readable representations. The data is then divided 
into training and testing subsets, enabling the evaluation of 
multiple classifiers. The final stage involves measuring both 
predictive performance and computational efficiency. This 
structured pipeline ensures that results are reproducible and that 
trade-offs between accuracy and efficiency can be 
systematically analyzed. 

IV. RESULTS AND COMPARATIVE ANALYSIS 

The experimental findings are presented in this section, 
combining results on the IMDB and Yelp Polarity datasets. In 
addition to predictive performance, training time was measured 
to highlight the trade-off between accuracy and efficiency, 
which is often overlooked in prior work. 

A. IMDB Results 

The comparative performance of classical and neural models 
on the IMDB dataset is presented in Table II. Logistic 
Regression (LR) and LSTM both achieved the highest accuracy 
(88%), but with vastly different computational requirements: LR 
completed training in only 0.25 seconds, whereas LSTM 

required over 2600 seconds. Random Forest and Naïve Bayes 
achieved slightly lower accuracy (85% and 84%, respectively) 
while remaining more computationally efficient. CNN obtained 
82% accuracy but required more than 750 seconds of training. 

TABLE II PERFORMANCE OF CLASSICAL AND NEURAL MODELS ON 

IMDB DATASET 

Model 
Accu

racy 

Preci

sion 

Re

call 

F1-

scor

e 

Training 

Time (s) 

Efficienc

y Score 

Logistic 

Regression  
 0.88  0.89 

 

0.8

7  

 0.88  0.25 3.52 

Random 

Forest  
 0.85 0.86 

0.8

5 
0.85  10.32 0.0824 

Naïve 

Bayes 
0.84  0.83 

 

0.8

6 

0.84 0.12 7.0 

CNN   0.82 0.83 

 

0.8

0 

 0.81 751.91 0.0011 

LSTM 0.88 0.89 
0.8

5 
0.87 2603.62 0.0003 

These results clearly demonstrate the importance of 
considering computational efficiency alongside predictive 
performance. Although neural networks are often considered 
superior, the findings reveal that Logistic Regression matches 
LSTM in accuracy while being orders of magnitude faster. 
Moreover, Naïve Bayes achieves the highest Efficiency Score, 
making it a compelling option in time-critical environments. 

To better visualize these trade-offs, Fig. 2 combines 
predictive performance metrics (accuracy, precision, recall, and 
F1-score) with training time. The figure highlights the stark 
efficiency advantage of classical models compared to neural 
architectures, especially in large-scale or real-time applications. 

 

Fig. 2. Predictive performance and training time of classical and neural 

models on IMDB dataset. 

B. Results on Yelp Polarity 

To assess cross-domain generalization, Logistic Regression 
(LR) and LSTM were further evaluated on the Yelp Polarity 
dataset. As shown in Table III, LR significantly outperformed 
LSTM in both accuracy and efficiency. LR achieved 91.6% 
accuracy and an F1-score of 0.916 in less than one second, 
whereas LSTM obtained 86.2% accuracy and an F1-score of 
0.839, requiring approximately 179 seconds of training. 
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TABLE III PERFORMANCE COMPARISON OF LOGISTIC REGRESSION AND LSTM ON YELP POLARITY DATASET 

Model Accuracy Precision Recall F1-score Training Time (s) Efficiency Score 

Logistic Regression 0.916 0.916 0.916 0.916 0.95 0.9642 

LSTM 0.862 0.84 0.838 0.839 179.0 0.0048 

 

These findings highlight that LR is not only more efficient 
but also more robust across domains. While LSTM matched LR 
on IMDB, its performance dropped on Yelp, suggesting a 
sensitivity to dataset characteristics. Yelp reviews are often 
shorter and more polarized, making them well-suited to sparse 
TF-IDF representations used by LR. By contrast, LSTM’s 
reliance on sequential dependencies may lead to overfitting on 
domain-specific structures, limiting transferability. 

Fig. 3 provides a visual overview, showing both predictive 
metrics and training time. It illustrates how LR maintains strong 
predictive accuracy with minimal computational cost, while 
LSTM incurs substantially higher training overhead with 
inferior predictive outcomes. 

C. Efficiency Score Analysis 

To provide a more integrated view of the trade-off between 
predictive performance and computational efficiency, an 
Efficiency Score was introduced, defined as the ratio of accuracy 
to training time. This composite metric highlights models that 
achieve strong predictive results at minimal computational cost. 

On the IMDB dataset (Table II), Naïve Bayes recorded the 
highest Efficiency Score (7.0), owing to its extremely fast 
training time combined with reasonable accuracy (84%). 
Logistic Regression followed closely with an Efficiency Score 
of 3.52, striking a strong balance between accuracy and 
efficiency. By contrast, CNN and LSTM achieved near-zero 
scores (0.0011 and 0.0003), indicating that their heavy 
computational requirements outweighed their accuracy levels. 

On the Yelp Polarity dataset (Table III), Logistic Regression 
again dominated with an Efficiency Score of 0.9642, 
significantly outperforming LSTM (0.0048). These results 
confirm that Logistic Regression is not only efficient but also 
robust across datasets, maintaining superior predictive 
performance while requiring only a fraction of the training cost. 

Fig. 4 further illustrates the comparison by plotting Accuracy 
against Training Time on a logarithmic scale. The plot shows 
that classical models cluster in the region of high accuracy and 
low cost, while neural models shift toward high cost with limited 
accuracy benefits. This Pareto-like distribution emphasizes that 
Logistic Regression and Naïve Bayes represent the most 
practical choices under real-world computational constraints. 

 

Fig. 3. Predictive performance and training time of logistic regression and LSTM on Yelp polarity dataset. 
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Fig. 4. Accuracy vs. training time (log scale) for IMDB and Yelp datasets. 

D. Discussion 

The comparative results on IMDB and Yelp demonstrate that 
accuracy alone is insufficient to evaluate sentiment analysis 
models. While LSTM and CNN are theoretically capable of 
capturing sequential dependencies and richer contextual 
patterns, their computational demands make them impractical 
for real-time or large-scale applications. In both datasets, 
Logistic Regression consistently emerged as the most efficient 
and, on Yelp, even more accurate than LSTM. 

Several insights can be drawn from these findings: 

1) Generalization across domains: Logistic Regression 

generalized more effectively than LSTM on Yelp. One possible 

explanation is that TF-IDF features provide robust, domain-

independent representations of word importance, whereas 

LSTM relies heavily on sequential dependencies. This reliance 

may have caused LSTM to overfit to dataset-specific structures 

in IMDB, reducing its transferability to Yelp’s shorter, more 

polarized reviews. 

2) Impact of feature engineering: Classical models 

benefited greatly from TF-IDF vectorization, which captures 

sentiment-bearing terms with high precision. In contrast, neural 

models depended on pre-trained GloVe embeddings, which may 

not fully capture the nuances of Yelp or IMDB reviews without 

extensive fine-tuning. This suggests that effective feature 

engineering can offset, and sometimes surpass, the advantages 

of deep architectures, particularly when resources are limited. 

3) Sensitivity to noise and class imbalance: The robustness 

of Logistic Regression also stems from its relative insensitivity 

to noisy or imbalanced data. Naïve Bayes, though fast, is more 

vulnerable to noisy tokens and strong independence 

assumptions, while Random Forest struggles with high-

dimensional sparse features. Neural networks can mitigate some 

noise through embeddings, but require large, balanced datasets 

to perform optimally. This makes them less reliable in real-

world scenarios where data often contains noise and imbalance. 

From a practical standpoint, these results indicate that 
simpler models such as Logistic Regression remain highly 
competitive in modern sentiment analysis pipelines. They 
provide an optimal balance of accuracy and efficiency, making 
them suitable for applications such as real-time social media 
monitoring, customer feedback analysis, and deployment on 
mobile or embedded devices. Deep neural networks, while 
powerful, should be reserved for contexts where computational 
resources are abundant and domain-specific sequential 
modeling is critical. 

E. Limitations 

While the results of this study highlight the competitiveness 
of classical models in sentiment analysis, several limitations 
must be acknowledged: 

1) Restricted dataset scope: Only two benchmark datasets 

(IMDB and Yelp Polarity) were used. Although these are widely 

adopted, they may not fully represent real-world scenarios such 

as noisy, informal, or multilingual data (e.g. Twitter or cross-

lingual reviews). 

2) Limited model coverage: The comparison focused on 

classical machine learning algorithms (Logistic Regression, 

Naïve Bayes, Random Forest) and selected deep learning 

architectures (CNN, LSTM). More recent Transformer-based 

architectures, such as BERT, DistilBERT, or ALBERT, were 

not included, even though they represent the state of the art in 

sentiment analysis. 

3) Evaluation metrics: Computational efficiency was 

evaluated primarily in terms of training time. Other important 

factors, such as inference latency, memory footprint, and energy 

consumption were not measured. These aspects are increasingly 

relevant for real-time and sustainable AI applications. 

4) Pre-trained embeddings: Neural models were initialized 

with GloVe embeddings, which may not capture domain-

specific nuances without further fine-tuning. Alternative 

embeddings (e.g. contextual embeddings from Transformers) 

could yield different outcomes. 

These limitations do not undermine the validity of the 
findings but indicate that the study represents a controlled 
benchmark rather than an exhaustive evaluation. Addressing 
them in future work would broaden the applicability of the 
results and further strengthen the conclusions.  

V. CONCLUSION AND FUTURE WORK 

A. Conclusion 

This study presented a comparative evaluation of classical 
machine learning algorithms and deep learning architectures for 
sentiment analysis, with a dual emphasis on predictive 
performance and computational efficiency. On the IMDB 
dataset, Logistic Regression (LR) and LSTM achieved similar 
accuracy (88%), but with drastically different computational 
costs: LR required only 0.25 seconds, whereas LSTM exceeded 
2600 seconds. To assess generalizability, additional experiments 
were conducted on the Yelp Polarity dataset, where Logistic 
Regression not only maintained but improved its performance 
(91.6% accuracy, F1 = 0.916), clearly outperforming LSTM 
while remaining more than 300 times faster. 
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These findings underscore a fundamental trade-off in 
sentiment analysis: classical models, particularly Logistic 
Regression, remain highly competitive because they combine 
strong accuracy with exceptional efficiency, making them 
suitable for real-time and resource-constrained applications. In 
contrast, deep learning models such as LSTM provide richer 
contextual modeling but at prohibitive computational costs, 
limiting their practicality in large-scale or rapid-deployment 
settings. CNNs, while capable of capturing local dependencies, 
proved less effective overall, reinforcing the view that 
convolution alone is insufficient for modeling long textual 
sequences. 

Beyond reaffirming the relevance of classical approaches, 
this study contributes a dual evaluation framework that 
integrates efficiency alongside accuracy, addressing a gap in the 
literature where predictive metrics alone have typically 
dominated. By introducing the Efficiency Score as a composite 
indicator, the work provides practitioners with a practical 
guideline for selecting sentiment analysis models that balance 
predictive power against computational feasibility. 

B. Future Work 

Future research will extend this analysis along several 
directions. First, the evaluation will be broadened by 
incorporating a wider range of datasets beyond IMDB and Yelp, 
including noisy and short-text corpora such as Twitter streams, 
as well as multilingual collections (e.g. Arabic and French 
reviews). This will allow for a more rigorous assessment of 
model robustness across diverse and challenging real-world 
contexts. 

Second, Transformer-based architectures such as BERT, 
RoBERTa, and lightweight variants like DistilBERT and 
ALBERT will be included in future benchmarks. Comparing 
these models with both classical and recurrent approaches will 
provide valuable insights into whether their superior contextual 
modeling justifies the significant computational overhead, 
especially in scenarios where efficiency is a critical requirement. 

Third, future studies will adopt a broader view of 
computational efficiency. While this study measured efficiency 
primarily in terms of training time, other dimensions such as 
inference latency, memory consumption, and energy usage are 
increasingly important in practice. Incorporating these factors 
will contribute to a more holistic evaluation framework and 
align sentiment analysis research with the growing field of 
sustainable AI. 

Finally, lightweight optimization techniques such as model 
pruning, quantization, and knowledge distillation will be 
explored to reduce the resource requirements of deep learning 
architectures without substantially sacrificing accuracy. These 
methods could enable the development of hybrid frameworks 
that combine the interpretability and efficiency of classical 
models with the representational power of neural networks, thus 
bridging the gap between theoretical performance and practical 
deployment. 
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