
(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 9, 2025 

687 | P a g e  
www.ijacsa.thesai.org 

Enhanced Crow Search Algorithm with Cooperative 

Island Strategy for Energy-Aware Routing in 

Wireless Sensor Networks 

Xiangqian LI1, Xuemei ZHOU2* 

School of Mechatronic Engineering, Zhoukou Vocational and Technical College, Zhoukou City, Henan Province, 466000, China 1 

School of Computer, Zhoukou Vocational and Technical College, Zhoukou City, Henan Province , 466000, China2 

 

 
Abstract—Energy efficiency is a fundamental problem 

experienced by Wireless Sensor Networks (WSNs), as limited 

battery power affects network lifespan and reliability. This paper 

develops a novel energy-efficient routing protocol based on an 

Enhanced Crow Search Algorithm (ECSA) optimization approach 

to optimize cluster head selection. The proposed ECSA combines 

a cooperative island model and an adaptive tournament selection 

procedure to overcome traditional Crow Search Algorithm (CSA) 

disadvantages caused by low population diversity, a slow 

convergence rate, and undesirable exploration-exploitation 

tradeoffs. A multi-objective fitness function is constructed by 

analyzing residual energy and remaining battery life, distance to 

the base station, packet delivery rate, throughput, and path loss to 

achieve overall network design optimality. Sensor nodes are 

organized optimally to reduce power consumption and prolong the 

system's lifespan. The experimental results demonstrate that, for 

a network of 100 nodes, the proposed ECSA-based routing 

protocol significantly outperforms recent metaheuristic 

approaches. Specifically, ECSA achieved 22% lower optimization 

cost than CSA, 28.2% than Black Widow Optimization (BWO), 

26.3% than Grey Wolf Optimizer (GWO), and 30% than Whale 

Optimization Algorithm (WOA). It further attained 4.8–10.8% 

higher throughput, 24.4–40.3% lower path loss, 4.5–13.7% higher 

packet delivery ratio, and 40.1–109.1% more alive nodes 

compared to these benchmarks. These results confirm that ECSA 

provides superior energy efficiency, reliability, and robustness for 

large-scale WSN deployments. 
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I. INTRODUCTION 

Wireless Sensor Networks (WSNs) encompass various 
applications, including environmental monitoring, smart 
farming, military surveillance systems, and industrial process 
automation [1]. WSN consists of geographically dispersed 
sensor nodes cooperating to sense, process, and transfer data to 
a Base Station (BS) [2]. Although WSNs offer excellent benefits 
and are flexible, energy efficiency is a core issue [3]. Sensor 
nodes are mostly battery-operated and installed unexpectedly; 
replacing batteries is almost impossible. Consequently, energy 
conservation becomes crucial to enhancing network lifespan and 
ensuring system performance consistency [4]. Direct 
communication between sensor nodes and the BS leads to high 
power consumption, a reduced coverage area, and unnecessary 
node draining [5]. Thus, energy-efficient communication 
protocols are required to optimize resource exploitation, 

enhance data transferability, and ensure the long-term 
functionality of WSNs in real environments [6]. 

Clustering methods have been used extensively in WSNs to 
address energy constraints [7]. In cluster-based routing, sensor 
nodes are organized into groups resembling clusters led by a 
Cluster Head (CH). CHs collect data from member nodes and 
send it to the BS in compressed form [8]. Hierarchical 
communication reduces transmission distances between normal 
nodes and significantly decreases energy consumption across 
the network [9]. Effective CH optimizes intra-cluster distance, 
reduces energy usage, and increases network lifetime. 
Imbalanced CH distribution or overloaded CHs result in 
network partitioning and low performance [10]. Therefore, 
intelligent and dynamic CH designation schemes are vital to 
achieve energy balancing, increase scalability, and maintain 
fault tolerance in WSN deployments. 

Many metaheuristic methods have been proposed to solve 
CH selection problems, such as Genetic Algorithm (GA) [11, 
12], Particle Swarm Optimization (PSO) [13, 14], and Ant 
Colony Optimization (ACO) [15]. These methods yield better 
results than conventional static methods. Nonetheless, they 
suffer from several shortcomings. One of the main challenges is 
premature convergence, when the algorithm converges to a local 
optimum and fails to capture the global optimum space 
correctly. Some approaches lack a proper exploration-
exploitation balance and yield efficient searches and unstable 
solutions under dynamic conditions [16]. Some methods depend 
on initialization parameters and perform differently across 
network topologies and node densities. Hence, it is desirable to 
have a more robust optimization methodology that sustains 
diversity, prevents stagnation, and provides consistent CH 
selection in WSN scenarios. 

The Crow Search Algorithm (CSA) is a metaheuristic 
algorithm inspired by crows' intelligent behavior in hiding and 
retrieving food. It has simplicity and robust exploration ability 
but is restricted by low search precision and early convergence. 
To resolve these drawbacks, the Enhanced Crow Search 
Algorithm (ECSA) combines a cooperative island model, 
adaptive tournament selection, and a transformed movement 
operator. These features maintain population diversity, increase 
the convergence rate, and achieve a better exploration-
exploitation tradeoff. 

The cooperative island model allows parallel subpopulations 
to develop autonomously by preventing them from being 
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influenced by local optima. The adaptive tournament selection 
facilitates controlled convergence towards optimal solutions. 
Using ECSA for CH selection, the protocol provided 
substantially improved energy efficiency, improved network 
lifetime, and guaranteed data delivery reliability for WSNs. The 
proposed research contributes to: 

• We present the first ECSA-based cooperative model of 
islands with an adaptive tournament selection for the 
election of CHs of WSNs that address issues of 
premature convergence and limited population diversity 
of metaheuristic-based routing. 

• We advance the literature by offering a generalizable 
framework that integrates hierarchical clustering 
protocols with swarm intelligence that may be used with 
other optimization-based network designs. 

• We present an end-to-end multi-metric analysis 
(optimization cost, throughput, path loss, packet delivery 
ratio, and node survival) across varying network 
densities while emphasizing the strength and scalability 
of ECSA over other algorithms. 

• Since we provide practical deployment considerations of 
sustaining network lifetime and reliability at large scales, 
we bridge the gap between algorithm construction and 
realistic WSN limitations. 

The rest of the paper is structured as follows: Section II 
presents a review of related work; Section III formulates the 
problem; Section IV presents the proposed ECSA-based 
protocol; Section V details the experimental setup and discusses 
the obtained results; Section VI provides a detailed discussion 
of the findings and Section VII concludes the paper and outlines 
directions for future work. 

II. RELATED WORK 

Nabavi, et al. [17] suggested a combined clustering and 
routing protocol in WSN using GA and Gravitational Search 
Algorithm (GSA). The genetic algorithm optimizes intra-cluster 
distance and energy consumption in selecting CHs, and the 
gravitational search algorithm supports efficient routing from 
CH to the sink. The method reduces average energy 
consumption and enhances delivery rate and transmission 
efficiency, substantially improving network longevity. 

Kathiroli and Selvadurai [18] suggested a hybrid Sparrow 
Search Algorithm and Differential Evolution (SSA-DE) model 
for CH selection. SSA provides high exploration efficiency, 
while DE improves convergence. Using an intelligent energy 
distribution mechanism to prolong network operation and 
ensure balanced energy usage among sensor nodes, the hybrid 
approach enhances node lifetime, residual energy, and 
throughput. 

Janakiraman [19] proposed the IBEABCCR scheme, 
integrating Improved Bat Optimization (IBOA) and Enhanced 
Artificial Bee Colony (EABC) algorithms. IBOA conducts CH 

selection with balanced exploration and exploitation, and EABC 
facilitates dynamic sink mobility. Their combined strategy, 
implemented in MATLAB, considerably increases packet 
delivery, network life, and node survival with more than 25% 
improvements on several parameters concerning baseline 
protocols. 

The LCPSO-CRP protocol was proposed by Luo, et al. [20] 
employing chaotic Levy-based Particle Swarm Optimization. 
The proposed method enhances the convergence speed and the 
search space exploration to include industrial WSNs. The 
technique considers CH energy consumption, BS distance, and 
intra-cluster proximity. It reduces energy consumption by 
22.91% and increases the network lifetime by 13.93% compared 
to traditional schemes such as LEACH and DEEC. 

Srivastava and Mishra [21] presented an Innovative 
Dragonfly Algorithm (IDA) with multi-attribute decision-
making for CH selection. The algorithm ranks the nodes based 
on energy and other parameters to select optimal CHs. 
Compared to NBA, FLPSOC, and ESO-LEACH, IDA 
demonstrates better throughput, less energy consumption, and 
better node life, verifying its efficacy in energy-aware 
clustering. 

Alsuwat and Alsuwat [22] proposed IQ-ABC as an 
optimized Artificial Bee Colony algorithm integrated with Q-
learning to select adaptive CH in WSNs. The technique adopts 
a fuzzy-weighted multi-objective fitness function accounting for 
energy consumption, latency, and trust. Simulations indicate 
that IQ-ABC consumes much less energy than LEACH, HEED, 
and ACO in high-density or centralized node deployments. 

Poonguzhali, et al. [23] proposed a metaheuristic and deep 
learning-based technique called THDCNN-HCWA, combining 
the multi-objective CH selection using the Tree Hierarchical 
Deep CNN and a Hybrid Capuchin-Woodpecker mating 
algorithm to route data. The method improves alive nodes and 
detection rates by optimally improving energy, delay, cluster 
density, and traffic flow under NS2 models. 

While prior literature has proposed novel hybrid algorithms 
to solve CH selection and energy-aware routing problems, 
certain drawbacks still exist. As summarized in Table I, most 
methods cannot achieve an appropriate tradeoff between 
exploration and exploitation, converge prematurely, or perform 
inefficient searches in sophisticated environments. Furthermore, 
Q-learning and CNN-based routing yield better decisions but 
involve high computation overheads. 

Most algorithms rely on static scenarios or a single set of 
parameters, ignoring scalability, convergence rate, diversity, or 
robustness to changes in network densities. The current research 
addresses these shortcomings by suggesting a new protocol 
employing ECSA with cooperative island modeling and 
adaptive tournament selection to diversify the population, 
increase the convergence rate, and holistically optimize multi-
objective energy parameters. 
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TABLE I.  COMPARATIVE SUMMARY OF RELATED WORKS 

Study Contribution Improvements Shortcomings 

[17] 
Introduced multi-objective clustering and routing using 

GA for CH selection and GSA for routing 

Energy efficiency, delivery rate, 

and transmission rate 

Lacks adaptive mechanisms for dynamic topologies; 

may suffer from convergence delays 

[18] 
Proposed a hybrid SSA-DE approach for energy-

efficient CH selection 

Residual energy, throughput, and 

node lifetime 

Limited diversity preservation; sensitive to 

parameter tuning 

[19] 
Developed a dual optimization approach for CH 

selection and sink mobility 

Network lifetime, packet delivery, 

and alive nodes 

High computational complexity; assumes static sink 

mobility pattern 

[20] Designed a chaotic Levy-enhanced PSO protocol 
Energy consumption and network 

Lifetime 

Tailored to industrial settings; less effective in  

generic WSN deployments 

[21] 
Used multi-attribute decision-making with dragonfly 

algorithm for optimal CH selection 

Energy consumption, throughput, 

and node survival 

Limited scalability analysis; lacks routing 

optimization component 

[22] 
Applied Q-learning to ABC for intelligent CH selection  

with fuzzy-weighted fitness 

Energy usage, network lifetime, 

and trust-based routing 

Increased complexity; performance sensitive to 

fuzzy rule definition 

[23] 
Integrated deep learning with hybrid metaheuristics for 

CH selection and routing 
Node survival and detection rate 

High computational overhead; less suitable for 

resource-constrained WSNs 
 

III. PROBLEM FORMULATION 

A. Network Architecture 

From an Internet of Things (IoT) perspective, WSNs are 
self-organizing multi-hop networks with spatially dispersed 
sensor nodes. Sensor nodes independently track environmental 
parameters and cooperatively transfer collected data to the BS. 
WSNs integrate embedded computing, distributed information 
processing, and wireless communication paradigms to support 
various applications like environmental monitoring, industrial 
automation, healthcare, and military surveillance. 

Every node in the network serves two functions: sensing the 
environment and forwarding data to other nodes. Each node is 
typically driven by non-rechargeable batteries and deployed in 
remote or inaccessible locations; this makes energy efficiency 
crucial. Low communication overhead is essential since data 
transmission is much more energy-consuming than sensing and 
data reception. A common technique is clustering, during which 
sensor nodes are grouped, and a CH is chosen to collect and 
transfer data to minimize redundant communication and extend 
network life. 

Let the number of sensor nodes in the network be denoted as 
𝑁, randomly and uniformly distributed within a field of size 𝐿 × 
𝐿. The BS is assumed to be placed at a fixed location, often at 
the center or outside the sensing field. Nodes can communicate 
via single-hop or multi-hop links, depending on their distance 
from the CH or BS. 

All nodes are homogeneous hardware-wise, with the same 
storage, computation power, and initial energy. Every node is 
assigned a distinct identifier and calculates its local location 
using localization methods. Nodes are also classified as CHs or 
regular sensor nodes, with CHs handling inter-cluster 
communication and data transfer to the BS. Sensor nodes know 
their intrinsic residual energy and compute the distance between 
neighboring devices. Nodes can dynamically modify 
transmission power using available information to save energy. 
The BS has superior computing power and is the ultimate data 
sink. 

The network data traffic is generally partitioned into three 
layers: intra-cluster data communication, inter-cluster data 
communication, and BS communication. Sensor nodes send 
data to the corresponding CHs. CHs pass data directly to other 

CHs or the BS if it is in the range. Aggregated data is sent to the 
BS by CHs via optimized energy-efficient paths. 

Communication channels are bidirectional, and nodes can 
adapt their transmission power depending on the distance to the 
recipient. Each CH periodically aggregates data from its 
member nodes and sends it to the BS. The communication model 
further assumes that all the nodes encounter bursts of data 
transmission intermittently, as per the sensing rate and events 
happening in the surrounding area. 

Fig. 1 shows the overall topology of a clustered WSN. 
Sensor nodes are divided into groups (clusters), each with a 
single CH. All local (intra-cluster) and long-distance (inter-
cluster or BS) communication is done by the CHs. The BS is a 
central communication center receiving data from several CHs. 

 
Fig. 1. Network topology of a clustered WSN. 

B. Energy Consumption Model 

Efficient energy utilization is critical in WSNs, where sensor 
nodes (motes) are constrained by limited, often non-
rechargeable, energy sources. The energy model aims to 
characterize energy drainage during sensing, data processing, 
forwarding, and communication tasks. Transmission consumes 
the most energy compared to sensing or reception, making 
routing strategies central to prolonging network lifetime. To 
model energy usage, we consider the energy required to transmit 
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𝑏 bits of data over a distance 𝑑 using a hybrid transmission 
model, denoted by Eq. (1). 

Efficient energy use is crucial in WSNs, where sensor nodes 
(motes) are constrained by small, non-rechargeable energy 
sources. The energy model attempts to model energy drain from 
sensing, data processing at sensor nodes, data forwarding, and 
communications. Transmission consumes the most energy 
compared to sensing or reception, making routing strategies the 
foremost way to prolong the network lifetime. In modeling 
energy use, we focus on the energy expended by transmitting b 
bits of data over a distance d, using a hybrid transmission model 
represented by Eq. (1). 

𝐸𝑇𝑋(𝑏,𝑑) = {
𝑏. 𝐸𝑒𝑙𝑒𝑐 + 𝑏. 𝜖𝑓𝑠 . 𝑑

2 ,     𝑖𝑓 𝑑 ≤ 𝑑0

𝑏. 𝐸𝑒𝑙𝑒𝑐 + 𝑏. 𝜖𝑚𝑝 . 𝑑4 ,   𝑖𝑓 𝑑 > 𝑑0

 (1) 

The threshold distance 𝑑0 used to switch between free-space 
and multi-path fading models is calculated using Eq. (2). 

𝑑0 = √
𝜖𝑓𝑠

𝜖𝑚𝑝
                                   (2) 

where, 𝐸𝑒𝑙𝑒𝑐  stands for energy consumed per bit for 
processing, 𝜖𝑓𝑠 denotes amplification energy for the free-space 

model, and 𝜖𝑚𝑝 refers to amplification energy for the multi-path 

model. 

The energy required for receiving 𝑏 bits of data is computed 
according to Eq. (3). 

𝐸𝑅𝑋(𝑏) = 𝑏. 𝐸𝑒𝑙𝑒𝑐  (3) 

In cluster-based networks, CHs further aggregate the 
received data. The energy consumed during aggregation is 
calculated as shown in Eq. (4). 

𝐸𝐴𝐺𝐺 (𝑏) = (𝐸𝑒𝑙𝑒𝑐 + 𝐸𝐷𝐴 ). 𝑏 (4) 

where, 𝐸𝐷𝐴 is the energy cost for data aggregation per bit. 

WSN operations are executed in discrete rounds. The 
remaining energy of a sensor node 𝑠 in round 𝑟 is calculated 
according to Eq. (5). 

𝑅𝐸𝑠(𝑟) = 𝑅𝐸𝑠(𝑟 − 1) − (𝐸𝑇𝑋
𝑠 (𝑟) + 𝐸𝑅𝑋

𝑠 (𝑟)) (5) 

The energy for transmission and reception per round is 
determined by Eq. (6) and Eq. (7), respectively. 

𝐸𝑇𝑋
𝑠 (𝑟) = 𝑇𝑠(𝑟). [𝐸𝑒𝑙𝑒𝑐 + 𝜖𝑓𝑠 . 𝑑

2] (6) 

𝐸𝑅𝑋
𝑠 (𝑟) = 𝑅𝑠(𝑟).𝐸𝑒𝑙𝑒𝑐  (7) 

where, 𝑇𝑠(𝑟)  and 𝑅𝑠(𝑟)  denote the number of bits 
transmitted and received by node 𝑠 in round 𝑟. 

The overall data traffic load for a sensor node is composed 
of two components: 𝑇𝑟𝑒𝑙𝑎𝑦

𝑠 (𝑟), representing relayed data, and 

𝑇𝑙𝑜𝑐𝑎𝑙
𝑠 (𝑟), representing locally generated data. The total number 

of bits transmitted by node 𝑠 in round 𝑟 is given by Eq. (8). 

𝑇𝑠(𝑟) = 𝑇𝑟𝑒𝑙𝑎𝑦
𝑠 (𝑟) + 𝑇𝑙𝑜𝑐𝑎𝑙

𝑠 (𝑟) (8) 

This total is used in Eq. (6) to evaluate transmission energy 
consumption. 

For CHs, an additional energy term is incurred due to data 
fusion before transmission. The energy for fusing 𝑏 bits of data 
is calculated using Eq. (9). 

𝐸𝐶𝐻(𝑏) = 𝐸𝐹𝐷 . 𝑏 (9) 

where, 𝐸𝐹𝐷 is the data fusion energy per bit. 

IV. PROPOSED METHODOLOGY 

The design of efficient routing protocols in WSNs is a 
challenging problem due to network operation requirements. 
These constraints are low computing power, low energy 
budgets, dynamic topology, node failure susceptibility, and 
exposure to harsh or unreliable environments. Consequently, 
conventional routing methods, like short path routing, are hardly 
sufficient for energy-restricted WSNs. 

Reliability and energy-aware data transfer between the BS 
and sensor nodes are among the most critical goals of WSN 
routing. As energy consumption is the main WSN operation 
bottleneck, it is imperative to minimize overhead transmissions, 
even at the expense of traditional cost-based routes. Excessive 
neighbor communication, common to most routing schemes, 
increases energy consumption and adds complexity to 
neighborhood discovery. 

In addition, node failures, commonly due to energy 
depletion, result in topology instability, broken networks, and 
high fault rates. Non-deterministic route paths, changing link 
availability, and dynamic participation of nodes complicate 
network performance management. These dynamics necessitate 
routes with adaptive capabilities to respond to environmental 
uncertainties and maintain low energy consumption and high 
resilience. 

WSN routing protocols are traditionally classified by 
network structure (flat, hierarchical, location-based), but 
whatever their structure, the protocols have to deal with 
fundamental issues like Quality of Service (QoS), scalability, 
delay, power efficiency, connectivity, and fault tolerance. 
Network topology inconsistency caused by the addition or 
removal of motes or transient link failures makes path selection 
even more difficult. Thus, the routing technique has to account 
for a broad range of parameters like power management, MAC 
protocols, traffic load, and channel allocation to develop 
implementable solutions. 

With these theoretical and interdependent variables in mind, 
heuristic and metaheuristic algorithms have been explored as 
potential methods for designing a WSN routing protocol. This 
study introduces an energy-efficient framework developed on a 
multi-objective problem optimized by the ECSA. The 
framework is focused on optimal CH selection and energy-
efficient data routing to achieve maximum network lifespan 
while fulfilling performance requirements. 

Our proposed scheme uses a layered clustering paradigm. 
CHs collect intra-cluster data and transfer it to the BS by energy-
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efficient multi-hop routes. Our ECSA dynamically selects CHs 
using residual energy, node centrality, and communication 
distance parameters. The approach optimizes competing 
objectives like energy consumption and throughput 
maximization, thus constructing a resilient and dynamic routing 
protocol designed to work in WSN scenarios. 

A. Basic Crow Search Algorithm 

CSA, proposed by Askarzadeh [24], is a population-based 
metaheuristic inspired by the natural foraging and memory 
behavior of crows. These intelligent birds can follow others to 
steal hidden food while relocating their food caches if they sense 
being watched. This dual behavior of tracking and evasion is 
simulated within CSA to navigate the search space intelligently. 

In CSA, each solution is represented as a virtual crow, and a 
population of 𝑁 such crows explores the search space. Each 
crow 𝑖 is characterized by a position vector in a 𝐷-dimensional 
space, denoted by Eq. (10). 

𝑥𝑖
𝑡 = [𝑥𝑖,1

𝑡 ,𝑥𝑖,2
𝑡 ,… , 𝑥𝑖,𝐷

𝑡 ] (10) 

Each crow's initial position also serves as its memory since 
it has no experience. The memory vector of crow 𝑖 at iteration 𝑡 
is expressed as shown in Eq. (11). 

𝑚𝑖
𝑡 = [𝑚𝑖,1

𝑡 ,𝑚𝑖 ,2
𝑡 ,… , 𝑚𝑖 ,𝐷

𝑡 ] (11) 

The crows update their positions by attempting to follow a 
randomly selected peer. If the selected crow is unaware of being 
followed, the follower moves toward the peer's memory. 
Otherwise, it jumps to a random position. This movement rule 
is calculated according to Eq. (12). 

𝑥𝑖
𝑡+1

= {
𝑥𝑖

𝑡 + 𝑟1 . 𝐹𝐿. (𝑚𝑗
𝑡 − 𝑥𝑖

𝑡), 𝑖𝑓 𝑟2 ≥ 𝐴𝑃

𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛       , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

(12) 

where, 𝑟1 and 𝑟2  are random values uniformly distributed in 
[0, 1], 𝐹𝐿 is the flight length, 𝑚𝑗

𝑡 is the memory of randomly 

selected crow 𝑗, and 𝐴𝑃 is the awareness probability governing 
evasive behavior. The schematic of this condition and the impact 
of flight length on searchability are shown in Fig. 2. 

 
Fig. 2. Illustration of the pursuit mechanism in CSA. 

After arriving at new positions, the memory of each crow is 
updated based on the quality of the new solution. If the new 
position offers better fitness than the previous memory, it 
replaces the old one. This memory update mechanism is 
governed by Eq. (13). 

𝑚𝑖
𝑡+1 = {

𝑥𝑖
𝑡+1 , 𝑖𝑓 𝑓(𝑥𝑖

𝑡+1) < 𝑓(𝑚𝑖
𝑡)

𝑚𝑖
𝑡 ,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   

 (13) 

where, 𝑓(. ) indicates the objective (fitness) function. 

B. Enhanced Crow Search Algorithm 

While the original CSA has high exploration capabilities, it 
has drawbacks like local optima stagnation, lack of diversity, 
and early-stage convergence. These problems are caused 
primarily by fixed parameters like Awareness Probability (AP) 
and Flight Length (FL), using random guidance, and not 
prioritizing the optimal use of population memory. To overcome 
all these drawbacks, ECSA incorporates a range of strategies, 
such as adaptive selection through a tournament and a modified 
evasion scheme using a random component. 

In the basic CSA, each crow 𝑖 selects another crow 𝑗 at 
random to follow toward its memorized position, which could 
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lead to following poorly performing solutions. To improve this, 
the ECSA framework replaces random selection with a fitness-
guided adaptive tournament mechanism. At each iteration 𝑡, a 
crow selects the best guide from a randomly chosen subset of 𝐾 
crows. 

To ensure a balanced tradeoff between exploration and 
exploitation, the value of 𝐾 is varied linearly throughout the 
optimization process. It is computed using a self-adaptive 
formula denoted by Eq. (14). 

𝐾 = 𝑟𝑜𝑢𝑛𝑑 (𝐾𝑚𝑖𝑛 + 𝑡. (
𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛

𝑡𝑚𝑎𝑥

)) (14) 

Where 𝐾𝑚𝑖𝑛  and 𝐾𝑚𝑎𝑥  are the minimum and maximum 
tournament sizes, 𝑡 is the current iteration, and 𝑡𝑚𝑎𝑥 is the total 
number of iterations. This allows the algorithm to perform more 
exploratory behavior in the early stages (small 𝐾) and intensify 
the search later (large 𝐾). 

To further combat stagnation, ECSA introduces an evasion 
operator derived from the Harris Hawks Optimization (HHO) 
method, which improves population diversity when the 
awareness probability condition is triggered. The new position 
of crow 𝑖 in this phase is calculated according to Eq. (15). 

𝑋𝑖,𝑡+1 = (𝑋best,𝑡 − 𝑋avg,𝑡) − 𝑟1

⋅ (𝐿𝐵 + 𝑟2 ⋅ (𝑈𝐵 − 𝐿𝐵)) 

(15) 

where, 𝑋best,𝑡 is the best-known solution at iteration 𝑡, 𝑋avg,𝑡 

is the mean position of all individuals in the current generation, 
𝐿𝐵 and 𝑈𝐵 are the lower and upper bounds of the search space, 
and 𝑟1 , 𝑟2 ∈ [0,1]  are uniformly distributed random numbers. 
The mean position is calculated as shown in Eq. (16). 

𝑋avg,𝑡 =
1

𝑁
∑ 𝑋𝑖,𝑡

𝑁

𝑖=1

 (16) 

This strategy ensures that evasion is not purely random but 
guided by the global and average population dynamics. 

ECSA begins by initializing 𝑁 crows in a 𝐷-dimensional 
search space. Each crow's initial position is generated using a 

uniformly distributed random vector within bounds 𝑋𝐿
⃗⃗⃗⃗  and 𝑋𝑈

⃗⃗⃗⃗  ⃗, 
as denoted by Eq. (17). 

𝑋𝑗
⃗⃗  ⃗ = 𝑋𝐿

⃗⃗⃗⃗  + 𝑟 ⋅ (𝑋𝑈
⃗⃗⃗⃗  ⃗ − 𝑋𝐿

⃗⃗⃗⃗  ) (17) 

To further enhance search efficiency and diversity 
preservation, ECSA incorporates an island model. The 
population is partitioned into 𝑠 subgroups (islands), each 
running its local version of the ECSA. These islands evolve 
independently but periodically share information through a 
migration process governed by migration frequency 𝑀𝑓 , 

migration rate 𝑀𝑟, topology (e.g. random ring), and policy (e.g. 
best–worst exchange) parameters. Each migration phase is 
triggered every  𝑀𝑓  iterations, allowing selected individuals 

from one island to be exchanged with neighboring islands to 
prevent premature convergence. The pseudocode and flowchart 
of the proposed ECSA are presented in Algorithm 1 and Fig. 3, 
respectively. 

Algorithm 1 Pseudocode of ECSA 

Inputs: 

Problem-specific settings: number of agents 𝑁, dimensionality 
𝑑, upper bound 𝑡𝑚𝑎𝑥 

Adaptive parameters: minimum and maximum tournament size 
(𝐾𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥), flight length 𝐹𝐿, and awareness probability 𝐴𝑃 

Outputs: 

Best solution vector 𝑋𝑏𝑒𝑠𝑡 and its corresponding fitness score 

Initialize all crows' positions 𝑋𝑖  randomly across the solution 
space, for 𝑖 = 1 𝑡𝑜 𝑁 

Assign each crow’s initial memory 𝑀𝑖 = 𝑋𝑖   

Evaluate the fitness value of each crow using the objective 
function 𝑓(∙) 

Determine the initial global best solution 𝑋𝑏𝑒𝑠𝑡  

Repeat for iteration 𝑡 = 1 𝑡𝑜 𝑡𝑚𝑎𝑥: 

Adjust tournament size 𝐾 dynamically based on Eq. 14 

Compute the population’s average position using Eq. 16  

For each crow 𝑖 ∈ {1, . . . ,𝑁}: 

Select a candidate crow 𝑗 to follow via tournament selection 

Generate a random number 𝑟𝑗 ∈ [0,1] 

If 𝑟𝑗 ≥ 𝐴𝑃 : 

Update crow 𝑖’s position using the pursuit rule (Eq. 12) 

Else: 

Update crow 𝑖’s position using guided evasion (Eq. 15) 

Check feasibility of the new position 

Evaluate the updated positions 𝑋𝑖
𝑡+1 and compute their fitness 

If 𝑓(𝑋𝑖
𝑡+1 ) < 𝑓(𝑀𝑖), then update the memory 𝑀𝑖 = 𝑋𝑖

𝑡+1 

Update 𝑋𝑏𝑒𝑠𝑡 if any crow achieves a superior fitness 

Until stopping criteria (𝑡 = 𝑡𝑚𝑎𝑥) is met 

Return the best-obtained solution 𝑋𝑏𝑒𝑠𝑡 
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Fig. 3. Flowchart of CSA. 

V. RESULTS 

A comprehensive simulation in MATLAB 2020a was 
performed to assess the effectiveness of the proposed ECSA for 
energy-saving routing within WSNs. Performance was 
measured using a range of vital metrics, including convergence 
behavior, path loss, PDR, throughput, and energy usage. For 
extensive investigation, ECSA was compared with four 
metaheuristic algorithms: CSA, Grey Wolf Optimizer (GWO) 
[25], Black Widow Optimization (BWO) [26], and Whale 
Optimization Algorithm (WOA) [27]. These algorithms were 
chosen because of their suitability for WSN routing and 
clustering purposes. Simulations were performed on three 
distinct network configurations with varying sensor nodes 
deployed: Experiment 1 with 50 nodes, Experiment 2 with 100 
nodes, and Experiment 3 with 150 nodes. Table II lists 
simulation parameters. 

As illustrated in Fig. 4, ECSA consistently achieves a high 
convergence score across all node arrangement scenarios. In 
particular, in Scenario 1, ECSA surpasses the comparative 
methods by 55.2%, 51.4%, 48.4%, and 41.3%. This indicates the 
algorithm's stability in reaching optimal or near-optimal 
solutions rapidly. The increased convergence comes from 
ECSA’s adaptive exploration-exploitation tradeoff to avoid 
premature convergence inherent in conventional methods. 

TABLE II.  SIMULATION SETUP PARAMETERS APPLIED IN EVALUATING 

THE PROPOSED ROUTING FRAMEWORK FOR WSN 

Parameter Configured value 

Maximum simulation rounds 2000 

Initial node energy 0.3 J 

Energy dissipation for signal transmission 50 × 10−9𝐽 

Energy dissipation for signal reception 50 × 10−9𝐽 

Power amplifier (free-space model) 10 × 10−12𝐽 

Power amplifier (multi-path model) 0.0013 × 10−12𝐽 

Energy cost for data aggregation 5 × 10−9𝐽 

Energy consumption in idle state 0.05 W 

Node displacement rate 0.05 meters/min 

Channel model Physical/wireless physical 

Communication radius 40 meters 

Underlying routing baseline LEACH protocol 

Simulation area size 100 𝑚 × 100 𝑚 

Sensor node counts across scenarios 50, 100, 150 

Control message size 80 bits 

Data packet size 512 bytes 

Cluster head election likelihood 0.1% 

Optimization iterations per run 10 

Sub-populations for the metaheuristic 

algorithm 
10 
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(a)      (b) 

 
(c) 

Fig. 4. Cost function convergence of algorithms across three WSN scenarios: (a) 50 sensor nodes, (b) 100 sensor nodes, (c) 150 sensor nodes. 

 
(a)      (b) 

 
(c) 

Fig. 5. Throughput performance of algorithms across different rounds for (a) 50 nodes, (b) 100 nodes, and (c) 150 nodes.  
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(a)      (b) 

 
(c) 

Fig. 6. Path loss performance of algorithms across different rounds for (a) 50 nodes, (b) 100 nodes, and (c) 150 nodes . 

 
(a)      (b) 

 
(c) 

Fig. 7. Packet delivery ratio performance of algorithms across different rounds for (a) 50 nodes, (b) 100 nodes, and (c) 150 nodes.  
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The performance of ECSA in improving network throughput 
was confirmed by evaluating the volume of data delivered 
successfully against time. Fig. 5 shows that ECSA outpaces 
heuristic algorithms consistently by achieving superior 
throughput in all cases. Better throughput is the direct 
consequence of smart CH election, less path loss, and energy-
aware transmission scheduling. This proves ECSA’s ability to 
sustain data-intensive WSN applications with improved 
transmission efficiency. 

The path loss was compared under three node-density 
configurations as a representative factor of signal quality and 
energy consumption. As shown in Fig. 6, ECSA outperforms in 
reducing path loss until the 2000th round. Furthermore, in the 
first and second scenarios, the path loss is temporarily higher 
than in CSA at the advanced stages, and it might indicate a 
necessity to refine it for longer-duration deployments in the 
future. The ECSA shows fewer path loss values and validates 
the proposed routing model's credibility and robustness. 

The data delivery reliability of the protocol was checked 
using PDR, which is presented in Fig. 7. ECSA has a 
consistently low rate of losing PDR compared to other routing 
protocols in all scenarios. The reduced rate of losing PDR results 
from the algorithm's stability and efficient selection of the CH, 
reducing the rate of dropping and discarding packets in 
communication. Therefore, ECSA provides superior delivery 
reliability in critical WSN applications. 

The protocol's sustainability was analyzed by measuring the 
active node count per simulation round. As indicated by Fig. 8, 
ECSA retained a significantly higher number of alive nodes 
across the three cases than baseline strategies. In scenario 2, 
ECSA offers superior node survival across transmission rounds. 
This demonstrates its energy-conservation properties and 
suggests fewer nodes reach their energy boundaries earlier. 
Superior node survivability confirms the efficiency of ECSA in 
balancing energy load distributions when choosing CHs. 

 
(a)      (b) 

 
(c) 

Fig. 8. Number of alive nodes of algorithms across different rounds for (a) 50 nodes, (b) 100 nodes, and (c) 150 nodes . 

VI. DISCUSSION 

The superior simulation results of ECSA on all evaluation 
parameters can directly be attributed to intrinsic advancements 
in CSA. One key aspect involves adding an adaptive tournament 
selection policy to facilitate selection for updated positions. 
Compared to the initial CSA, in which randomly selected peers 
guide crows, ECSA allows crows to be guided to the fittest peers 
from a dynamically sized pool of candidates. Indeed, as 
demonstrated in the convergence results, the technique resulted 

in quicker convergence and more robust solution quality, 
particularly when network densities are high. Moreover, the 
linear increase in the tournament size per iteration permitted the 
algorithm to expand its search at the beginning and intensify 
exploitation towards the latter phase, which lent it to minimal 
energy consumption and maximum node survival in all test 
cases. 

In addition, the advanced evasion process utilized by ECSA 
contributed significantly to optimizing route performance. In 
contrast to the standard CSA that triggers random relocation on 
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evasion, ECSA incorporates a focused evasion process by using 
global best and average location information for the population. 
This ensures informed and active exploratory behavior even 
when AP is high. Consequently, ECSA resulted in lower path 
loss and higher PDR, particularly at high node density and 
extended round simulation. Improved throughput performance 
further confirms that the advancements in pursuit (guide 
selection) and evasion (movement policy) acted synergistically 
to produce superior route decisions, energy balancing, and 
overall robust protocol performance in WSN scenarios. 

Though the proposed ECSA-based routing protocol provides 
superior energy efficiency and robustness over existing 
methods, the study has some drawbacks. First, it was conducted 
within simulated networks with pre-assumed network models 
that do not capture fundamental WSN dynamics. Furthermore, 
although the cooperative island model provides superior 
population diversity, computational complexity increases with 
the size of the network, such that large-scale networks may lack 
scalability in very dense sensor environments. Finally, security-
related issues, such as resistance to malicious nodes, have not 
been specifically addressed. These drawbacks present potential 
areas for future work, such as hardware-based verification, 
optimization for scalability, and the addition of security-aware 
mechanisms. 

VII. CONCLUSION 

The paper introduced ECSA for energy-efficient routing in 
WSNs by hybridizing a cooperating island model with adaptive 
tournament selection. From a theoretical standpoint, the paper 
first applied a structured population model in CSA for CH 
selection to address two essential problems: premature 
convergence and limited population diversity. Apart from 
WSNs, the model provides a generic framework for integrating 
swarm intelligence strategies with hierarchical clustering 
mechanisms. An experimental study on networks containing 
100 nodes confirmed that ECSA outperformed CSA, BWO, 
GWO, and WOA. In detail, ECSA achieved 22–30% lower 
optimization cost, 4.8–10.8% higher throughput, 24.4–40.3% 
lower path loss, 4.5–13.7% higher PDR, and 40.1–109.1% more 
alive nodes. These results confirm the robustness, scalability, 
and energy-saving capabilities of the approach if applied at a 
large scale in WSN. 

In addition, the study also has its limitations. The analysis 
was conducted in a simulated environment without external 
dynamics, such as hardware variation, environmental 
interference, or malicious nodes. Furthermore, the cooperative 
island model entails additional computational overhead that may 
hinder scalability in ultra-dense networks. The future study will 
therefore focus on 1) protocol verification over hardware 
testbeds, 2) lowering computational complexity for optimization 
of scalability, as well as 3) extending the model for the addition 
of security-aware routing. 
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