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Abstract—Sentiment classification is a core task in natural 

language processing (NLP), enabling automated interpretation of 

opinionated text across domains, such as social media, e-

commerce, and healthcare. While numerous models have been 

proposed—from classical machine learning algorithms to deep 

neural networks and transformer architectures—their adoption is 

often hindered by trade-offs in performance, interpretability, and 

computational cost. This paper presents a threefold contribution: 

1) a structured review of over 30 peer-reviewed studies that 

compare sentiment classifiers across five analytical dimensions—

accuracy, robustness, interpretability, efficiency, and context 

adaptability; 2) a lightweight empirical benchmark on the IMDb 

dataset, evaluating Naïve Bayes, linear SVM, and LSTM; and 3) a 

practitioner-oriented decision-support framework comprising a 

model selection flowchart and recommendation matrix. The 

experimental results show that SVM achieved the highest F1-score 

(0.8329), while Naïve Bayes provided strong performance with 

minimal training time, and LSTM underperformed under 

constrained conditions. We further highlight persistent challenges 

in benchmarking consistency, model explainability, and cross-

lingual adaptability. The paper concludes with actionable future 

directions, including hybrid architectures, low-resource 

deployment strategies, and inclusive NLP systems for diverse user 

populations. To our knowledge, this is the first study that unifies 

systematic review, empirical validation, and practical decision 

tools in the field of sentiment classification. 
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I. INTRODUCTION 

The exponential growth of user-generated content on digital 
platforms has amplified the role of sentiment analysis (SA) in 
natural language processing (NLP). From monitoring public 
sentiment on social media to enhancing customer experience in 
e-commerce and health feedback systems, the ability to 
computationally interpret opinion-laden text has become crucial. 
The evolving landscape of machine learning (ML) and deep 
learning (DL) has significantly advanced sentiment 
classification, yet persistent challenges hinder broader adoption 
and practical deployment. 

Key challenges include the ability to handle heterogeneous 
and multilingual datasets, mitigate the effects of class 

imbalance, and effectively model contextual dependencies. 
Classical ML models, while efficient and interpretable, often 
struggle with generalization in dynamic environments. 
Conversely, advanced neural architectures such as long short-
term memory networks (LSTM), convolutional neural networks 
(CNN), and transformers demonstrate superior performance in 
complex settings but require extensive computational resources 
and lack interpretability. 

Recent years (2024–2025) have witnessed a surge in hybrid 
models combining traditional and deep learning techniques. 
These models seek to balance performance, adaptability, and 
computational efficiency, and are increasingly relevant for real-
world applications demanding both accuracy and scalability. 

This paper contributes a comprehensive, multi-dimensional 
review of sentiment classification models. It uniquely focuses 
on hybrid architectures developed in the latest period and 
proposes a comparative framework for evaluating models across 
five dimensions: accuracy, robustness, interpretability, 
efficiency, and context adaptability. 

The study addresses the following research questions: 

• RQ1: How do hybrid and standalone deep learning 
models perform compared to classical algorithms in real-
world sentiment classification tasks? 

• RQ2: What are the practical trade-offs in deploying 
sentiment classification models across diverse domains? 

• RQ3: What guidelines can be established for context-
aware model selection in sentiment classification? 

By addressing these questions, this study aims to inform both 
researchers and practitioners on the evolving capabilities of 
sentiment classification systems and offer guidance for selecting 
models that align with specific deployment requirements. 

This paper makes three key contributions toward advancing 
sentiment classification research and practice: 

1) A structured, paradigm-based literature review of over 

30 peer-reviewed studies, comparing classical machine 

learning, deep learning, and transformer-based models across 

five analytical dimensions: accuracy, robustness, 

interpretability, computational efficiency, and context 

adaptability. 
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2) An independent, lightweight benchmark conducted on 

the IMDb dataset, empirically comparing three representative 

models—Naïve Bayes, linear SVM, and LSTM—under 

constrained training conditions to validate practical trade-offs 

observed in the literature. 

3) A practitioner-oriented decision-support framework, 

consisting of a flowchart and recommendation matrix, designed 

to guide model selection based on resource constraints, domain 

specificity, and sequence modeling needs. 

This study unifies a survey, empirical benchmarking, and 
practical model selection guidance into a coherent framework 
for sentiment analysis. By bridging academic research with real-
world deployment considerations, this work provides actionable 
insights for both researchers and practitioners. 

The remainder of this paper is structured as follows: 
Section II reviews prior research on sentiment classification 
models, covering classical machine learning, deep learning, 
ensemble, and transformer-based approaches. Section III 
outlines the study methodology, including literature selection 
criteria, inclusion conditions, and the comparative evaluation 
framework. Section IV presents the algorithmic landscape, 
analyzing strengths, weaknesses, and typical use cases of key 
sentiment classification algorithms. Section V reports and 
discusses the results from both the literature synthesis and the 
empirical benchmark on the IMDb dataset, along with 
performance comparisons and confusion matrix insights. 
Section VI concludes the study by summarizing key findings, 
discussing future directions, and reinforcing the practical utility 
of the proposed decision-support framework. 

II. RELATED WORKS 

A. A Critical Review of Sentiment Analysis Methods 

This review is grounded in a structured selection of peer-
reviewed publications relevant to the field of sentiment analysis. 
This review draws upon peer-reviewed publications published 
between 2016 and 2025 from recognized venues, including 
studies indexed in IEEE, ACM, and open-access platforms. 
Inclusion criteria were based on relevance to sentiment 
classification using classical, deep learning, or transformer-
based models. Studies had to report empirical results using 
public datasets and standardized metrics such as accuracy, F1-
score, or precision. After screening and eliminating duplicates, 
a representative subset of the most relevant and influential works 
was analyzed to synthesize key findings, identify limitations, 
and highlight research gaps addressed in this study. 

 Sentiment analysis has evolved significantly, transitioning 
from classical statistical models to deep learning and 
transformer-based architectures. Each paradigm offers distinct 
advantages and presents specific challenges, particularly in 
terms of contextual understanding, scalability, and robustness. 
This section offers a critical synthesis of these developments, 
integrating insights from a representative set of peer-reviewed 
studies published between 2016 and 2025 across IEEE, ACM, 
and arXiv. The organization follows a paradigm-based structure, 
focusing on unresolved gaps that inform the methodological 
choices of our study. 

B. Classical ML Approaches 

Foundations and Limitations Naïve Bayes, Logistic 
Regression, and SVM remain favored for their simplicity and 
speed. However, their dependence on feature engineering and 
inability to capture semantic subtleties limit their utility in 
dynamic textual environments. A broad comparative study by 
[1] evaluates classical supervised algorithms—including Naive 
Bayes, Decision Trees, Random Forest, KNN, and SVM—
across twelve criteria such as efficiency, robustness, and 
interpretability. Their findings highlight that the optimal 
algorithm depends on task-specific requirements, available 
resources, and data characteristics, confirming the continued 
relevance of classical ML in constrained environments. 

C. Ensemble Methods 

Combining Simplicity and Strength Random Forests and 
similar ensembles show resilience against noise and imbalance. 
Yet, their black-box nature and hyperparameter sensitivity 
hinder interpretability. A complementary comparative analysis 
by [2] reinforces these points, particularly noting the robustness 
of Random Forest and the context sensitivity of LSTM, and 
offers practical insights into real-time deployments. 

D. Deep Learning Models 

Contextual Learning with Neural Networks Deep learning 
has significantly transformed sentiment analysis by enabling 
end-to-end training without manual feature engineering. 
Convolutional Neural Networks (CNNs), first adopted by [3] for 
text classification, have demonstrated strong performance in 
capturing local syntactic and semantic features, particularly in 
short texts and tweets. Recurrent Neural Networks (RNNs), 
especially Long Short-Term Memory (LSTM) and Gated 
Recurrent Unit (GRU) models, are widely used for learning 
sequential dependencies in sentiment-laden texts [4] LSTMs are 
particularly adept at handling long-range dependencies and have 
become standard in many SA pipelines. However, their training 
complexity and sensitivity to vanishing gradients remain 
limitations. More recent efforts, such as bidirectional LSTM 
(BiLSTM) and attention-augmented RNNs [5], attempt to 
overcome these challenges by capturing both forward and 
backward contextual information. 

E. Transformer Architectures 

High Accuracy at Computational Cost Transformer-based 
architectures have redefined state-of-the-art in sentiment 
analysis, particularly since the introduction of Bidirectional 
Encoder Representations from Transformers (BERT) by [6]. 
Unlike RNNs, transformers use self-attention mechanisms to 
capture global dependencies and contextual relationships 
without relying on sequential processing. Variants such as 
RoBERTa [5], ALBERT [7], and DistilBERT [8] optimize 
transformer models for speed and efficiency while preserving 
performance. These models have consistently achieved top 
scores on benchmark datasets like SST-2, Yelp, and Amazon 
reviews. Despite their accuracy, the computational demands of 
transformer models—both in training and inference—pose 
significant barriers to deployment in low-resource settings. 
Moreover, their interpretability remains a challenge, though 
recent methods (e.g. attention visualization, SHAP 
explanations) attempt to address this. 
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F. The Emerging Middle Ground 

Hybrid models are increasingly recognized as a practical 
compromise between accuracy and computational efficiency in 
sentiment classification. Architectures that combine 
Convolutional Neural Networks (CNNs), Bidirectional LSTMs 
(BiLSTMs), and attention mechanisms are particularly effective 
in capturing both local features and long-range dependencies. 
One such approach was introduced in a recent study, where 
CNN layers were combined with LSTM units and self-attention 
for emotion recognition in telecommunication data [9]. Another 
investigation focused on integrating RoBERTa with CNN to 
process noisy social media content, achieving F1-scores 
exceeding 92% on Twitter datasets [10]. The robustness of 
LSTM architectures was also validated in the financial domain, 
where they performed well on time series forecasting tasks 
under noisy conditions [11]. Together, these studies highlight 
the growing appeal of LSTM-based hybrid models, which offer 
enhanced adaptability and performance across diverse and 
challenging sentiment analysis environments. 

G. Benchmarking Inconsistencies and Cross-Study Variability 

Cross-dataset benchmarking remains inconsistent due to 
variations in metric reporting, dataset selection, and 
experimental protocols. A meta-analysis of 30 peer-reviewed 
studies highlights two core challenges: 

• Metric Disparities: 65% of studies prioritize accuracy 
while underreporting robustness metrics such as F1-
score or MCC, with reported variability up to ±12%. 

• Dataset Limitations: Benchmark datasets such as 
Sentiment140 or IMDb often lack demographic and 
linguistic diversity, skewing generalizability [12]. 

To concretize these inconsistencies, Table I synthesizes ten 
representative studies spanning 2016 to 2025, highlighting their 
model types, datasets, findings, and limitations. This 
comparison underscores the difficulty of deriving universal 
conclusions across heterogeneous experimental settings. 

TABLE I.  COMPARATIVE SUMMARY OF KEY STUDIES 

Study (Year) 
Algorithms 

Compared 

Dataset(s) 

Used 
Corpus Type Key Findings Limitations Model Type 

Impact 

Potential 

[13] Ahmad et 

al. (2018) 

NB, LR, 

SVM 

Twitter, IM 

Db 

Balanced 

English Texts 

SVM achieved best accuracy 

(86%), LR 

most interp retable 

No deep 

learning models 

included 

Classical M L 
Widely cited  

baseline 

[14] Parveen & 

Pandey (2016) 

NB + 

Hadoop 
Twitter 

Noisy large-

scale data 

Efficient large-scale analysis 

with emoticons 

No comparison 

with modern 

ML 

Classical M L 

Scalable 

framework 

example 

[15] Karthika  

et al. (2019) 
SVM, RF 

Product 

Reviews 

(Flipkart) 

Domain-

specific 

reviews 

RF outperformed SVM (97% 

accuracy) 

Dataset 

domain-

specific 

Classical M L 
E-commerce 

context study 

[16] Srinivas et 

al. (2021) 

SVM, 

LSTM 

Twitter 

(1.6M 

tweets) 

Sequential 

noisy text 

LSTM outperformed SVM in  

handling sequences 

No transformer 

baseline 

DL + 

Classical 

Illustrates 

LSTM 's 

sequence edge 

[17] Shad et al. 

(2024) 

NB, SVM, 

RNN, 

LSTM 

Mixed 

datasets 

Mixed 

sentiment 

corpora 

LSTM had highest F1-score;  

NB was faster but less 

accurate 

Transformers 

excluded 

DL + 

Classical 

Broad-spectrum 

benchmark 

[18] Moulaei et 

al. (2022) 

RF, SVM, 

KNN 

COVID-19 

data 

Semi-

structured text 

RF had best performance 

(95%) 

Non-textual 

medical data 
Classical M L 

Domain-specific 

relevance 

[19] Talibzade 

(2023) 

LR, SVM, 

BERT 

IM Db 

reviews 

Structured 

movie reviews 

BERT reached 98% 

accuracy ; traditional models 

far behind 

BERT is 

resource-

intensive 

Transformer 

+ Classical 

State-of-the-art 

performance 

[20] 

Abdirahman et 

al. (2023) 

NB, SVM, 

LSTM 
Somali text 

Low-resource 

language 

LSTM showed best 

contextual understanding 

Language- 

specific results 

DL + 

Classical 

Low-resource 

NLP focus 

[21] Raees et al. 

(2024) 

Lexicon + 

M L models 

Multilingual 

datasets 

Cross-lingual 

short texts 

Lexicon-based 

+ M L hybrid improved 

p recision 

Limited to 

short texts 
Hybrid 

Multilingual 

integration 

[10] Islam et al. 

(2025) 

CNN, 

BERT, 

RoBERTa 

Twitter, 

Amazon 

Noisy real-

world data 

Transformers outperformed 

CNN; RoBERTa 

most robust 

High training 

cost 

Transformer 

+ DL 

Current high  

benchmark 

 

As seen in Table I, studies using the same algorithms (e.g. 
SVM or LSTM) report divergent results due to variations in 
dataset quality, preprocessing pipelines, and evaluation scope. 
This underscores the importance of standardized benchmarks 
and the reporting of both accuracy and robustness metrics in 
future work. 

III. METHODOLOGY 

This study adopts a structured comparative literature review 
methodology, aiming to synthesize and contrast results reported 
in peer-reviewed research on sentiment analysis models 
published between 2016 and 2025. Rather than conducting 

primary experiments, we examine empirical patterns across 
datasets, model types, and evaluation criteria, enabling 
evidence-based insights on algorithmic performance and 
suitability. 

A. Objective and Scope 

The primary objective is to deliver a multi-dimensional 
comparative analysis of sentiment classification models, 
including classical machine learning algorithms (e.g. Naïve 
Bayes, Logistic Regression, SVM), ensemble methods (e.g. 
Random Forest), deep learning approaches (e.g. CNN, LSTM), 
and transformer-based architectures (e.g. BERT, RoBERTa). 
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These models were selected based on their prevalence in 
literature and practical relevance in industrial applications. 
Transformer-based models are considered for conceptual 
completeness, though excluded from core performance tables 
due to architectural divergence and resource intensity. 

B. General Workflow of Sentiment Analysis 

To structure the comparative analysis, Fig. 1 illustrates the 
standard sentiment analysis pipeline comprising six critical 
stages: 

1) Data collection: Acquiring raw textual data from 

sources such as social media, product reviews, or open-access 

corpora. 

2) Preprocessing: Cleaning and normalizing the text by 

removing noise, performing tokenization, stemming, stop-word 

removal, and lemmatization. 

3) Feature extraction: Converting text into structured 

representations using methods such as TF-IDF, word 

embeddings (e.g. Word2Vec, GloVe), or contextual 

embeddings (e.g., BERT). 

4) Model selection: Choosing an appropriate classification 

algorithm based on task requirements, resource constraints, and 

interpretability needs. 

5) Evaluation: Assessing model performance using 

standard metrics including accuracy, precision, recall, F1-

score, and sometimes AUC or MCC. 

6) Interpretation: Analyzing the outputs to understand 

predictions, model behavior, and to inform further optimization 

or deployment decisions. 

This pipeline, Fig. 1, provides a conceptual foundation for 
interpreting the empirical findings discussed throughout this 
review. 

 
Fig. 1. Workflow of sentiment analysis. 

From Data Collection to Results (Data Collection → 
Preprocessing → Feature Extraction → Model Selection → 
Evaluation → Interpretation) 

C. Study Inclusion Criteria 

To ensure methodological consistency and scientific rigor, 
we included studies that met the following conditions: 

1) Published between 2016 and 2024 in peer-reviewed 

journals or recognized conferences. 

2) evaluated at least one of the targeted classification 

models. 

3) Employed publicly available benchmark sentiment 

datasets (e.g., IMDb, Amazon, Yelp, Twitter, Sentiment140). 

4) Reported three or more evaluation metrics (e.g. 

accuracy, F1-score, precision, recall). 

5) Documented sufficient experimental detail including 

preprocessing techniques, data splitting, and hyperparameter 

settings. 

D. Comparative Evaluation Framework 

The extracted models were evaluated along five analytical 
dimensions: 

1) Accuracy captures classification correctness as reported 

in standard benchmarks. 

2) Robustness reflects model stability under data 

imbalance, noise, or domain shift. 

3) Interpretability denotes the transparency and 

explainability of a model's decision-making process. 

4) Efficiency measures computational demands including 

training/inference time and scalability. 

5) Context adaptability refers to flexibility across datasets, 

domains, and linguistic contexts. These criteria were informed 

by both academic literature and practical deployment 

considerations, enabling a balanced view of algorithm 

performance. 

E. Benchmark Design and Dataset 

To validate literature findings under a controlled and 
minimal-resource setting, we conducted a lightweight 
benchmark using the IMDb movie reviews dataset (binary 
classification: positive vs. negative). Three representative 
models were selected: 

1) Naïve Bayes – for classical probabilistic modeling. 

2) Linear SVM – for margin-based kernel classification. 

3) Basic LSTM – for deep sequential modeling. 
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The dataset was split into 80/20 train-test partitions. 
Preprocessing steps included lowercasing, stop-word removal, 
and tokenization. Default or lightly tuned hyperparameters were 
used to reflect real-world deployment constraints. Evaluation 
metrics included accuracy, F1-score, and total execution time 
(training + inference). 

F. Limitations 

This analytical approach provides a macro-level synthesis 
but does not substitute for controlled empirical testing on shared 
datasets. Outcomes rely on the consistency, transparency, and 
reproducibility of the original studies. Differences in 
preprocessing strategies, dataset splits, and reporting standards 
may introduce noise. While we mitigate this through source 
triangulation and metric normalization, residual meta-analysis 
bias may persist. These limitations are considered when 
interpreting comparative outcomes and are revisited in the 
Discussion section. 

IV. ALGORITHMIC LANDSCAPE IN SENTIMENT ANALYSIS 

This section presents a structured overview of sentiment 
classification algorithms widely studied in recent literature. We 
organize the discussion into classical machine learning models, 
ensemble techniques, and neural architectures. Comparative 
findings from the reviewed studies are embedded to highlight 
strengths, limitations, and typical application contexts. 

A. Classical Machine Learning Models 

1) Logistic Regression (LR): LR is frequently applied to 

binary and multiclass sentiment classification tasks. It estimates 

the probability of class membership using text-derived features. 

Despite its simplicity, its interpretability and efficiency make it 

a foundational model. As shown in [23] and [24], LR performs 

well when paired with robust feature engineering and domain-

specific lexicons. 

2) Naïve Bayes (NB): NB is a probabilistic classifier based 

on Bayes' theorem with strong independence assumptions. Its 

ability to efficiently process high-dimensional feature spaces 

makes it particularly well-suited for large-scale or real-time 

sentiment analysis. In a study focused on Twitter data, 

researchers implemented Naïve Bayes within a Hadoop-based 

framework, demonstrating notable scalability and processing 

speed, even in noisy and unstructured text environments [25]. 

Despite its simplicity, the algorithm remains competitive in 

many real-world applications where rapid inference is a 

priority. 

3) Support Vector Machines (SVM): SVMs are margin-

based classifiers that construct optimal hyperplanes to separate 

data points in high-dimensional feature spaces. They have 

demonstrated strong resilience against overfitting, particularly 

in text classification tasks involving sparse and noisy inputs. 

High levels of accuracy have been reported on both social 

media and product review datasets, especially when effective 

preprocessing techniques and kernel selection strategies are 

applied [13], [22]. These characteristics make SVMs a reliable 

choice for sentiment classification tasks where precision and 

generalization are critical. 

B. Ensemble Learning Methods 

1) Decision Trees and Random Forest (RF): Decision 

Trees are interpretable models that classify data through a series 

of recursive, feature-based splits. While simple and transparent, 

their tendency to overfit on complex datasets can limit 

generalizability. RF addresses this limitation by aggregating the 

predictions of multiple decision trees, leading to improved 

accuracy and robustness. In the context of sentiment analysis, 

particularly on product review datasets, RF has been shown to 

outperform Support Vector Machines (SVM), achieving 

accuracy as high as 97% and demonstrating strong resilience to 

class imbalance [15]. These properties make RF a compelling 

option when both predictive performance and handling of 

imbalanced classes are priorities. 

C. Deep Neural Networks 

1) Recurrent Neural Networks (RNNs) are designed to 

capture temporal and sequential dependencies in text, making 

them well-suited for sentiment analysis tasks where word order 

and context are important. Among them, Long Short-Term 

Memory (LSTM) networks stand out for their ability to model 

long-range contextual relationships and mitigate the vanishing 

gradient problem. In large-scale sentiment classification, 

particularly on Twitter datasets, LSTM architectures have 

demonstrated superior performance compared to traditional 

machine learning approaches such as Support Vector Machines 

(SVM) [16]. Their effectiveness in handling noisy, unstructured 

data underscores the relevance of LSTM-based models in real-

world sentiment analysis applications. 

2) Convolutional Neural Networks (CNN): Initially 

developed for image recognition, they have been successfully 

adapted to text classification tasks. By applying convolutional 

filters over word embeddings, CNNs effectively capture local 

semantic features, functioning similarly to n-gram detectors. 

Their ability to learn hierarchical representations makes them 

particularly effective for morphologically rich languages, 

where subtle variations in word forms influence sentiment. For 

example, strong performance has been reported in Arabic 

sentiment analysis, where CNNs achieved competitive 

accuracy compared to more complex architectures [26]. These 

results highlight the versatility of CNNs as lightweight yet 

powerful models for sentiment classification. 

D. Observations on Model Suitability 

Classical models (NB, LR, and SVM) remain competitive in 
constrained settings due to their interpretability and low 
computational costs. Ensemble methods like RF offer robust 
performance across unbalanced and structured data. Neural 
architectures (LSTM, CNN) are effective for capturing context 
and nuance, particularly in noisy or informal language domains. 

While this section focuses on traditional and neural models, 
emerging architectures such as BERT, RoBERTa, and hybrid 
combinations (e.g. lexicon + DL) are explored in Section II-D 
and II-E. Their exclusion from core metrics tables in this section 
reflects architectural distinctions and resource considerations 
rather than performance limitations. 
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V. RESULTS AND COMPARATIVE ANALYSIS 

A. Comparative Performance of Sentiment Classification 

Models 

This subsection summarizes the performance of key 
sentiment classification algorithms across empirical studies, 
providing both quantitative trends and qualitative insights. 
Evaluation criteria include accuracy, precision, recall, F1-score, 
interpretability, and computational efficiency. 

Logistic Regression consistently demonstrated reliable 
baseline performance for binary and multiclass sentiment 
classification. Studies by [23] and [24] confirmed accuracy 
ranges of 80–86%, particularly when supported by robust 
feature engineering and lexicons. Although interpretable and 
fast, its linear nature limits performance on complex or 
semantically rich datasets. 

Random Forest emerged as one of the top-performing 
classical models, with [15] reporting 97% accuracy on Flipkart 
product reviews. Its ensemble structure enhances generalization 
and minimizes overfitting, particularly in imbalanced datasets. 
As observed in [27], similar robustness was observed across 
multilingual sentiment analysis contexts. However, its 
computational demands remain a limitation in resource-
constrained deployments. 

Support Vector Machines (SVM) showed consistently high 
precision, with performance reaching 86.22% in sentiment 
classification of social media text. Yet, its sensitivity to kernel 
selection and difficulty in handling minority classes in 
unbalanced datasets restricts generalizability. 

Naïve Bayes remained competitive due to scalability and 
simplicity. A study demonstrated its efficacy in large-scale 
Twitter sentiment classification using Hadoop [25], although it 

often suffers from false positives in neutral sentiment 
predictions due to independence assumptions. 

K-Nearest Neighbors (KNN) achieved accuracy levels 
around 85–90% when finely tuned. Studies [28] and [29] 
demonstrated its usefulness on structured datasets but 
highlighted sensitivity to noise and scalability issues in larger 
corpora. 

Deep learning architectures demonstrated greater ability to 
capture semantic and contextual dependencies. LSTM networks 
proved effective on sequential text data, with Srinivas et al. 
reporting 87% accuracy on Twitter corpora. Similarly, CNNs 
performed strongly in morphologically rich languages such as 
Arabic [26], reflecting their ability to capture spatial and 
syntactic structures. 

To consolidate the findings from both the literature review 
and benchmark experiments, Table II provides a comparative 
summary of six widely used sentiment classification algorithms. 
The table captures key performance metrics—including 
accuracy and F1-score—as well as qualitative assessments such 
as computational efficiency, interpretability, and model 
limitations. This synthesis serves as a quick reference for 
understanding the trade-offs between classical machine 
learning, deep learning, and ensemble models in diverse 
sentiment analysis scenarios. By juxtaposing strengths and 
weaknesses, the table facilitates informed decisions about model 
suitability based on task-specific constraints and deployment 
contexts. 

In addition to synthesizing results from prior studies, we 
conducted a minimal benchmark on the IMDb dataset to validate 
and contextualize these trends. 

The results, summarized in Table III, provide additional 
perspective on model performance under standardized 
conditions.

TABLE II.  SUMMARY OF COMPARATIVE RESULTS ACROSS SIX KEY CLASSIFICATION MODELS 

Algorithm Accuracy Dataset Size Strengths Weaknesses Limitations References 

Logistic 

Regression 
80–86% Medium Simplicity, interpretability 

Sensitive to feature 

engineering 

Struggles with non-linear 

decision boundaries 
[31], [32] 

Random Forest 97% Large 
Robust to imbalance, 

feature selection 
Computational cost 

Overfitting risk on small 

data  
[15], [27] 

SVM 86.22% Medium–Large 
Effective in high-

dimensional data  

Requires kernel 

tuning 

Limited 

scalability on imbalance 
[28], [13] 

Naive Bayes 85–90% Large Fast, scalable 
Independence 

assumptions 

Weak on contextual 

semantics 
[24], [25] 

KNN 85–90% Medium High recall with tuning 
Sensitive to 

parameters 

Inefficient for large 

datasets 
[28], [29] 

Neural Networks 

(LSTM) 
87% Large (1.6M tweets) 

Captures sequential 

dependencies 

High resource 

demand 
Slower training [30], [22] 

TABLE III.  EXPERIMENTAL COMPARISON OF MODELS ON IMDB DATASET 

Model Accuracy F1-Score Total Time(s) Main Strengths Main Limitations 

Naïve Bayes 0.8075 0.7979 1.08 Very fast, Simple, Scalable Fails to capture context and syntax 

SVM (Linear) 0.8325 0.8329 8.87 High precision, Robust Slower sensitive to class imbalance 

LSTM 0.7450 0.7536 20.52 Deep sequential learning Long training time, prone to overfitting 
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B. Experimental Benchmark on IMDb Dataset 

To complement the findings reported in prior studies, we 
conducted a small-scale experimental benchmark on the IMDb 
movie reviews dataset. The goal was to validate whether 
classical models remain competitive against deep learning 
architectures under standardized conditions and limited training 
resources. 

Three representative algorithms were selected for this 
experiment: Naïve Bayes, linear SVM, and a basic LSTM 
network. These models were chosen to reflect the evolution 
from classical probabilistic methods to kernel-based classifiers 
and sequence-based deep learning. 

The dataset was preprocessed into train and test splits, with 
performance evaluated using accuracy, F1-score, and total 
training + inference time as metrics. The benchmark was 
intentionally kept minimal, with default or lightly tuned 
hyperparameters, to highlight practical trade-offs rather than 
optimize individual performance. 

Table III reports the detailed numerical results, while Fig. 2 
below illustrates the comparative performance of the three 
models in terms of Accuracy and F1-score. 

 
Fig. 2. Comparative performance of Naïve Bayes, SVM, and LSTM on 

IMDb dataset. 

Results indicate that SVM outperformed the other models 
with the best accuracy (0.8325) and F1-score (0.8329), 
confirming its robustness for high-dimensional textual datasets. 
Naïve Bayes achieved competitive accuracy (0.8075) with 
extremely low computational cost (1.08 seconds), making it 
well-suited for resource-constrained or real-time applications. 
LSTM underperformed in this setting (Accuracy = 0.7450, F1 = 
0.7536), reflecting its dependency on extensive training data and 
fine-tuning to fully exploit sequential text patterns. 

These findings reinforce the conclusions from our literature 
review: classical models such as Naïve Bayes and SVM 
continue to offer strong baselines and practical advantages in 
specific contexts, while deep learning models require higher 
resource investment to surpass them. 

C. Illustrative Confusion Matrix Comparison 

To further illustrate the behavior of different sentiment 
classification models, we synthesized representative confusion 

matrices from prior empirical studies. These visualizations are 
not the result of our own experimental benchmark but instead 
are drawn from the literature, capturing model-specific 
classification tendencies across diverse datasets. They provide a 
complementary perspective beyond aggregate accuracy values, 
emphasizing class-level strengths and weaknesses. 

Across the reviewed studies, the analysis of confusion 
matrices reveals distinct classification behaviors for each model. 
Logistic Regression generally provided balanced predictions but 
frequently confused neutral and positive instances. Random 
Forest consistently maintained high recall across sentiment 
classes, even under imbalanced conditions, confirming its 
robustness in noisy environments. SVM achieved sharp decision 
boundaries and high precision, though it struggled to classify 
minority classes in imbalanced datasets. Naïve Bayes proved 
efficient for large-scale data processing but showed a tendency 
to overgeneralize, particularly in neutral categories. KNN 
delivered good performance on dominant classes but exhibited 
poor scalability and sensitivity to noise in larger datasets. In 
contrast, LSTM reduced false negatives more effectively, 
especially for positive and neutral sentiments, demonstrating its 
strength in capturing sequential dependencies. 

Fig. 3 provides representative examples of these confusion 
matrices, enabling a more granular view of systematic 
misclassifications observed across the literature. 

These confusion matrices emphasize that overall accuracy 
alone does not capture the full behavior of sentiment classifiers. 
Systematic misclassifications—such as the difficulty of 
distinguishing neutral from positive classes—highlight the 
importance of analyzing class-level performance. Such insights 
are particularly relevant in high-stakes domains like customer 
feedback analysis or financial forecasting, where errors in 
minority or neutral categories can lead to significant 
misinterpretations. 

D. Discussion 

The comparative analysis confirms that no single sentiment 
classification algorithm is universally optimal. Model suitability 
is inherently context-specific, depending on factors such as 
dataset structure, class balance, computational capacity, and the 
intended use case. 

Random Forest stands out for its robustness in handling 
imbalanced and noisy datasets, a recurring challenge in 
sentiment analysis. Its ensemble mechanism and inherent 
feature selection capacity contribute to high accuracy and recall 
across sentiment classes. However, its elevated memory and 
processing demands can be prohibitive for deployment in low-
resource environments or real-time systems. 

LSTM networks are particularly effective in capturing 
temporal dependencies and complex linguistic patterns in 
sequential data, such as tweets or reviews. As also reflected in 
prior studies, LSTM consistently minimizes false negatives, 
especially in positive and neutral sentiments. Nonetheless, its 
reliance on extensive training data and computational resources 
poses significant constraints for real-time or embedded 
applications. 
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Fig. 3. Representative confusion matrices synthesized from reviewed studies. 

Classical algorithms such as Logistic Regression and Naïve 
Bayes continue to offer strong interpretability and operational 
efficiency. Their balanced behavior in confusion matrices, 
combined with moderate accuracy, make them reliable for real-
time monitoring or applications prioritizing transparency over 
complexity. However, they are less suited for semantically rich 
or non-linear text inputs. 

SVM demonstrates high precision in structured, high-
dimensional spaces, yet its sensitivity to class imbalance often 
leads to underperformance in minority class recognition, as 
reflected in false negatives or misclassified neutral sentiments. 
Similarly, KNN, though capable of high recall with careful 
tuning, suffers from scalability issues and noise sensitivity in 
larger datasets. 

Insights from our IMDb benchmark experiment further 
reinforce these observations: SVM outperformed both Naïve 
Bayes and LSTM in terms of F1-score, confirming its robustness 
in practice, while Naïve Bayes offered a very favorable trade-off 
between accuracy and efficiency. LSTM, although promising in 
theory, underperformed under constrained training conditions, 
highlighting its dependency on resources and optimization. 

To translate these findings into practical guidance, we 
propose a decision-support flowchart Fig. 4 that synthesizes 
insights from the literature and our experimental results. The 
flowchart provides a step-by-step guide to selecting appropriate 
models depending on computational resources, interpretability 
requirements, and accuracy goals. 

Overall, model selection should be guided by a balance 
between performance metrics and deployment constraints. The 
forthcoming radar visualization Fig. 5 encapsulates this trade-
off and aids in aligning algorithmic capabilities with practical 
requirements. 

 
Fig. 4. Decision-support flowchart for selecting sentiment classification 

models. 

As illustrated in Fig. 4, when computational resources are 
limited, simple and interpretable models such as Naïve Bayes or 
Logistic Regression are recommended. For tasks requiring 
sequential modeling, LSTM or BiLSTM networks provide a 
strong option, while transformer-based architectures deliver 
superior accuracy when resources permit. In intermediate cases, 
SVM or Random Forest serve as robust compromises, balancing 
precision and efficiency. This structured approach ensures that 
model selection is not only performance-driven but also context-
aware, bridging the gap between academic research and real-
world deployment. 

Answers to Research Questions: 

• RQ1: Deep learning models, such as LSTM, tend to 
outperform classical algorithms in sequential and large-
scale contexts where capturing temporal or semantic 
dependencies is critical. However, classical models 
retain significant advantages in transparency, efficiency, 
and speed, making them highly competitive in 
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constrained environments or applications requiring 
interpretability. 

• RQ2: The trade-offs between model complexity and 
interpretability remain evident. Simpler models such as 
Naïve Bayes and Logistic Regression provide 
transparency, scalability, and low computational cost but 
sacrifice the ability to capture deep contextual or 
sequential information. At the opposite end, deep neural 
networks and transformer-based architectures achieve 
superior accuracy but demand extensive resources and 
present explainability challenges. SVM and Random 
Forest occupy a middle ground, offering strong precision 
and robustness across varied datasets, though with 
limited interpretability. Ultimately, deployment 
decisions must balance these trade-offs against domain-
specific requirements such as real-time performance, 
regulatory compliance, or resource availability. 

• RQ3: Algorithm selection must be tailored to the 
application context, since performance varies with 
dataset structure, computational resources, and 
interpretability needs. Visualization tools such as 
confusion matrices provide fine-grained insights into 
systematic misclassifications, while decision-support 
flowcharts offer practitioners a structured pathway to 
align model choice with resource and accuracy 
requirements. Complementarily, radar charts deliver a 
multidimensional snapshot of trade-offs across accuracy, 
robustness, efficiency, and interpretability. Together, 
these tools support context-sensitive decision-making, 
ensuring that the chosen model balances theoretical 
performance with practical deployment constraints. 

 
Fig. 5. Comparative radar of classification models. 

This visual summary, Fig. 5 aids in identifying the most 
suitable algorithm under different contextual constraints. 
Comparing sentiment classification models across five key 
dimensions: accuracy, robustness, interpretability, efficiency, 
and adaptability. The visualization highlights the unique trade-
offs associated with each model type, supporting context-
sensitive algorithm selection. 

VI. CONCLUSION AND FUTURE WORK 

A. Conclusion  

This study conducted a structured and comprehensive 
review of sentiment classification algorithms, encompassing 
classical machine learning models, ensemble methods, deep 
learning architectures, and transformer-based approaches. The 
comparative framework evaluated models across five critical 
dimensions: accuracy, robustness, interpretability, 
computational efficiency, and adaptability to different data 
contexts. Findings confirm that no algorithm exhibits universal 
superiority. Instead, each model demonstrates distinct strengths 
and trade-offs, as illustrated throughout the review. 

For example, deep learning models such as LSTM have 
shown outstanding accuracy in real-world applications like 
Twitter sentiment analysis for political discourse or customer 
satisfaction tracking. Meanwhile, classical models like Naïve 
Bayes remain favored in embedded analytics due to their 
lightweight nature. Random Forest offers robust generalization 
capabilities but sacrifices interpretability, posing challenges in 
sensitive domains such as finance or healthcare. Similarly, SVM 
provides high precision but struggles with class imbalance, 
while CNNs capture morphological dependencies in languages 
such as Arabic. 

To complement these literature-based insights, we 
conducted a benchmark on the IMDb dataset comparing Naïve 
Bayes, linear SVM, and LSTM. Results showed that SVM 
achieved the best F1-score (0.8329), Naïve Bayes offered 
competitive performance with extremely low computational 
cost, and LSTM underperformed under limited tuning, 
reinforcing its reliance on resources. These findings validate the 
observation that classical models remain competitive in 
constrained settings, while deep architectures require careful 
optimization. 

The synthesis of both literature and experimental evidence 
reinforces the importance of context-aware model selection, 
where performance must be weighed against constraints such as 
data imbalance, deployment requirements, and interpretability 
needs. Confusion matrix analyses further highlight that 
aggregate accuracy is insufficient, since systematic 
misclassifications—such as neutral versus positive confusion—
can significantly impact real-world outcomes. To bridge 
research and practice, we introduced a decision-support 
flowchart that provides practitioners with a structured tool for 
aligning algorithm choice with contextual requirements. 

B. Future Work 

Building upon these insights, several research directions are 
worth pursuing to advance sentiment classification systems and 
bridge the gap between theoretical advancements and real-world 
deployment: 

1) Hybrid modeling strategies: Combining classical 

models (e.g. Random Forests) with deep learning (e.g. LSTM, 

CNN) may yield architectures that balance accuracy, 

efficiency, and interpretability. Exploring these hybrid 

combinations remains an open challenge. 

2) Transformer-based advances: The continued evolution 

of large language models—such as BERT, RoBERTa, GPT, 
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and multilingual transformers—holds immense potential, 

especially for aspect-based sentiment analysis, domain 

adaptation, and multilingual processing. 

3) Real-time and scalable applications: The next frontier 

lies in enabling real-time sentiment analysis through 

lightweight models, distillation, pruning, or deployment on 

edge devices. Use cases include live financial monitoring and 

social media tracking. 

4) Domain-specific adaptation: Applications in fields like 

healthcare, law, and finance require sentiment models fine-

tuned to domain-specific vocabularies and formats. Techniques 

such as zero-shot learning and prompt tuning may offer robust 

solutions. 

5) Explainability and hyperparameter optimization: As 

model complexity increases, explainable AI (XAI) methods 

(e.g. SHAP, LIME, attention visualization) are vital for 

transparency in sensitive contexts. In parallel, automated 

hyperparameter tuning techniques—such as Bayesian 

optimization, neural architecture search (NAS), and 

evolutionary strategies—can streamline performance gains. 

6) Low-resource and inclusive NLP: Supporting 

underrepresented languages, dialects, and noisy corpora is 

crucial. Research should focus on multilingual transformers, 

synthetic data generation, and transfer learning to promote 

inclusivity and generalization. 

By addressing these research directions, future sentiment 
analysis systems can become more accurate, fair, explainable, 
and adaptable—meeting the demands of both academia and 
industry across diverse deployment contexts. 
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