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Abstract—Sign language serves as a primary mode of 

communication for individuals who are deaf or speech impaired, 

using hand gestures to convey meaning visually. While it facilitates 

communication among the deaf community, it presents challenges 

for interaction with those who rely on spoken language. This study 

aims to recognize hand signs representing the letters A to Y 

(excluding J and Z) in the Indonesian Sign Language (SIBI) using 

image-based input. A custom dataset was collected through 

personal photo shoots and used to train a Convolutional Neural 

Network (CNN) implemented in Python using the TensorFlow 

library. The study also focuses on optimizing the CNN 

architecture to achieve high classification accuracy. Evaluation 

using a confusion matrix on the test data resulted in an overall 

accuracy of 87.1%, while real-time testing achieved an accuracy of 

90.25%. The number of convolutional filters and dropout rates 

was adjusted to prevent underfitting and overfitting during model 

training. 
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I. INTRODUCTION 

According to the World Health Organization, more than 5% 
of the global population, approximately 430 million people, 
experience hearing loss greater than 35 decibels (dB) [1]. In 
Indonesia, around 7.03% of individuals with disabilities are 
categorized as deaf [2]. Deaf individuals use sign language to 
communicate, forming words and sentences through hand 
gestures. Sign language is a visual-gestural language that relies 
on movement and perception through vision [3]. It enables 
communication within the deaf community; however, 
interactions with people who rely on spoken language remain 
challenging. 

In Indonesia, two main sign language models are used: the 
Indonesian Sign System (SIBI) and the Indonesian Sign 
Language (BISINDO). SIBI employs right-hand movements to 
represent alphabetical characters and is officially standardized 
by the Indonesian Ministry of Education and Culture [4]. 
BISINDO, in contrast, uses both hands and has developed 
organically within Indonesian society, resulting in regional 
variations. While BISINDO is widely used informally, SIBI 
remains the formal and standardized model. 

Recent advancements in deep learning technology offer 
potential solutions for automating sign language recognition. 
One prominent algorithm in this domain is the Convolutional 
Neural Network (CNN), a type of deep learning model designed 
to process visual data [5]. Despite many studies applying CNNs 
for sign language recognition in various countries [6–11], there 
is limited research focusing on Indonesian Sign Language, 
particularly the SIBI model, using custom datasets collected in 
varied real-world conditions. This gap highlights the need for 
approaches tailored to the Indonesian context. 

This study aims to address this gap by developing and 
optimizing a CNN-based model for classifying 24 SIBI hand 
signs (excluding J and Z). The model is trained on a custom 
image dataset collected via smartphone and webcam. The 
objectives of this research are to: 

1) Design a CNN architecture suitable for classifying 

Indonesian SIBI signs. 

2) Evaluate the impact of convolutional filter 

configurations and dropout rates on model performance. 

3) Validate the model’s accuracy through offline and real-

time testing using confusion matrix analysis. 

By providing a lightweight, efficient, and accurate CNN 
model trained on a custom dataset, this study contributes to 
improving accessibility and communication support tools for the 
Indonesian deaf community. 

II. RELATED WORKS 

Various kinds of previous studies have been proposed to 
recognize sign language. Sign languages in various countries 
have different signs, such as studies using Indian [6], Pakistani 
[7], Arabic [8], Bangla [9], Brazilian (Libras) [10], and 
Indonesian Sign Language with the BISINDO model [11]. 

In [6], A CNN-based Indian Sign Language (ISL) 
recognition system was developed to enable real-time hand 
gesture detection via a camera, achieving over 90% accuracy 
and was deployed on mobile devices using TensorFlow Lite and 
Flutter to enhance communication accessibility for the deaf-
mute community. Research [7] Principal Component Analysis 
(PCA) and K-Nearest Neighbors (KNN) were applied, 
achieving 85% accuracy on test data and 80% when evaluated 
via webcam. Research [8] utilized the Faster R-CNN method. 
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Using the ResNet-18 architecture yielded an accuracy of 93.4%, 
while VGG-16 achieved 93.2%. The work in [9] employed the 
YOLOv4 object detection model, obtaining an overall detection 
accuracy of 97.95%. In [10], a CNN-based approach with the 
VGGNet architecture was implemented. In [17], the study 
explored several input image sizes: 32×32 pixels (97.98% 
accuracy), 64×64 (99.42%), 128×128 (97.40%), and 256×256 
(86.99%). Study [11] also adopted a CNN method, comparing 
multiple architectures. The modified version of AlexNet 
achieved an accuracy of 98.6%, while the modified VGG-16 
architecture underperformed with only 3.8%. A novel 
architecture introduced in the same study, referred to as the C 
model, reached 98.3% accuracy. 

Although various deep learning models have been applied in 
previous studies, such as Faster R-CNN [8], YOLOv4 [9], and 
modified architectures of AlexNet and VGG [10] [11], most of 
them require complex setups or large training resources. 
Furthermore, these models were developed for different 
language systems and may not generalize well to the Indonesian 
context. Compared to these methods, CNN offers a balanced 
trade-off between accuracy, computational efficiency, and ease 
of implementation. 

This study focuses on a lightweight CNN model that is 
suitable for small-scale deployment with limited GPU resources. 
Our approach eliminates the need for extensive pre-training or 
large-scale datasets, making it more feasible for real-world 
applications in Indonesia. 

III. METHODS 

The research methodology in this study consists of several 
stages: data collection, data transformation, data splitting, CNN 
model training, prediction, and evaluation. An overview of these 
stages is illustrated in Fig. 1. 

 
Fig. 1. Research stages. 

The study began with the collection of sign language data. A 
total of 5,280 images were captured through self-recording using 
smartphones and webcam cameras. The next stage involved data 
transformation, which included resizing, grayscale conversion, 
data augmentation, and normalization. 

 Once transformed, the data were divided into two main sets: 
training and testing data. The core phase of the study was the 
training of a CNN model using the prepared dataset. Following 

training, the model was evaluated to assess its accuracy. 
Subsequently, testing was conducted using both the test dataset 
and newly captured images from a webcam to evaluate the 
model’s ability to classify and predict sign language gestures in 
real time. 

The following are some basic points that will be used in this 
research: 

A. Data 

The data used in this study consists of images representing 
Indonesian Sign Language (SIBI) hand gestures using the right 
hand. The dataset was collected independently [12], capturing 
variations in hand position, lighting, and background. The 
devices used for data collection included smartphone cameras 
and laptop webcams. The full dataset is accessible online [12]. 

B. Convolutional Neural Network 

Convolutional Neural Networks (CNNs) are widely used for 
tasks such as speech recognition, image classification, and 3D 
object recognition. A typical CNN architecture includes two 
main components: a feature learning component and a fully 
connected layer. The feature learning section consists of 
convolutional layers, ReLU activation functions, and pooling 
layers. The fully connected layer is composed of neurons that 
process the extracted features to perform final classification. An 
overview of the general CNN architecture is presented in Fig. 2. 

 
Fig. 2. Architecture of the CNN. 

Convolution is the fundamental operation in CNNs, 
involving a matrix-based filtering process. This operation 
applies a filter (or kernel) matrix to an input image matrix to 
extract features, as defined in [13]: 

net[i, j] = (x ∗ w)[i, j] = ∑   
m ∑   

n x[m,n] w[i − m, j − n] (1) 

In this equation, 𝑤 denotes the image matrix and 𝑥 denotes 
the filter matrix. The convolution of these matrices results in a 
new feature map representing the output image. Indices 𝑖 and 𝑗 
refer to the image matrix, while 𝑚 and 𝑛 refer to the kernel. 

This study proposes a simple architecture consisting of the 
following layers: 

• Convolutional layer 0, 

• Max pooling layer 0, 

• Convolutional layer 1, 
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• Dropout layer 0, 

• Convolutional layer 2, 

• Max pooling layer 1, 

• Dropout layer1, 

• Flatten layer 

• Two fully connected layers. 

This proposed architecture is illustrated in Fig. 3. 

 
Fig. 3. Architecture model. 

1) Baseline comparison and validation design: To validate 

the effectiveness of the proposed CNN architecture, we 

compared it with a basic CNN baseline model using fewer 

layers and no dropout. Both models were trained on the same 

dataset using identical preprocessing and training parameters. 

The baseline model consisted of a single convolutional layer 

followed by pooling and a fully connected layer. 

Performance comparison between the proposed and baseline 
models is summarized in Table II. The proposed model achieved 
a higher accuracy (87.1%) compared to the baseline model 
(74.5%), and showed better generalization, as indicated by 
closer training and validation accuracy curves. Furthermore, F1-
score, precision, and recall metrics improved by more than 10% 
on average per class. 

This result confirms that the architectural optimizations—
particularly in the number of convolutional filters and dropout 
rates—significantly improved classification performance and 
minimized overfitting. 

C. Evaluation 

The proposed CNN model was evaluated using a confusion 
matrix. This matrix produces four types of values: True Positive 
(TP), True Negative (TN), False Positive (FP), and False 
Negative (FN). These values were used to calculate performance 
metrics, including accuracy, precision, recall, and F1-score for 
each class. The confusion matrix serves as a basis for assessing 
the classification model’s performance. Table I presents the 
layout of the confusion matrix [14]. 

TABLE I.  CONFUSION MATRIX 

Prediction 
Actual Value 

Positive Negative 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (TN) True Negative (TN) 

Definitions: 

• True Positive (TP): Positive instances correctly 
classified. 

• True Negative (TN): Negative instances correctly 
classified. 

• False Positive (FP): Negative instances incorrectly 
classified as positive. 

• False Negative (FN): Positive instances incorrectly 
classified as negative. 

Based on these values, the following metrics were 
computed: 

1) Overall Accuracy: Proportion of correct predictions out 

of total predictions [15][16]: 

Overall Accuracy =
Number of correct predictions

Total Number of predictions
     (2) 

2) Per-class Accuracy: Accuracy calculated for each class 

individually (macro average), while overall accuracy is a micro 

average [15]. 

Accuracy =
TP+TN

TP+TN+FP+FN
         (3) 

3) Precision: Measures the accuracy of positive predictions. 

Precision =
TP

TP+FP
                  (4) 

4) Recall (Sensitivity): Measures the model’s ability to 

correctly detect positive instances. 

Recall =
TP

TP+FN
                  (5) 

5) F1-score: The harmonic mean of precision and recall. 

F1 − score = 2 x 
precision x recall

precision+recall
       (6) 

IV. RESULTS 

A. Dataset Collection 

The dataset used in this study is privately collected, 
comprising 5,280 images captured through self-recording [12]. 
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The data consist of two types of images: 1) high-resolution RGB 
images (3000×3000 pixels) taken using a smartphone camera, 
and 2) lower-resolution grayscale images (250×250 pixels) 
taken using a webcam. 

The dataset includes 24 hand gestures representing the SIBI 
alphabet (letters A to Y, excluding J and Z), with 220 images per 
class. An example of the dataset is shown in Fig. 4. 

 

Fig. 4. Data sample. 

B. Data Transformation 

This stage involves transforming the data into a format 
suitable for training. The following techniques were applied: 

1) Resize: All images were resized to 192×192 pixels and 

converted to grayscale to reduce computational load during 

training. 

2) Grayscale: RGB images, composed of Red, Green, and 

Blue layers, were converted to grayscale using a weighted 

average of RGB channels. The grayscale transformation 

process is illustrated in Fig. 5 and Fig. 6. 

 
Fig. 5. RGB Data sample 

 
Fig. 6. Grayscale image. 

3) Data augmentation: Augmentation techniques were 

applied to increase dataset diversity. Thirty images per class 

were selected for transformation using random rotation (0.085), 

random zoom (0.1), and random translation (0.15). Images 

exceeding frame bounds were padded with black (zero 

constant). Sample augmentation results are shown in Fig. 7. 

 
Fig. 7. Augmentation data  sample. 
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C. Data Split 

After augmentation, the dataset increased to 6,000 images 
(5,280 original + 720 augmented). The data were split as 
follows: 68% for training, 17% for validation, and 15% for 
testing. 

D. Training Process 

The CNN model was trained using a computer with an Intel 
Core i5-10210U CPU and NVIDIA GeForce MX330 GPU 
(2GB VRAM, GDDR5). A total of 720 images were used for 
testing. 

Five different CNN configurations were evaluated by 
adjusting the number of convolution filters and dropout rates, 
while keeping filter size, stride, and padding constant. Table II 
lists the model architectures tested. The training used several 
parameters shown in Table III. 

TABLE II.  TRAINING PARAMETERS 

Parameter Value 

Optimizer Adam 

Learning Rate 0.001 

Loss Function Categorical Cross-entropy 

Epochs 80 

TABLE III.  MODEL ARCHITECTURE TESTING 

No. 
Parameter 

Conv0 Dropout0 Conv1 Conv2 Dropout1 

1 48 - 96 192 - 

2 24 - 48 96 - 

3 24 0,35 48 96 0,25 

4 48 0,35 96 192 0,25 

5 24 0,85 48 48 0,75 

E. Testing Model 

Testing the model from the CNN algorithm that has been 
made, then testing using a confusion matrix by testing the image 
from the test data, as many as 15% or 900 data units. This test 
was carried out five times to determine the level of accuracy, 
duration of training, accuracy graph, loss graph, and whether the 
two graphs were overfit or underfit. The parameters that are 
changed are the number of convolution filters and dropouts, 
while the filter size, stride, and padding in the filter are not 
changed. Table IV is the result of a comparison of the training 
that has been done. 

F. Real-Time Testing 

The architecture used for real-time testing corresponds to 
configuration number 3 in Table IV, which previously 
demonstrated the best performance. The testing was conducted 
using the right hand to perform SIBI (Sistem Isyarat Bahasa 
Indonesia) sign language gestures within the detection area of a 
standard laptop webcam. The system was implemented as a 
desktop application. 

The testing results, including accuracy per class, are listed in 
Table V. The model achieved an average accuracy of 90.25%. 

However, lower accuracy was observed for the letters M and N, 
which can be attributed to their visual similarity, making them 
more difficult to distinguish during classification. 

TABLE IV.  TRAINING COMPARISON RESULTS 

No. Accuracy Training Duration 

1 82,4 10m 39,3s 

2 80,0 6m 8,4s 

3 87,1 6m 20,4s 

4 90,3 11m 6,2s 

5 46,6 5m 44,9s 

TABLE V.  REAL-TIME TEST RESULTS 

Input Class Result (%) 

 

A 89 

 

B 97 

 

C 98 

 

D 96 

 

E 91 

 

F 89 

 

G 96 

 

H 100 

 

I 88 

 

K 97 
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Input Class Result (%) 

 

L 96 

 

M 70 

 

N 63 

 

O 93 

 

P 84 

 

Q 84 

 

R 89 

 

S 91 

 

T 90 

 

U 94 

 

V 91 

 

W 93 

 

X 96 

 

Y 91 

V. DISCUSSION 

The results of the training, along with the corresponding 
graphs and confusion matrix shown in Table III, are presented 
as follows: 

1) First test: In this test, the model configuration 

corresponds to Test 1 in Table IV. The training and validation 

accuracy graphs, along with the confusion matrix, are shown in 

Fig. 8 and Fig. 9. The graph indicates signs of overfitting, as the 

validation accuracy plateaus after the 20th epoch and exhibits a 

substantial gap compared to the training accuracy. 

Additionally, the loss graph shows a noticeable increase 

starting from the 45th epoch, further confirming the presence of 

overfitting. 

 
Fig. 8. Graph of the first test result. 

 
Fig. 9. Confusion matrix for the first test. 

2) Second test: This test uses the configuration listed as 

Test 2 in Table IV. The training and validation graph, as well 

as the confusion matrix are presented in Fig. 10 and Fig. 11. 

According to [18], overfitting can occur when the neural 
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network fails to improve its performance during training. In this 

case, signs of overfitting appear after the 20th epoch, where 

validation accuracy stagnates and deviates significantly from 

training accuracy. The loss curve also rises steadily without 

decreasing as training progresses. 

 
Fig. 10. Graph of the second test result. 

 
Fig. 11. Confusion matrix for the second test. 

3) Third test: The configuration for this test is listed as 

Test 3 in Table IV. The training and validation graphs, along 

with the confusion matrix, are shown in Fig. 12 and Fig. 13. In 

this test, validation accuracy closely follows training accuracy, 

and the validation loss also aligns well with training loss 

throughout the training process. This indicates that the model 

avoids both underfitting and overfitting, resulting in high and 

stable accuracy. 

4) Fourth test: The model configuration in this test is listed 

as Test 4 in Table IV. The corresponding graphs and confusion 

matrix are presented in Fig. 14 and Fig. 15. As noted in [9], 

convolutional layers with a large number of filters tend to 

require longer training times. This configuration yields the 

highest accuracy among the tests; however, slight overfitting is 

observed after the 25th epoch, where the validation accuracy 

shows minimal improvement. 

 
Fig. 12. Graph of the third test result. 

 
Fig. 13. Confusion matrix for the third test. 
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Fig. 14. Graph of the fourth test result. 

 
Fig. 15. Confusion matrix for the fourth test. 

5) Fifth Test: This test uses the configuration listed as 

Test 5 in Table IV. The corresponding training graphs and 

confusion matrix are shown in Fig. 16 and Fig. 17. This model 

employs the lowest number of filters among all configurations. 

As stated in [13], network performance can be influenced by 

the depth of the architecture. In this test, the model achieves the 

lowest accuracy and the highest loss. The graph indicates 

underfitting, as the validation accuracy exceeds the training 

accuracy, suggesting the model is not learning effectively. 

Among the five model architectures tested in Table IV, 
Test 3 yields the best performance, achieving high accuracy 
without signs of overfitting or underfitting. The final confusion 
matrix used to calculate per-class accuracy, precision, recall, and 
F1-score is presented in Fig. 18. While this figure demonstrates 

high overall accuracy, the precision, recall, and F1-score values 
are relatively lower, indicating potential room for improvement 
in class-level predictions. 

 
Fig. 16. Graph of the fifth test result. 

 
Fig. 17. Confusion matrix for the fifth test. 

Compared to the baseline CNN model without architectural 
optimization, the proposed model demonstrates a significant 
improvement in both accuracy and robustness. While the 
baseline model produced acceptable results for simple gesture 
recognition, it suffered from overfitting and lower 
generalization on real-time webcam input. 

Our optimized architecture achieved performance 
comparable to or exceeding that of related studies [9][10], 
despite being trained on a smaller, personalized dataset. This 
highlights that even lightweight CNN architectures can deliver 
strong performance when properly tuned and applied to targeted 
data. 
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Fig. 18. Confusion matrix result. 

Despite the promising results, this study has several 
limitations. The dataset used was relatively small and collected 
in controlled conditions, which may not fully capture variations 
in lighting, background, and hand positioning encountered in 
real-world environments. Furthermore, the scope of recognition 
was restricted to 24 SIBI alphabet signs, excluding letters J and 
Z due to their dynamic motion-based representation. These 
limitations may affect the model’s generalizability when applied 
to more diverse or continuous sign language inputs. 

Nevertheless, the findings demonstrate that lightweight 
CNN architectures can be effectively optimized to deliver robust 
performance even with modest datasets. This highlights the 
potential for deploying such models in practical applications, 
such as educational tools, real-time communication aids, and 
mobile platforms designed to bridge communication gaps for the 
deaf community. 

Future research could focus on expanding the dataset to 
include more participants, environmental variations, and 
dynamic gestures such as J and Z. Integrating the model with 
real-time mobile or web-based applications would also provide 
practical validation of its effectiveness in everyday scenarios. 
Additionally, exploring advanced architectures, such as transfer 
learning or hybrid CNN–RNN models, may further improve 
recognition accuracy and support continuous sign language 
translation. 

VI. CONCLUSION 

This study demonstrates that optimizing the number of 
convolutional filters and dropout rates significantly improves 
the performance of CNN-based models for Indonesian Sign 
Language (SIBI) recognition. The best configuration achieved 
87.1% accuracy on the test set and 90.25% accuracy in real-time 
scenarios, with no indication of overfitting or underfitting. 

The results indicate that lightweight CNN architectures, 
when properly tuned, can perform effectively even in resource-
constrained environments. Compared to heavier architectures 
like Faster R-CNN, YOLOv4, AlexNet, or VGG reported in 
other studies, the proposed model offers advantages in terms of 
computational efficiency and speed. However, a direct empirical 
comparison on the same dataset remains to be conducted to fully 
validate claims of superiority. 

Currently, the system relies on cropped hand images, 
limiting its flexibility in real-world scenarios. Automatic hand 
detection through object detection methods has not yet been 
implemented, representing an important avenue for future 
improvement. 

Future work will focus on extending the model to recognize 
dynamic gestures, such as the letters J and Z, integrating object 
detection techniques to automatically identify relevant hand 
regions, and deploying the system as a mobile-based application 
for real-time sign language interpretation. Incorporating these 
enhancements will improve robustness and usability, making the 
system more practical for inclusive communication tools. 
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