
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

724 | P a g e
www.ijacsa.thesai.org

Optimization of Convolutional Neural Network

Algorithm for Indonesian Sign Language

Classification

Alvin Bintang Rebrastya1, Sumarni Adi2*, Hanif Al Fatta3,

Windha Mega Pradnya Dhuhita4, Ika Nur Fajri5, Muhammad Hanafi6

Department of Informatics, Universitas Amikom Yogyakarta, Yogyakarta, Indonesia 1
Faculty of Computer Science, Universitas Amikom Yogyakarta, Yogyakarta, Indonesia 2, 3, 4, 5

Magister of Informatics Engineering, Universitas Amikom Yogyakarta, Yogyakarta, Indonesia 6

Abstract—Sign language serves as a primary mode of

communication for individuals who are deaf or speech impaired,

using hand gestures to convey meaning visually. While it facilitates

communication among the deaf community, it presents challenges

for interaction with those who rely on spoken language. This study

aims to recognize hand signs representing the letters A to Y

(excluding J and Z) in the Indonesian Sign Language (SIBI) using

image-based input. A custom dataset was collected through

personal photo shoots and used to train a Convolutional Neural

Network (CNN) implemented in Python using the TensorFlow

library. The study also focuses on optimizing the CNN

architecture to achieve high classification accuracy. Evaluation

using a confusion matrix on the test data resulted in an overall

accuracy of 87.1%, while real-time testing achieved an accuracy of

90.25%. The number of convolutional filters and dropout rates

was adjusted to prevent underfitting and overfitting during model

training.

Keywords—Indonesian Sign Language; hand sign recognition;

image classification; Convolutional Neural Network

I. INTRODUCTION

According to the World Health Organization, more than 5%
of the global population, approximately 430 million people,
experience hearing loss greater than 35 decibels (dB) [1]. In
Indonesia, around 7.03% of individuals with disabilities are
categorized as deaf [2]. Deaf individuals use sign language to
communicate, forming words and sentences through hand
gestures. Sign language is a visual-gestural language that relies
on movement and perception through vision [3]. It enables
communication within the deaf community; however,
interactions with people who rely on spoken language remain
challenging.

In Indonesia, two main sign language models are used: the
Indonesian Sign System (SIBI) and the Indonesian Sign
Language (BISINDO). SIBI employs right-hand movements to
represent alphabetical characters and is officially standardized
by the Indonesian Ministry of Education and Culture [4].
BISINDO, in contrast, uses both hands and has developed
organically within Indonesian society, resulting in regional
variations. While BISINDO is widely used informally, SIBI
remains the formal and standardized model.

Recent advancements in deep learning technology offer
potential solutions for automating sign language recognition.
One prominent algorithm in this domain is the Convolutional
Neural Network (CNN), a type of deep learning model designed
to process visual data [5]. Despite many studies applying CNNs
for sign language recognition in various countries [6–11], there
is limited research focusing on Indonesian Sign Language,
particularly the SIBI model, using custom datasets collected in
varied real-world conditions. This gap highlights the need for
approaches tailored to the Indonesian context.

This study aims to address this gap by developing and
optimizing a CNN-based model for classifying 24 SIBI hand
signs (excluding J and Z). The model is trained on a custom
image dataset collected via smartphone and webcam. The
objectives of this research are to:

1) Design a CNN architecture suitable for classifying

Indonesian SIBI signs.

2) Evaluate the impact of convolutional filter

configurations and dropout rates on model performance.

3) Validate the model’s accuracy through offline and real-

time testing using confusion matrix analysis.

By providing a lightweight, efficient, and accurate CNN
model trained on a custom dataset, this study contributes to
improving accessibility and communication support tools for the
Indonesian deaf community.

II. RELATED WORKS

Various kinds of previous studies have been proposed to
recognize sign language. Sign languages in various countries
have different signs, such as studies using Indian [6], Pakistani
[7], Arabic [8], Bangla [9], Brazilian (Libras) [10], and
Indonesian Sign Language with the BISINDO model [11].

In [6], A CNN-based Indian Sign Language (ISL)
recognition system was developed to enable real-time hand
gesture detection via a camera, achieving over 90% accuracy
and was deployed on mobile devices using TensorFlow Lite and
Flutter to enhance communication accessibility for the deaf-
mute community. Research [7] Principal Component Analysis
(PCA) and K-Nearest Neighbors (KNN) were applied,
achieving 85% accuracy on test data and 80% when evaluated
via webcam. Research [8] utilized the Faster R-CNN method.

*Corresponding author.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

725 | P a g e
www.ijacsa.thesai.org

Using the ResNet-18 architecture yielded an accuracy of 93.4%,
while VGG-16 achieved 93.2%. The work in [9] employed the
YOLOv4 object detection model, obtaining an overall detection
accuracy of 97.95%. In [10], a CNN-based approach with the
VGGNet architecture was implemented. In [17], the study
explored several input image sizes: 32×32 pixels (97.98%
accuracy), 64×64 (99.42%), 128×128 (97.40%), and 256×256
(86.99%). Study [11] also adopted a CNN method, comparing
multiple architectures. The modified version of AlexNet
achieved an accuracy of 98.6%, while the modified VGG-16
architecture underperformed with only 3.8%. A novel
architecture introduced in the same study, referred to as the C
model, reached 98.3% accuracy.

Although various deep learning models have been applied in
previous studies, such as Faster R-CNN [8], YOLOv4 [9], and
modified architectures of AlexNet and VGG [10] [11], most of
them require complex setups or large training resources.
Furthermore, these models were developed for different
language systems and may not generalize well to the Indonesian
context. Compared to these methods, CNN offers a balanced
trade-off between accuracy, computational efficiency, and ease
of implementation.

This study focuses on a lightweight CNN model that is
suitable for small-scale deployment with limited GPU resources.
Our approach eliminates the need for extensive pre-training or
large-scale datasets, making it more feasible for real-world
applications in Indonesia.

III. METHODS

The research methodology in this study consists of several
stages: data collection, data transformation, data splitting, CNN
model training, prediction, and evaluation. An overview of these
stages is illustrated in Fig. 1.

Fig. 1. Research stages.

The study began with the collection of sign language data. A
total of 5,280 images were captured through self-recording using
smartphones and webcam cameras. The next stage involved data
transformation, which included resizing, grayscale conversion,
data augmentation, and normalization.

 Once transformed, the data were divided into two main sets:
training and testing data. The core phase of the study was the
training of a CNN model using the prepared dataset. Following

training, the model was evaluated to assess its accuracy.
Subsequently, testing was conducted using both the test dataset
and newly captured images from a webcam to evaluate the
model’s ability to classify and predict sign language gestures in
real time.

The following are some basic points that will be used in this
research:

A. Data

The data used in this study consists of images representing
Indonesian Sign Language (SIBI) hand gestures using the right
hand. The dataset was collected independently [12], capturing
variations in hand position, lighting, and background. The
devices used for data collection included smartphone cameras
and laptop webcams. The full dataset is accessible online [12].

B. Convolutional Neural Network

Convolutional Neural Networks (CNNs) are widely used for
tasks such as speech recognition, image classification, and 3D
object recognition. A typical CNN architecture includes two
main components: a feature learning component and a fully
connected layer. The feature learning section consists of
convolutional layers, ReLU activation functions, and pooling
layers. The fully connected layer is composed of neurons that
process the extracted features to perform final classification. An
overview of the general CNN architecture is presented in Fig. 2.

Fig. 2. Architecture of the CNN.

Convolution is the fundamental operation in CNNs,
involving a matrix-based filtering process. This operation
applies a filter (or kernel) matrix to an input image matrix to
extract features, as defined in [13]:

net[i, j] = (x ∗ w)[i, j] = ∑
m ∑

n x[m,n] w[i − m, j − n] (1)

In this equation, 𝑤 denotes the image matrix and 𝑥 denotes
the filter matrix. The convolution of these matrices results in a
new feature map representing the output image. Indices 𝑖 and 𝑗
refer to the image matrix, while 𝑚 and 𝑛 refer to the kernel.

This study proposes a simple architecture consisting of the
following layers:

• Convolutional layer 0,

• Max pooling layer 0,

• Convolutional layer 1,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

726 | P a g e
www.ijacsa.thesai.org

• Dropout layer 0,

• Convolutional layer 2,

• Max pooling layer 1,

• Dropout layer1,

• Flatten layer

• Two fully connected layers.

This proposed architecture is illustrated in Fig. 3.

Fig. 3. Architecture model.

1) Baseline comparison and validation design: To validate

the effectiveness of the proposed CNN architecture, we

compared it with a basic CNN baseline model using fewer

layers and no dropout. Both models were trained on the same

dataset using identical preprocessing and training parameters.

The baseline model consisted of a single convolutional layer

followed by pooling and a fully connected layer.

Performance comparison between the proposed and baseline
models is summarized in Table II. The proposed model achieved
a higher accuracy (87.1%) compared to the baseline model
(74.5%), and showed better generalization, as indicated by
closer training and validation accuracy curves. Furthermore, F1-
score, precision, and recall metrics improved by more than 10%
on average per class.

This result confirms that the architectural optimizations—
particularly in the number of convolutional filters and dropout
rates—significantly improved classification performance and
minimized overfitting.

C. Evaluation

The proposed CNN model was evaluated using a confusion
matrix. This matrix produces four types of values: True Positive
(TP), True Negative (TN), False Positive (FP), and False
Negative (FN). These values were used to calculate performance
metrics, including accuracy, precision, recall, and F1-score for
each class. The confusion matrix serves as a basis for assessing
the classification model’s performance. Table I presents the
layout of the confusion matrix [14].

TABLE I. CONFUSION MATRIX

Prediction
Actual Value

Positive Negative

Positive True Positive (TP) False Positive (FP)

Negative False Negative (TN) True Negative (TN)

Definitions:

• True Positive (TP): Positive instances correctly
classified.

• True Negative (TN): Negative instances correctly
classified.

• False Positive (FP): Negative instances incorrectly
classified as positive.

• False Negative (FN): Positive instances incorrectly
classified as negative.

Based on these values, the following metrics were
computed:

1) Overall Accuracy: Proportion of correct predictions out

of total predictions [15][16]:

Overall Accuracy =
Number of correct predictions

Total Number of predictions
 (2)

2) Per-class Accuracy: Accuracy calculated for each class

individually (macro average), while overall accuracy is a micro

average [15].

Accuracy =
TP+TN

TP+TN+FP+FN
 (3)

3) Precision: Measures the accuracy of positive predictions.

Precision =
TP

TP+FP
 (4)

4) Recall (Sensitivity): Measures the model’s ability to

correctly detect positive instances.

Recall =
TP

TP+FN
 (5)

5) F1-score: The harmonic mean of precision and recall.

F1 − score = 2 x
precision x recall

precision+recall
 (6)

IV. RESULTS

A. Dataset Collection

The dataset used in this study is privately collected,
comprising 5,280 images captured through self-recording [12].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

727 | P a g e
www.ijacsa.thesai.org

The data consist of two types of images: 1) high-resolution RGB
images (3000×3000 pixels) taken using a smartphone camera,
and 2) lower-resolution grayscale images (250×250 pixels)
taken using a webcam.

The dataset includes 24 hand gestures representing the SIBI
alphabet (letters A to Y, excluding J and Z), with 220 images per
class. An example of the dataset is shown in Fig. 4.

Fig. 4. Data sample.

B. Data Transformation

This stage involves transforming the data into a format
suitable for training. The following techniques were applied:

1) Resize: All images were resized to 192×192 pixels and

converted to grayscale to reduce computational load during

training.

2) Grayscale: RGB images, composed of Red, Green, and

Blue layers, were converted to grayscale using a weighted

average of RGB channels. The grayscale transformation

process is illustrated in Fig. 5 and Fig. 6.

Fig. 5. RGB Data sample

Fig. 6. Grayscale image.

3) Data augmentation: Augmentation techniques were

applied to increase dataset diversity. Thirty images per class

were selected for transformation using random rotation (0.085),

random zoom (0.1), and random translation (0.15). Images

exceeding frame bounds were padded with black (zero

constant). Sample augmentation results are shown in Fig. 7.

Fig. 7. Augmentation data sample.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

728 | P a g e
www.ijacsa.thesai.org

C. Data Split

After augmentation, the dataset increased to 6,000 images
(5,280 original + 720 augmented). The data were split as
follows: 68% for training, 17% for validation, and 15% for
testing.

D. Training Process

The CNN model was trained using a computer with an Intel
Core i5-10210U CPU and NVIDIA GeForce MX330 GPU
(2GB VRAM, GDDR5). A total of 720 images were used for
testing.

Five different CNN configurations were evaluated by
adjusting the number of convolution filters and dropout rates,
while keeping filter size, stride, and padding constant. Table II
lists the model architectures tested. The training used several
parameters shown in Table III.

TABLE II. TRAINING PARAMETERS

Parameter Value

Optimizer Adam

Learning Rate 0.001

Loss Function Categorical Cross-entropy

Epochs 80

TABLE III. MODEL ARCHITECTURE TESTING

No.
Parameter

Conv0 Dropout0 Conv1 Conv2 Dropout1

1 48 - 96 192 -

2 24 - 48 96 -

3 24 0,35 48 96 0,25

4 48 0,35 96 192 0,25

5 24 0,85 48 48 0,75

E. Testing Model

Testing the model from the CNN algorithm that has been
made, then testing using a confusion matrix by testing the image
from the test data, as many as 15% or 900 data units. This test
was carried out five times to determine the level of accuracy,
duration of training, accuracy graph, loss graph, and whether the
two graphs were overfit or underfit. The parameters that are
changed are the number of convolution filters and dropouts,
while the filter size, stride, and padding in the filter are not
changed. Table IV is the result of a comparison of the training
that has been done.

F. Real-Time Testing

The architecture used for real-time testing corresponds to
configuration number 3 in Table IV, which previously
demonstrated the best performance. The testing was conducted
using the right hand to perform SIBI (Sistem Isyarat Bahasa
Indonesia) sign language gestures within the detection area of a
standard laptop webcam. The system was implemented as a
desktop application.

The testing results, including accuracy per class, are listed in
Table V. The model achieved an average accuracy of 90.25%.

However, lower accuracy was observed for the letters M and N,
which can be attributed to their visual similarity, making them
more difficult to distinguish during classification.

TABLE IV. TRAINING COMPARISON RESULTS

No. Accuracy Training Duration

1 82,4 10m 39,3s

2 80,0 6m 8,4s

3 87,1 6m 20,4s

4 90,3 11m 6,2s

5 46,6 5m 44,9s

TABLE V. REAL-TIME TEST RESULTS

Input Class Result (%)

A 89

B 97

C 98

D 96

E 91

F 89

G 96

H 100

I 88

K 97

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

729 | P a g e
www.ijacsa.thesai.org

Input Class Result (%)

L 96

M 70

N 63

O 93

P 84

Q 84

R 89

S 91

T 90

U 94

V 91

W 93

X 96

Y 91

V. DISCUSSION

The results of the training, along with the corresponding
graphs and confusion matrix shown in Table III, are presented
as follows:

1) First test: In this test, the model configuration

corresponds to Test 1 in Table IV. The training and validation

accuracy graphs, along with the confusion matrix, are shown in

Fig. 8 and Fig. 9. The graph indicates signs of overfitting, as the

validation accuracy plateaus after the 20th epoch and exhibits a

substantial gap compared to the training accuracy.

Additionally, the loss graph shows a noticeable increase

starting from the 45th epoch, further confirming the presence of

overfitting.

Fig. 8. Graph of the first test result.

Fig. 9. Confusion matrix for the first test.

2) Second test: This test uses the configuration listed as

Test 2 in Table IV. The training and validation graph, as well

as the confusion matrix are presented in Fig. 10 and Fig. 11.

According to [18], overfitting can occur when the neural

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

730 | P a g e
www.ijacsa.thesai.org

network fails to improve its performance during training. In this

case, signs of overfitting appear after the 20th epoch, where

validation accuracy stagnates and deviates significantly from

training accuracy. The loss curve also rises steadily without

decreasing as training progresses.

Fig. 10. Graph of the second test result.

Fig. 11. Confusion matrix for the second test.

3) Third test: The configuration for this test is listed as

Test 3 in Table IV. The training and validation graphs, along

with the confusion matrix, are shown in Fig. 12 and Fig. 13. In

this test, validation accuracy closely follows training accuracy,

and the validation loss also aligns well with training loss

throughout the training process. This indicates that the model

avoids both underfitting and overfitting, resulting in high and

stable accuracy.

4) Fourth test: The model configuration in this test is listed

as Test 4 in Table IV. The corresponding graphs and confusion

matrix are presented in Fig. 14 and Fig. 15. As noted in [9],

convolutional layers with a large number of filters tend to

require longer training times. This configuration yields the

highest accuracy among the tests; however, slight overfitting is

observed after the 25th epoch, where the validation accuracy

shows minimal improvement.

Fig. 12. Graph of the third test result.

Fig. 13. Confusion matrix for the third test.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

731 | P a g e
www.ijacsa.thesai.org

Fig. 14. Graph of the fourth test result.

Fig. 15. Confusion matrix for the fourth test.

5) Fifth Test: This test uses the configuration listed as

Test 5 in Table IV. The corresponding training graphs and

confusion matrix are shown in Fig. 16 and Fig. 17. This model

employs the lowest number of filters among all configurations.

As stated in [13], network performance can be influenced by

the depth of the architecture. In this test, the model achieves the

lowest accuracy and the highest loss. The graph indicates

underfitting, as the validation accuracy exceeds the training

accuracy, suggesting the model is not learning effectively.

Among the five model architectures tested in Table IV,
Test 3 yields the best performance, achieving high accuracy
without signs of overfitting or underfitting. The final confusion
matrix used to calculate per-class accuracy, precision, recall, and
F1-score is presented in Fig. 18. While this figure demonstrates

high overall accuracy, the precision, recall, and F1-score values
are relatively lower, indicating potential room for improvement
in class-level predictions.

Fig. 16. Graph of the fifth test result.

Fig. 17. Confusion matrix for the fifth test.

Compared to the baseline CNN model without architectural
optimization, the proposed model demonstrates a significant
improvement in both accuracy and robustness. While the
baseline model produced acceptable results for simple gesture
recognition, it suffered from overfitting and lower
generalization on real-time webcam input.

Our optimized architecture achieved performance
comparable to or exceeding that of related studies [9][10],
despite being trained on a smaller, personalized dataset. This
highlights that even lightweight CNN architectures can deliver
strong performance when properly tuned and applied to targeted
data.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

732 | P a g e
www.ijacsa.thesai.org

Fig. 18. Confusion matrix result.

Despite the promising results, this study has several
limitations. The dataset used was relatively small and collected
in controlled conditions, which may not fully capture variations
in lighting, background, and hand positioning encountered in
real-world environments. Furthermore, the scope of recognition
was restricted to 24 SIBI alphabet signs, excluding letters J and
Z due to their dynamic motion-based representation. These
limitations may affect the model’s generalizability when applied
to more diverse or continuous sign language inputs.

Nevertheless, the findings demonstrate that lightweight
CNN architectures can be effectively optimized to deliver robust
performance even with modest datasets. This highlights the
potential for deploying such models in practical applications,
such as educational tools, real-time communication aids, and
mobile platforms designed to bridge communication gaps for the
deaf community.

Future research could focus on expanding the dataset to
include more participants, environmental variations, and
dynamic gestures such as J and Z. Integrating the model with
real-time mobile or web-based applications would also provide
practical validation of its effectiveness in everyday scenarios.
Additionally, exploring advanced architectures, such as transfer
learning or hybrid CNN–RNN models, may further improve
recognition accuracy and support continuous sign language
translation.

VI. CONCLUSION

This study demonstrates that optimizing the number of
convolutional filters and dropout rates significantly improves
the performance of CNN-based models for Indonesian Sign
Language (SIBI) recognition. The best configuration achieved
87.1% accuracy on the test set and 90.25% accuracy in real-time
scenarios, with no indication of overfitting or underfitting.

The results indicate that lightweight CNN architectures,
when properly tuned, can perform effectively even in resource-
constrained environments. Compared to heavier architectures
like Faster R-CNN, YOLOv4, AlexNet, or VGG reported in
other studies, the proposed model offers advantages in terms of
computational efficiency and speed. However, a direct empirical
comparison on the same dataset remains to be conducted to fully
validate claims of superiority.

Currently, the system relies on cropped hand images,
limiting its flexibility in real-world scenarios. Automatic hand
detection through object detection methods has not yet been
implemented, representing an important avenue for future
improvement.

Future work will focus on extending the model to recognize
dynamic gestures, such as the letters J and Z, integrating object
detection techniques to automatically identify relevant hand
regions, and deploying the system as a mobile-based application
for real-time sign language interpretation. Incorporating these
enhancements will improve robustness and usability, making the
system more practical for inclusive communication tools.

ACKNOWLEDGMENT

This research was funded through a collaboration between
the Department of Information Systems and the Department of
Research and Community Services at Universitas Amikom
Yogyakarta, Indonesia.

REFERENCES

[1] World Health Organization, “Deafness and Hearing Loss,” 2021.

https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-

loss (accessed Jul. 09, 2022).

[2] A. Harpini, “Disabilitas Rungu,” Pusat Data dan Informasi Kementerian

Kesehatan Republik Indonesia, 2019.

https://pusdatin.kemkes.go.id/resources/download/pusdatin/infodatin/inf

odatin-tunarungu-2019.pdf (accessed Jul. 10, 2022).

[3] S. T. Isma, “Meneliti Bahasa Isyarat dalam Perspektif Variasi Bahasa,”

2018. [Online]. Available:

http://kbi.kemdikbud.go.id/kbi_back/file/dokumen_makalah/dokumen_

makalah_1540468871.pdf.

[4] “Kamus SIBI,” Kementerian Pendidikan dan Kebudayaan dan Lembaga

Penelitian dan Pengembangan Sistem Isyarat Bahasa Indonesia, 2020.

https://pmpk.kemdikbud.go.id/sibi/ (accessed Jul. 14, 2022).

[5] TensorFlow Team, “Distributed training with TensorFlow,” TensorFlow,

2024. [Online]. Available:

https://www.tensorflow.org/guide/distributed_training.

[6] A. Deshmukh, “Real-Time Indian Sign Language Recognition Using

CNNs for Communication Accessibility,” International Journal of

Multidisciplinary Research and Analysis, vol. 7, no. 9, pp. 4447-4453,

2024, doi: 10.47191/ijmra/v7-i09-41.

[7] M. S. Arshad Malik, N. Kousar, T. Abdullah, M. Ahmed, F. Rasheed, and

M. Awais, “Pakistan sign language detection using PCA and KNN,” Int.

J. Adv. Comput. Sci. Appl., vol. 9, no. 4, pp. 78–81, 2018, doi:

10.14569/IJACSA.2018.090414.

[8] R. A. Alawwad, O. Bchir, and M. M. Ben Ismail, “Arabic Sign Language

Recognition using Faster R-CNN,” Int. J. Adv. Comput. Sci. Appl., vol.

12, no. 3, pp. 692–700, 2021, doi: 10.14569/IJACSA.2021.0120380.

[9] D. Talukder and F. Jahara, “Real-Time Bangla Sign Language Detection

with Sentence and Speech Generation,” ICCIT 2020 - 23rd Int. Conf.

Comput. Inf. Technol. Proc., no. April, 2020, doi:

10.1109/ICCIT51783.2020.9392693.

[10] J. Rocha, J. Lensk, T. Ferreira, and M. Ferreira, “Towards a Tool to

Translate Brazilian Sign Language (Libras) to Brazilian Portuguese and

Improve Communication with Deaf,” Proc. IEEE Symp. Vis. Lang.

0

0.2

0.4

0.6

0.8

1
A

B
C

D

E

F

G

H

I

K

L
M

N
O

P

Q

R

S

T

U

V

W

X
Y

Accuracy Precision Recall F1 Score

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

733 | P a g e
www.ijacsa.thesai.org

Human-Centric Comput. VL/HCC, vol. 2020-Augus, no. July, 2020, doi:

10.1109/VL/HCC50065.2020.9127257.

[11] S. Dwijayanti, Hermawati, S. I. Taqiyyah, H. Hikmarika, and B. Y.

Suprapto, “Indonesia Sign Language Recognition using Convolutional

Neural Network,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 10, pp.

415–422, 2021, doi: 10.14569/IJACSA.2021.0121046.

[12] A. B. Rebrastya, “Indonesian Sign Language (SIBI) Dataset,” 2022.

https://www.kaggle.com/datasets/alvinbintang/sibi-dataset.

[13] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a

convolutional neural network,” Proc. 2017 Int. Conf. Eng. Technol. ICET

2017, vol. 2018-Janua, no. April 2018, pp. 1–6, 2018, doi:

10.1109/ICEngTechnol.2017.8308186.

[14] V. Inacio, F. Carvalho, R. Rodrigues, dan A. Ferreira, “Statistical

evaluation of medical tests,” arXiv, 2020. [Online]. Available:

https://arxiv.org/abs/2007.07687.

[15] S. Tangirala, “Evaluating the impact of GINI index and information gain

on classification using decision tree classifier algorithm,” Int. J. Adv.

Comput. Sci. Appl., vol. 11, no. 2, pp. 612–619, 2020, doi:

10.14569/ijacsa.2020.0110277.

[16] Z. Mahmood, L. Jamel, D. A. Salem, and I. Ashraf, “Improving learning

from the complex multi-class imbalanced and overlapped data by

mapping into higher dimension using SVM++,” Scientific Reports, vol.

15, no. 31245, 2025. [Online]. Available:

https://www.nature.com/articles/s41598-025-13929-w.

[17] T. Al-Shehari, M. Kadrie, M. N. Al-Mhiqani, T. Alfakih, H. Alsalman,

M. Uddin, S. S. Ullah, and A. Dandoush, “Comparative evaluation of data

imbalance addressing techniques for CNN-based insider threat detection,”

Scientific Reports, vol. 14, no. 24715, 2024. [Online]. Available:

https://www.nature.com/articles/s41598-024-73510-9.

[18] H. Li, G. K. Rajbahadur, D. Lin, C.-P. Bezemer, Z. Ming, and J. Jiang,

“Keeping deep learning models in check: A history-based approach to

mitigate overfitting,” arXiv, 2024. [Online]. Available:

https://arxiv.org/abs/2401.10359.

