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Abstract—Ascertaining fatigue in elderly people is crucial 

both for preventing future health complications and for 

enhancing their quality of life. In this paper, we present an 

embedded system for real-time fatigue detection and monitoring 

based on electrocardiogram (ECG) signals, leveraging cost-

effective sensors and advanced deep learning architectures. The 

proposed framework integrates an AD8232 ECG sensor with an 

ESP32/Raspberry Pi platform for continuous signal acquisition, 

followed by preprocessing through a 4th-order Butterworth 

bandpass filter, feature extraction, dimensionality reduction with 

PCA, and classification using recurrent neural network models. 

Unlike previous studies relying on multi-sensor or image-based 

approaches, our solution demonstrates high efficiency, 

scalability, and affordability by employing a single low-cost ECG 

sensor. Three neural architectures were evaluated: standard 

Recurrent Neural Networks (RNN), Long Short-Term Memory 

(LSTM), and Gated Recurrent Unit (GRU). Among them, the 

GRU model achieved the highest accuracy (98.86%), followed by 

LSTM (97.73%), whereas standard RNNs lagged behind 

(82.76%). Experimental results confirm the robustness of GRU 

in capturing temporal dependencies in ECG data, outperforming 

other models in both accuracy and computational efficiency. This 

study highlights the feasibility of deploying lightweight yet 

powerful AI models in embedded healthcare systems for elderly 

individuals. By enabling early detection of fatigue as a critical 

risk factor for falls, cardiovascular incidents, and reduced 

autonomy. Our approach offers significant societal benefits, 

including preventive care, reduced hospitalization costs, and 

improved independence. Future work will extend the dataset and 

validate system robustness in real-world environments to 

enhance clinical applicability. 
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I. INTRODUCTION 

Fatigue is a manifestation that is commonly bred from 
reproductive responses to stressors, situations, experiences, or 
psychological conditions. It is typically described as the 
individual's experience of energy exhaustion, either physical or 
mental, that hinders them in completing necessary or wanted 
tasks (energy deficiency). Fatigue may present as general 
tiredness, or more specifically, symptoms such as muscle 
soreness. Physical fatigue is the inability to maintain activity at 
normal levels, and mental fatigue occurs when the brain runs 
out of energy stores and can no longer continue working as 

normal. The literature identifies six main categories of fatigue: 
social, emotional, physical, pain-related, mental, and induced 
by chronic illnesses. These categories are often grouped into 
physical and mental fatigue to highlight their distinct effects 
[1]. 

Mental fatigue (MF) is a widespread phenomenon in daily 
lives and work-related activities that are characterized by 
sustained attention demand and long-lasting efficiency [2]. It is 
described as a psychobiological condition triggered by 
prolonged cognitive work [3]. Globally, overwork is linked 
with diseases such as cerebrovascular and cardiovascular 
disease, diabetes, and cancer, and is considered a horizontal 
public health problem [4,5]. Moreover, fatigue as a symptom, 
affects not only individuals with pre-existing disease, but also 
healthy individuals [6]. 

Cardiovascular diseases (CVDs) are among the leading 
health hazards among the older populations and among the 
primary causes of mortality, and their prevalence rates increase 
with the aging of the global population.In 2020, CVDs 
accounted for approximately 32\% of total deaths globally, 
with nearly 18 million people dying of CVDs worldwide [7]. 
The risk is especially clear in people older than 65, as 60% of 
those aged 75 and up showing signs of CVD. The main risk 
factors are hypertension, diabetes, smoking and genetic 
predisposition [8]. 

One such common manifestation of cardiovascular issues 
are cardiac arrhythmias, which includes tachycardia (heart rate 
>100 bpm) and bradycardia (heart rate <60 bpm) [9]. Detection 
of these anomalies reduce the risks of severe outcomes like 
heart attacks or strokes. With treatments expensive and care 
often outside the reach of many, the screening and monitoring 
of older adults is essential as those older than 70 tend to present 
with atypical features [9]. 

As with non-invasive heart function monitoring, 
electrocardiography (ECG) is an irreplaceable tool for the 
detection of arrhythmia and assessment of fatigue in the elderly 
population. One of the most vital signs of worsening health is 
fatigue, which can be measured effectively through ECG 
signals with physiological indices related to cardiovascular 
burden. Compared to image-based approaches, ECG can be 
used with fewer sensors, is less affected by environmental 
noise, and requires less computation to implement, making it 
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an efficient and reliable modality for fatigue detection and 
monitoring in aging populations. 

Considering the importance of fatigue measurement in 
older adults, a method that uses less sensors/electrodes, is less 
affected by other environmental factors and requires less 
computation and storage than image-based methods is 
necessary. Among the physiological measurements, ECG is 
one of the most promising methods for monitoring elderly 
fatigue. 

Electrocardiograms (ECG) have been and still are the 
workhorse for assessing and analyzing arrhythmias through 
recording the electrical activity of the heart. Electrocardiogram 
(ECG) signals are utilized extensively in clinical diagnostics 
based on P wave, QRS complex, and T wave, which 
characterize cardiac function [11]. These signals are produced 
by the electrical activity of the heart, which radiates not just in 
the heart but through the body. The sinus node, under the 
influence of sympathetic and parasympathetic nerves, which 
regulate this activity. The uniqueness of an individual's ECG, 
shaped by the size, structure, and orientation of their heart and 
valves, has also led to its growing use in biometric human 
identification. 

Therefore, under this framework, ECG signals are 
considered as a dual-use tool for providing important 
information on cardiovascular health [30] and fatigue in elderly 
people. There is a great potential of improving health and 
better quality of life for the elderly by using the state-of-the-art 
ECG sleep state detection using the newly evolved machine 
learning methods. 

The uniqueness of this work lies in the integration of an 
embedded system (ECG AD8232 sensor + ESP32/Raspberry 
Pi) with advanced deep learning models (GRU, LSTM, RNN) 
for real-time fatigue detection in elderly individuals. Unlike 
prior works that mainly focused on fall detection or general 
health monitoring using wearable devices, our study 
specifically targets continuous ECG-based fatigue monitoring, 
which is both less invasive and computationally efficient 
compared to image-based or multi-sensor approaches. 

In this work, more specifically, we highlight the difficulty 
of accurately detecting fatigue in older adults using ECG 
signals and machine learning. We emphasize the reliability of 
advanced deep learning models, including GRU and LSTM, 
applied to ECG signals, in order to provide a reliable and cost-
effective solution for real-time fatigue detection in older adults. 

The remainder of the article is organized as follows: the 
second section "Related Work" reviews previous research, 
while the third section "Materials and Methods" describes the 
methodology and the proposed dataset. The fourth section 
"ECG Signal Characteristics and Data Analysis" implements 
the characteristics of an ECG signal and describes the different 
steps of data analysis in the form of ECG signals such as signal 
acquisition, signal filtering, data collection under csv extension 
until the creation of dataset. The fifth section "Machine 
Learning Models Used for Fatigue Detection" implements the 
different learning models used in this work. The sixth section 
"Results and Discussion" details the experiments conducted 

and their results. Finally, the seventh section "Conclusion" 
summarizes the main results and describes the potential 
directions for future research. 

II. RELATED WORK 

This section discusses important transdisciplinary studies 
on ECG signal monitoring and the integration of artificial 
intelligence techniques to predict and detect the fatigue states 
of the elderly, highlighting the advances and challenges in this 
area. 

Various non-invasive and cost-effective activity monitoring 
systems have been reviewed, with a particular focus on sensors 
integrated into wearable platforms [12,13]. 

An intelligent mobile environment utilizing integrated 
sensors embedded in a smartphone is proposed in [14] as one 
of the Ambient Assisted Living (AAL) methods to recognize 
the sessions of elderly individuals and their environment. This 
method uses a layered architectural design made up of a 
context manager, context reasoner, and service controller . 

In [15], the authors developed a context-aware sensor 
system (CARE) for nurses in nursing homes. This system, 
available as an application on an Android tablet, uses sensors 
to improve care services for elderly residents [15]. 

Due to the serious consequences of falls and fall-related 
injuries, in [16] a private, real-time, context-aware fall 
detection system for the elderly was proposed to take into 
account for this reality. The system consists of a smart carpet 
with a sensor pad hidden underneath the carpet, which can 
detect falls and immediately notify the medical staff. 

In [17], a fall detection system leveraging smart textiles and 
a non-linear Support Vector Machine (SVM) has been 
proposed to classify fall orientations into 11 distinct categories. 
These categories include activities, such as moving upstairs, 
running, falling forward, backward, to the right, to the left, and 
others. 

In [18], a unique health monitoring system that uses a 
single device has been unveiled to monitor the health of senior 
citizens. This system is to provide healthcare professionals 
with computer aided decision support to improve the quality 
and accuracy of medical care. 

Eleven elderly individuals were tracked using a Sony 
wellness tracker in work [19] with data collected on their 
activities and vital signs. Machine learning helped them 
anticipate their health and well-being one day before. AAL was 
also automated to recognize activity, and it was an ambient 
assisted living system. The system identified the most 
important characteristics from various sensors and then trained 
and evaluated various classification models to evaluate their 
performance. 

In [20] a multilayered cloud-based platform for the internet 
of medical things (IoMT) was proposed to track and collect 
patient information including vital signs and environmental 
data for use in AAL. Platform to improve quality of life for 
older adults and care by aggregating and analyzing real-time 
sensing data. 
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Smart home automation system was suggested to promote 
aging well at home and provide assistance to elderly and sick 
individuals through continuous health monitoring. Using a 
range of sensors and technologies, this system can monitor 
vital signs, identify health problems, and provide assistance to 
enhance the safety and well-being of older adults around the 
clock [21]. 

In [22], a noninvasive ambient intelligence system for older 
people was suggested to solve the issue of noisy patterns in 
data collected by multiple wireless sensors installed in the 
subjects' rooms. Random forest machine learning was used to 
monitor and analyze regular behavior, such as occupancy and 
ventilation, in order to ensure adequate monitoring and care for 
older adults. This method not only provides a safer and more 
comfortable place to live but also helps identify any patterns of 
behavior that could indicate potential health issues. 

In [23], a fall detection system that uses edge computing 
has been proposed to enable real time patient monitoring and 
analysis. Edge computing enables the processing of data on 
devices, leading to faster fall detection and reduced response 
times. Fall detection is more reliable and effective, especially 
in hospitals and medical centers where elderly patients are 
treated, because it doesn't need to transfer data to the cloud. 
The system can send immediate alerts to caregivers or 
healthcare professionals, which can improve the 
responsiveness of caregivers and potentially reduce the severity 
of injuries caused by falls. 

Real-time data streaming from the wearable sensors, the 
MetaMotionR in this study, was used in addition to an open-
source streaming engine, Apache Flink. Using a long short-
term memory (LSTM) network model for fatigue 
classification, it reported a leading accuracy of 95.8% in 
detecting fatigues based on real-time streaming data analytics. 
Immediate notifications were created to support caregivers or 
clinical staff. Ha et al. used the "MobiAct" public dataset [24] 
to have a robust learning by able to access different data related 
to fall. 

Besides fatigue detection, a remote health monitoring 
system for elderly people was suggested, which was 
monitoring the health by capturing vital signs like pulse, blood 
oxygen via wearable sensors. This system is used to take care 
of the elderly by actively monitoring their health to prevent the 
onset of chronic diseases [25]. 

Heart rate, blood pressure, and blood oxygen are among the 
vital parameters that this system continuously measures in [26] 
via wearable sensors. Healthcare providers receive data via the 
Internet of Things architecture. Hardware from Arduino and 
Raspberry Pi is used for communication data collecting and 
processing, allowing patients with chronic illnesses to receive 
quick help and remote monitoring. 

A body sensor device that continually gathers physiological 
characteristics from patients was used in a tablet PC-enabled 
body sensor system that was proposed for rural telemedicine 
[27]. 

An automated system in [28] detects unusual situations and 
instantly alerts medical staff, ensuring timely action when 
needed. This approach enhances the provision of healthcare in 

remote areas by enabling timely monitoring and response 
without necessitating frequent in-person visits. In a different 
approach, a health monitoring system with RFID sensors was 
utilized to tag objects using hand gestures, and wireless 
accelerometers were utilized to classify human body states in 
order to identify users' daily activities [10]. By tracking and 
analyzing people's movements and interactions, this technology 
helps doctors monitor patients' health in real time and provides 
valuable information about their physical activity . 

This study provides an affordable and scalable solution for 
elderly healthcare. By using low-cost ECG sensors and 
embedded hardware, the system enables early detection of 
fatigue, which is a critical risk factor for falls, cardiovascular 
incidents, and reduced quality of life. Its societal benefit lies in 
supporting preventive healthcare, reducing hospitalization 
costs, and enhancing independence for elderly individuals 
through continuous monitoring. 

The manuscript is unique because it demonstrates the 
feasibility of a real-time, embedded ECG monitoring system 
for fatigue detection using deep learning. While most previous 
studies relied on multi-sensor systems, costly equipment, or 
offline analysis, our approach combines lightweight hardware 
and optimized AI algorithms for practical deployment in 
elderly care. 

Table I provides a comprehensive comparative analysis of 
the various approaches discussed in previous work. 

TABLE I.  PARAMETERS USED DURING RELATED WORKS 

Study Sensor Type Health Focus Techniques 
Accuracy 

(%) 

[18] 
Wearable Smart 

Band Sensors 

Sleep activity 

and Heart 

rate 

monitoring 

Lasso 

regression, 

ANN, SVM, 

decision trees 

_ 

[19] 

Smartwatch 

sensors, 

Smartphone 

sensors, 

Activities 

Recognition 

Random forests, 

SVM, logistic 

regression and 

K-Nearest 

Neighbors 

- 

[21] 

Motion detection 

sensor and 

humidity, ambient 

Temperature, 

CO2 

Movement 

detection 
Random Forest 68.08% 

[22] 
Smartphone 

sensors 

Fall 

Detection 

LSTM deep 

learning 

technique 

98.08% 

[24] Pulse sensor Heart-rate 

LSTM deep 

learning 

technique 

96.00% 

[25] Pulse Sensor 

Heart Rate 

and Blood 

Oxygen 

monitoring 

Mobile 

Application 

Random Forest 

99.00% 

Our 

work 

ECG, AD8232 

sensor 

Activity 

monitoring 

GRU, LSTM, 

RNN 
98.8% 

III. MATERIALS AND METHODS 

To address the challenges of monitoring cardiac 
arrhythmias and identifying fatigue in the elderly, our approach 
focuses on technological innovation and affordability. We offer 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 9, 2025 

56 | P a g e  
www.ijacsa.thesai.org 

a hybrid solution comprising an online platform and an 
embedded system, which leverages cost-effective components 
such as the Raspberry Pi board, as well as sophisticated 
artificial intelligence algorithms for accurate abnormality 
identification (Fig. 1). 

 

Fig. 1. Proposed framework. 

For many years, the electrocardiogram (ECG) has been the 
gold standard for identifying cardiovascular disease. 
Arrhythmia can result from any disturbance of electrical 
impulses that causes the heart to contract. Although people 
with arrhythmias might not exhibit any symptoms, a doctor 
may detect arrhythmias during a routine test. As a result, 
continuous wearable personal monitoring systems are 
becoming more and more common. The goal of this study is to 
create and develop a system for both monitoring the ECG 
signals and predicting arrhythmia (atrial fibrillation). The 
AD8232 single lead ECG sensor, HC-05 Bluetooth, Raspberry 
Pi 3, Arduino UNO, biomedical sensor pad, and battery are all 
used in the system's construction. This method will facilitate 
remote ECG monitoring and make it simpler for physicians to 
keep an eye on their patients' ECGs when they are not at the 
hospital. The core of our system is based on the Raspberry Pi, 
chosen for its flexibility, low cost, and ability to run AI 
applications. This embedded system is designed to 
continuously collect ECG data at home or in any other 
environment requiring cardiac monitoring. The Raspberry Pi, 
equipped with ECG sensors and a connectivity module, enables 
real-time acquisition of cardiac data, which is then 
preprocessed to extract relevant characteristics before analysis. 
In real-time systems, the AD8232 sensor ensures adequate data 
collection by capturing ECG signals without omitting essential 
information (Fig. 2). These signals are distinct and can be 
studied after preprocessing using advanced filtering methods to 
remove noise or artifacts. Appropriate indicators are selected 
from the processed ECG signals, and then an analysis is 
performed on these indicators to define different degrees of 
fatigue. 

 

The uniqueness of study is twofold: 

• From the hardware perspective, the system adopts a 
low-cost ECG AD8232 sensor coupled with 
ESP32/Raspberry Pi for real-time signal acquisition and 
processing. 

• From the software perspective, we adopted advanced 
filtering (Butterworth bandpass 10–40 Hz) + PCA + 
GRU/LSTM to achieve superior fatigue detection 
performance. 

 

Fig. 2. Embedded system for ECG signal monitoring. 

The studies conclude by demonstrating the high accuracy 
and precision with which deep learning architectures like GRU, 
LSTM, and RNN can identify fatigue states. By using cutting-
edge biomedical signal processing techniques to create 
methods for quickly determining the elderly's fatigue level, this 
initiative respects established ethical standards and lessens 
their load. 

IV. ECG SIGNAL CHARACTERISTICS AND DATA ANALYSIS 

The electrocardiogram (ECG) records the electrical activity 
of the heart. Each ECG wave corresponds to a specific 
electrical event. The ECG trace is a form of visualization of the 
electrical voltages resulting from the heart's excitation. These 
signals are obtained from specific points located on the skin 
(leads). The ECG, therefore, expresses the electrical events of 
cardiac excitation and can provide information on the state of 
the heart. The heart rate, the nature and genesis of the rhythm, 
the extent and effects of the excitation, as well as any 
disturbances, whether anatomical or mechanical in origin. 

 

Fig. 3. Representation of an ECG signal. 
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A. Signal Acquisition 

This section shows the realistic assumption of the 
embedded system which has been developed for the processing 
of electrocardiogram (ECG) signals for continuous fatigue 
monitoring and classification. This system consists of two main 
components, the first is the AD8232 sensor and the second is 
the ESP32s microcontroller. Fig. 3 shows representation of an 
ECG signal. 

The AD8232 is a sensor which is a compact ECG monitor 
heart module which is capable to monitor heart electrical 
activity and display them in ECG graph form. It is intended to 
isolate, amplify and filter minute biopotential signals in the 
presence of interference such as muscle contractions or contact 
bias from lead wires or electrodes. For making these 
measurements correct electrodes have to be positioned as 
follows: RA (right arm), LA (left arm), and RL (right leg) [29]. 
The Espressif Systems ESP32s microcontroller is a System on 
Chip (SoC), which is based on the technology development of 
Xtensa LX6 by Tensilica. It has built-in Bluetooth and Wi-Fi 
modules and a dual-core processor with a clock frequency of 
240 MHz. Due to its on-chip connectivity and low power 
consumption the ESP32s provides many possibilities for 
Internet of Things and embedded applications. 

In capturing ECG signals, the first stage was to configure 
the ESP32s microcontroller, which was done in a few steps 
using the Arduino IDE for programming. Initially, the ESP32s 
was made to record average values of electrocardiogram 
signals from the AD8232 sensor that monitors the activities of 
the heart. The processed data was used to derive parameters 
like heart frequency together with making corrections on the 
reliability of the parameters computed. This facilitated the 
storage of data into CSV files for easy retrieval in the data set 
for heartbeat counts and trends analyses. 

Data was collected using the AD8232 ECG sensor module, 
connected to the ESP32 microcontroller for signal acquisition 
and preliminary preprocessing. The electrodes were placed at 
RA (right arm), LA (left arm), and RL (right leg). Signals were 
sampled at 250 Hz, filtered using a 4th-order Butterworth 
bandpass filter (10–40 Hz), and stored in structured CSV files. 
A database of 100 subjects was constructed, comprising 50 
segments of 2-minute ECG recordings each, totaling over 180 
million labeled data points. 

A section of the USB header in this circuit board, where the 
processing unit is embedded, communicates through a serial 
plotter (or otherwise logic or protocol analyzer A). This is an 
effective tool for checking and fixing signals inside the scopes 
of serial communication systems as it enables the tracking of 
how the data flows in real time and allows the practitioner to 
confirm that the heart rate data acquisition process works as 
intended. This setup allows the users to easily check and repair 
faults thereby rendering it very effective for processing and 
analyzing electrocardiogram signal in real time (Fig. 4). 

B. Signal Filtering 

After getting the data, the next step is filtering to make the 
results better and more accurate. This step removes unwanted 
noise or errors, like signals from muscle movements, outside 
electrical signals, or changes in the baseline that can mess up 

the original data. For example, with ECG data, we use low-
pass filters to remove high-frequency noise, high-pass filters to 
fix low-frequency baseline changes, and bandpass filters to 
focus on the heart’s important frequency range. This keeps the 
key details about the heart’s electrical activity intact. By using 
these filters, we get cleaner data, which makes the next steps of 
analysis and understanding more reliable. 

Because of its flat frequency response, smooth transition, 
ease of design, stability, and robustness, 4th-order Butterworth 
filter was chosen to bandpass filter of ECG signals. Although 
some of the filters may offer greater sharpness of transition or 
better phase response, they generally suffer from the presence 
of ripples or complexity irrelevant to ECG signal analysis. The 
Butterworth filter provides a just right compromise for this 
particular use case, providing faithful representation of the 
target frequency components without introducing distortions or 
artifacts. 

Bandpass filtering was a key step in analyzing the collected 
ECG signals. In this filtering method noise and interferences 
are removed and only target frequency components remain. In 
the case of ECG signals, useful frequency range is generally 
within the range of 10 Hz to 40 Hz. 

The bandpass filtering was implemented using MATLAB. 
A 4th-order Butterworth filter was previously designed using 
the butter function and cutoff/pass frequencies of 10 Hz and 40 
Hz, respectively. Such configuration guaranteed that the filter 
is able to perfectly attenuate the frequencies of the desired 
ECG signal without contributing to signal distortion and 
thereby facilitates further analysis. 

This method successfully eliminated high- and low-
frequency interference while maintaining the essential 
frequency components of the ECG signals, enhancing the 
accuracy of detecting key waves such as the P wave, QRS 
complex, and T wave. This was vital for the later analysis of 
arrhythmias. 

The choice of cutoff frequencies at 10 Hz and 40 Hz was 
based on the fact that the majority of the energy in ECG signals 
lies within this frequency range. The lower cutoff frequency of 
10 Hz able to filter out base-line wander and low-pass 
fluctuations with the upper cutoff frequency of 40 Hz, 
removing high-pass noise from the EM interference and 
muscle movement sequency range ensuring that the beating 
features of the ECG signal, P, QRS, and T waves, are retained 
while removing artifacts that could bias signal analysis 
accurately. 

 

Fig. 4. ECG serial plotter. 
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As in Fig. 5, the introduction of a 4th-order Butterworth 
filter with cutoff frequencies of 10 Hz and 40 Hz significantly 
eliminated undesirable noise and interference while 
maintaining the main frequency elements of the 
electrocardiogram (ECG) signal. A comparison of the data 
prior to and after deconvolving reveals an effective reduction 
of baseline wander and high-frequency artifacts. Zooming in 
on the filtered signal clearly shows an improvement in the 
visibility of the characteristic P, QRS, and T waves, which are 
crucial for arrhythmia analysis. These findings validate the 
performance of the Butterworth filter to improve ECG signal 
quality, enabling analysis to be more accurate and reliable . 

 

Fig. 5. Real ECG signal before and after filtering. 

C. Dataset 

Developing a robust database is a essential factor for the 
success of a machine learning-based solution. In this study, we 
created a database using data collected from sensors, combined 
with the outputs from the filtering steps, to ensure optimal 
quality and relevance of the data for future analyses. 

Database structure was designed hierarchically for effective 
data management. A major collection, "csv files", was 
generated to store each patient's documents individually. Each 
patient document was then divided into sub-collections named 
"Patient+number," where the ECG data was stored in an 
organized manner. 

Our database contains patient data on large volumes of 
ECG recordings. This encompasses demographic information, 
medical history, as well as individual ECG data points that 
were captured during the course. Each patient's data is 
organized to ensure easy access and retrieval, with clear 
labeling and structured data points to facilitate analysis. It also 
permits to analyze patient conditions in detail, and to detect 
both regular and abnormal patterns in their 
Electrocardiographic measures, as a means toward improved 
diagnosis and prognostic care. 

Specifically, we indicate that the ECG data was collected 
using the AD8232 sensor connected to an ESP32 
microcontroller, with signals sampled at 250 Hz and filtered 
using a 4th-order Butterworth bandpass filter. The dataset 
consists of 100 subjects, with 50 segments of 2 minutes each, 
totaling over 180 million labeled data points. We have also 
emphasized that this dataset was built for the purpose of this 
study and will be further expanded in future work to improve 
diversity and clinical validation. 

V. MACHINE LEARNING MODELS EMPLOYED FOR FATIGUE 

DETECTION 

The study proposes a deep learning-based fatigue 
classification framework optimized for ECG signals. 
Specifically, we developed a GRU-based recurrent model with 
tailored hyperparameters and dropout regularization, which 
outperformed both LSTM and standard RNN in accuracy and 
generalization. 

Neural networks of the RNN family are used to handle 
sequential data, including 1D physiological signals. A 
"memory" of prior inputs might remain in the internal state of 
an RNN thanks to feedback connections between hidden units 
[8]. 

A. Recurrent Neural Networks (RNN) 

Recurrent Neural Networks (RNN) are the core deep 
learning frameworks intended for sequential and time-series 
data. In contrast to conventional neural networks, the RNN 
model takes into account a feedback mechanism, which allows 
information retention and thus allows information persistence 
to model temporal dependence. In the context of ECG data, 
RNN process sequential heart activity signals by maintaining a 
"memory" of past information. The design comprises of an 
input layer, a hidden layer and an output layer, with the hidden 
layer holding the state to its previous state. On the other hand, 
by virtue of their tendency to experience vanishing gradient, 
direct use of RNN is often restricted in the extraction of long-
term dependencies in ECG data. 

The RNN architecture (Fig. 6) is built on the concept of 
feedback, where outputs from earlier time steps are looped 
back into the network, as illustrated in Fig. 6. With this 
mechanism, the network is able to remember past states and 
capture temporal long-term dependencies efficiently. 

 

Fig. 6. Architecture of the recurrent neural network. 

B. Gated Recurrent Units (GRU) 

Group of gated recurrent units (GRU), in Fig. 7, is a 
generalization of recurrent neural networks (RNN) which is 
intended to solve the deficiencies of the original models, most 
notably the vanishing error problem at the time of training. 
Their simplified architecture utilizes memory units with gates 
to control the flow of information. In contrast to conventional 
RNN, GRUs are structurally simpler, more efficient at making 
use of long-range context in time series data, and thus less 
computationally demanding. That makes them highly 
appropriate for any task needing powerful sequential modelling 
without the expense of a more resource-hungry architecture 
such as LSTM. 
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Fig. 7. Architecture of the gated recurrent units (GRU) [31]. 

C. Long Short-Term Memory Networks (LSTM) 

Long Short-Term Memory (LSTM) is a specific type of 
recurrent neural network (RNN) capable of learning long-term 
dependencies. It is designed to solve the vanishing and 
exploding gradient problem often encountered in traditional 
RNNs. Fig. 8 illustrates the architecture of an LSTM cell. An 
LSTM cell in recurrent neural networks is much more complex 
than a traditional RNN cell or a classical neuron. It consists of 
a memory cell, a forget gate, an input gate, and an output gate, 
managing a dynamic memory (denoted C) that evolves with 
the temporal data sequence. 

 

Fig. 8. Architecture of the long short-term memory (LSTM) [32]. 

The parameters utilized in the experiment are described in 
Table II. 

TABLE II.  HYPER-PARAMETER USED AGAINST VARIOUS MODELS 

Hyper-parameter GRU LSTM RNN 

Number of units 64 128 32 

Number of layers 2 2 1 

Dropout 0.2 0.3 0.2 

Recurrent dropout 0.2 0.2 - 

Activation function tanh tanh relu 

Optimizer Adam Adam Adam 

Learning rate 0.001 0.001 0.001 

Batch size 64 32 64 

Epochs 50 50 50 

D. Performance Metrics 

The binary classification of having fatigue produces four 
outcomes: True Positive (TP), True Negative (TN), False 
Positive (FP), and False Negative (FN). 

• True Positive (TP): Correct positive prediction 

• True Negative (TN): Correct negative prediction 

• False Positive (FP): Incorrect positive prediction 

• False Negative (FN): Incorrect negative prediction 

Eq. 1 provides the model's prediction accuracy, which is 
the ratio of properly classified samples to total samples. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
            (1) 

Eq. 2 provides a precision formula that measures the 
correctness of the model by dividing the number of 
successfully identified positive values by the total number of 
expected positive samples. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
          (2) 

Eq. 3 provides the recall of a model, which is defined as the 
ratio of correctly predicted positive samples to all positive 
samples. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
            (3) 

Eq. 4 finds the harmonic mean of Precision and Recall 
based on the model's F1 score. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2.𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
         (4) 

The novelty does not reside in creating a completely new 
neural architecture, but in the adaptation and optimization of 
GRU and LSTM architectures for ECG-based fatigue 
detection. We designed a hybrid signal processing and 
classification pipeline combining PCA-based dimensionality 
reduction with optimized hyperparameters for GRU and 
LSTM. This configuration significantly improved accuracy 
(GRU: 98.86%) compared to conventional RNNs and existing 
methods reported in the literature. 

VI. RESULTS AND DISCUSSIONS 

A. Results 

Some general graphical visualizations of the training of 
LSTM, RNN, and GRU models were created using various 
visualization software packages, particularly Matplotlib. These 
graphs, including loss curves and performance metrics over 
multiple epochs, provide critical insights into the behavior of 
each model. Having determined these metrics (based on Fig. 9, 
10 and 11), users can also assess the convergence behavior, 
stability and overall efficacy of the models for learning data 
patterns. By using this visualization, it is possible to get a 
global idea of the strengths and weaknesses of each strategy 
with regard to fatigue detection in older adults. 
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Fig. 9. Accuracy and loss for RNN model. 

 

Fig. 10. Accuracy and loss for GRU model. 

 

Fig. 11. Accuracy and loss for LSTM model. 

The confusion matrix is a visualization technique used to 
assess the performance of a classification model by comparing 
actual and predicted values. Fig. 12 presents the confusion 
matrices of the best-performing models, namely, the GRU and 
LSTM. 

 
(a) 

 
(b) 

Fig. 12. Confusion matrix: (a) GRU; (b) LSTM. 

Another parameter we studied is the ROC curve which is a 
graphical representation used to evaluate the performance of a 
binary classification model at different decision thresholds. It 
shows the true positive rate (sensitivity) as a function of the 
false positive rate (1 - specificity) for each classification 
threshold. Fig. 13 shows the ROC curves of our GRU, LSTM 
and RNN models. 

 
(a) 

 
(b) 

 
(c) 

Fig. 13. ROC curve: (a) GRU; (b) LSTM; (c) RNN. 

B. Discussions 

In this section, we review the experimental results used to 
illustrate the performance of the proposed technique, as well as 
the outcomes related to fatigue detection. As shown in 
Table III, we present and compare the performance of the 
LSTM, GRU, and RNN models. 

TABLE III.  COMPARATIVE RESULTS 

MODEL ACCURACY RECALL F1-SCORE AUC 

GRU 98.20% 0.0649 0.98 0.99 

LSTM 97.42% 0.1000 0.97 0.97 

RNN 83.24% 0.6203 0.82 0.66 
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Among the three models evaluated, the GRU achieved the 
highest overall performance, with training, validation, and test 
accuracies of 98.86%, 98.20%, and 97.96%, respectively, and 
the lowest loss values, indicating strong consistency between 
training and validation. The LSTM model, while slightly less 
accurate than GRU, still produced very good results, obtaining 
97.73% training accuracy, 97.42% validation accuracy, and 
97.32% test accuracy, with losses only marginally higher than 
those of GRU, thereby confirming a reliable data fit. In 
contrast, the RNN model demonstrated the weakest predictive 
capability, with training, validation, and test accuracies of 
82.65%, 83.24%, and 82.76%, respectively, and the highest 
loss values, reflecting its poorer agreement with the training 
and test data compared to GRU and LSTM. 

In conclusion, the GRU model stands out as the best choice 
for our task, with the LSTM model following closely behind. 
Although RNN model does satisfactory accuracy when used, it 
is very different in accuracies between the three models. 

In particular, we show that the GRU-based model achieves 
superior performance (98.86% accuracy) compared to both 
traditional RNNs and LSTMs, while also being 
computationally more efficient. Additionally, unlike many 
prior studies that rely on multi-sensor or image-based systems, 
our approach uses a single low-cost ECG sensor with 
optimized deep learning models, making it more practical and 
scalable for real-world elderly healthcare applications. 

We conclude that the classification of ECG signals makes it 
possible to transform continuous physiological measurements 
into interpretable clinical labels (“fatigue” or “no-fatigue”), 
which enables real-time monitoring and early intervention in 
elderly patients. 

VII. CONCLUSION 

This study demonstrates the potential of ECG signal 
monitoring and classification for detecting fatigue states in 
elderly individuals, leveraging advanced machine learning 
models. Among the tested algorithms, the Gated Recurrent 
Unit (GRU) emerged as the most effective, achieving 
exceptional performance metrics with a test accuracy of 
97.96% and minimal loss, indicating a robust ability to capture 
complex temporal dependencies in ECG signals. The model of 
Long Short-Term Memory (LSTM) also performed well with 
similar accuracy and proved its robustness for this task. 

In contrast, the traditional type of Recurrent Neural 
Network (RNN) showed poor performance with significantly 
reduced accuracy (82.76% and higher loss expressing its 
unsuitability in the complexity of ECG data as the GRU and 
LSTM models could. These findings illustrate the necessity of 
the use of highly developed neural configurations for the 
effective and accurate classification of physiological signals. 

The superior performance of the GRU model shows the 
applicability of the model as the basis for real-time fatigue 
detection systems, having significant capability for integration 
into wearable and remote healthcare monitoring devices. 
Further research on improving the performance of these 
models, the use of larger data sets, and the robustness of these 
models in situations other than the laboratory is necessary to 
enhance their scalability and generalizability. Through the 

development of an electrocardiography-based fatigue 
detection, this work makes a step toward health monitoring and 
preventive care for aging groups. 

We also note the need for extended real-world testing to 
evaluate long-term robustness, scalability, and integration into 
healthcare systems. By acknowledging these limitations, we 
provide a more balanced and comprehensive review of the 
research while outlining directions for future work. 
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