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Abstract—This paper presents a control system optimization 

of an ocean wave simulator using a meta-heuristic optimization. 

The proposed control system involves finding leg length 

trajectories by an Inverse Kinematics (IK) to be used as 

references for a Proportional-Integral-Derivative (PID). PID 

gains are tuned using a Salp Swarm Algorithm (SSA) with a Root 

Mean Square Error (RMSE) of leg position errors as a 

performance index. A Stewart platform dynamic is modeled in 

Simscape Multibody, integrated with a trajectory generator, an 

IK module, and a control system diagram block in Simulink 

models. The Simulink model of Stewart platform dynamics is 

then called in the optimization procedure by writing the 

programming code in MATLAB. Results show that the SSA 

outperforms other meta-heuristic methods, namely a Genetic 

Algorithm (GA) and a Particle Swarm Optimization (PSO), 

achieving the lowest fitness value, 16.8% and 8.7% lower than 

GA and PSO, respectively. Moreover, the SSA avoids boundary-

trapping issues encountered by the PSO, which is stuck at its 

upper bound. The SSA has successfully enhanced the simplified 

version of the PID control system, where the scenario of the 

simplified PID-SSA scenario achieves better tracking error 

performance than the full PID-SSA configuration. The proposed 

approach contributes to the advancement of marine simulation 

technologies, supporting innovation in ocean engineering and 

sustainable maritime applications. 
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I. INTRODUCTION 

The ocean is a vital part of the Earth and plays a significant 
role in the global ecosystem. Since approximately 70% of the 
Earth’s surface is covered by ocean, conducting research in the 
maritime field is essential. One key challenge in this area is 
managing and understanding ocean waves. However, testing 
newly developed marine technologies directly in the real ocean 
is often difficult and costly, especially due to the complexity of 
transporting and deploying such systems. As a result, modeling 
and simulation have become crucial areas of maritime research. 
Simulation technologies can replicate real ocean conditions, 
allowing researchers to observe and analyze the performance 
of the developed systems effectively. 

Generally, there are two types of ocean wave simulators: 
simulation platforms and ocean engineering basins [1]. A 
simulation platform applies wave models to control a motion 

platform, while an ocean engineering basin uses known ocean 
wave models as input for controlling a wave-making system. 
One of the most widely used simulation platforms for ocean 
wave simulation is the Stewart platform. The Stewart platform 
has been extensively utilized in the development and testing of 
ocean technology applications ranging from ship motion 
simulation [1-5], harbor crane robotics technologies [6-8], to 
ocean wave compensators [9-13]. 

The Stewart platform is a parallel manipulator that has 
superiorities in accuracy, rigidity, and capability in carrying 
heavy loads that to the series manipulator. Controlling the 
parallel manipulator is difficult due to its complex, coupled 
nonlinear dynamics, demanding advanced methods for reliable 
performance. As the Stewart platform is expected to execute 
complex motions with stability, its control systems remain a 
critical area of research. Silva et al. [14]  employed the 
industrial controller on the Stewart platform, addressing 
kinematics and motion automation. The IK considered two 
scenarios: point-to-point cycloidal trajectories and oceanic 
wave motion. Vu et al. [15] presented a distributed control 
technique based on finite-time distributed sliding mode control. 
Each leg of the Stewart platform was considered as an 
autonomous agent. The dynamic of the Stewart platform was 
modeled using a Lagrangian-based approach. The trajectory 
tracking control by the Stewart platform using a PD+ controller 
was presented by Tamir et al. [16]. The dynamic of the Stewart 
platform was modelled using the Euler-Lagrange method. The 
motion was simulated using MATLAB/Simulink and validated 
using ADAM software. Lin et al. [17]  presented drag-free 
control of the Stewart platform for satellite ground simulation. 
Inverse Kinematics (IK) and dynamics of the Stewart platform 
based on Newton-Euler were employed. Two degree-of-
freedom drag-free controller was proposed using an algorithm 

of  𝐻∞  loop shaping. An adaptive control of the pneumatic 
actuator of the sixth degree-of-freedom Stewart platform was 
presented by Andrievsky et al. [18]. Pneumatic valve groups 
and a spool valve were involved. Control process, 
discretization, and pneumatic drive load changes were 
considered. 

Artificial Intelligent methods such as meta-heuristic 
optimization and an Artificial Neural Network (ANN) have 
been employed in the control system of the Stewart platform. 
Barghandan et al. [19] proposed a sliding mode control based 
on the Genetic Algorithm (GA) considering uncertainties and 
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external disturbances. An adaptation law based on a barrier 
function had removed the requirement of the external 
disturbance upper bounds. Tamir et al. [20] presented an 
extended Proportional-Derivative (PD) sliding mode controller 
for the Stewart platform trajectory tracking.  Gain tuning was 
performed using modified grey wolf optimization with integral 
absolute error as a cost function. Validation was performed 
using the ADAM software. Sumnu et al. [21] presented the 
Proportional-Integral-Derivative (PID) control system of the 
Stewart manipulator, where the linear motor transfer function 
is derived and modeled in Simulink block diagram. The effect 
of the inertia of the lower legs on the dynamic performance 
was studied. Velasco et al. [22] presented the ANN to improve 
the accuracy of the Stewart platform when it holds a camera. 
The ANN model was designed based on the kinematics and 
dynamics analysis. Based on the inverse ANN model and 
additional integral control, the control system was then 
developed. Du et al. [13] applied the Stewart platform as a 
marine stabilized platform and proposed an extended state 
observer-based sliding mode control (ESO-SMC) to enhance 
the stability and anti-disturbance of the hydraulic actuator on 
the system platform. Kinematic and dynamic models were 
analyzed first, and the Marine Predator Algorithm (MPA) was 
applied to optimize the ESO-SMC. Simulation was conducted 
in MATLAB in Simulink using models of an engineering ship 
and a marine stabilized platform, which was placed on top of 
the ship model. An et al. [23] designed a Fracture Reduction 
Robot (FRR) based on the Stewart platform as an orthopedic 
surgery robot. A sparrow search algorithm was applied to tune 
the controller gains of the FRR. The IK was used, and the FRR 
dynamics were modeled in Simulink. The mechanism of 
fracture reduction was proposed using computer torque control. 

The paper is organized as follows: Section II presents the 
kinematics and dynamics of a 6-DOF Stewart platform-based 
ocean wave simulator. Section III describes the motion 
simulator system. The trajectories generation, the control 
system optimization, and the Salp Swarm Algorithm (SSA) are 
presented in Section IV.  Results and discussions are presented 
in Sections V and VI, respectively. Conclusions are presented 
in Section VII. 

II. KINEMATICS AND DYNAMICS 

Kinematics and dynamics analysis are necessary for 
controlling the Stewart platform-based ocean wave simulator. 
For the dynamics analysis, this paper models the Stewart 
platform using Simscape Multibody to be optimized by the 
SSA via MATLAB and Simulink environments. MATLAB 
and Simulink have been used to model complex dynamical 
systems, including the Stewart platform to analyze the 
proposed methods before implementing them in the real 
system. 

A. Inverse Kinematics 

There are two kinds of kinematics problems for Stewart 
platform motion, namely Inverse kinematics (IK) and Forward 
Kinematics (FK). The FK is the problem of finding the 
positions and orientations of payload platform when leg 

lengths are defined while the IK is the problem of finding the 
leg lengths of Stewart platform when positions and orientations 
of payload platform are known. This paper considers tracking 
the prescribed paths, which are the ocean wave model so that 
using the 6-DOF Stewart platform, converting the tracking 
paths to the leg lengths trajectories is necessary to be done via 
an IK computation. Fig. 1 illustrates the coordinates assigned 
for the Stewart platform. There is a base platform coordinate 
{B}  located at the center of the base table and a payload 
platform coordinate {P} located at the center of the payload 
table. 

A closed-form IK solution can be obtained using 
geometrical and algebraic analysis as follows [24]: 

𝑙𝑖
2 = 𝑥2 + 𝑦2 + 𝑧2 + 𝑟𝑃

2 + 𝑟𝐵
2 + 2(𝑟11𝑃𝑖𝑥 + 𝑟12𝑃𝑖𝑦)(𝑥 −

𝑏𝑖𝑥) + 2(𝑟21𝑃𝑖𝑥 + 𝑟22𝑃𝑖𝑦)(𝑦 − 𝑏𝑖𝑦) + 2(𝑟31𝑃𝑖𝑥 + 𝑟32𝑃𝑖𝑦)𝑧 -

                                 2(𝑥𝑏𝑖𝑥 − 𝑦𝑏𝑖𝑦)                                (1) 

The above equation needs the orientation matrix. The 
orientation of the Roll-Pitch-Yaw angle is expressed as 
follows: 

𝑅𝑅𝑃𝑌 = [
𝑐𝛼 𝑐𝛽 𝑐𝛼 𝑠𝛽 𝑠𝛾 − 𝑠𝛼 𝑐𝛾 𝑐𝛼 𝑠𝛽 𝑐𝛾 − 𝑠𝛼 𝑠𝛾
𝑠𝛼 𝑐𝛽 𝑠𝛼 𝑠𝛽 𝑠𝛾 − 𝑐𝛼 𝑐𝛾 𝑠𝛼 𝑠𝛽 𝑐𝛾 − 𝑐𝛼 𝑠𝛾
−𝑠𝛽 𝑐𝛽 𝑠𝛾 𝑐𝛽 𝑐𝛾

]  (2) 

where, 𝑅𝑅𝑃𝑌, 𝛼, 𝛽, 𝛾, s, and c are the orientation matrix, 
roll angle, pitch angle, yaw angle, sinus, and cosinus, 
respectively. 

 
Fig. 1. Frame coordinate of the Stewart platform. 

B. Dynamics 

Dynamics of the Stewart platform can be expressed in the 
following form [25]: 

𝐹 = 𝑀(𝑞)𝑞̈ + 𝑁(𝑞, 𝑞̇) + 𝐺(𝑞)                      (3) 

where, 𝑀(𝑞) is the inertia matrix, 𝑁(𝑞, 𝑞̇) is components of 
Coriolis and centrifugal force, 𝐺(𝑞)  is the components of 
gravity force. 

The inverse dynamics is the problem of finding the 
force/torque for known positions, velocities, and accelerations 
for defined positions, velocities, and acceleration vectors. This 
paper employs Simscape Multibody for solving the forward 
dynamics of the Stewart platform in the control system. Detail 
of the Simscape block diagram is shown in Fig. 2. 
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Fig. 2. Dynamic modeling of the Stewart platform using Simulink Multibody. 

III. MOTION SIMULATOR SYSTEM 

Fig. 3 illustrates the ocean wave simulator system. The 
traced path is generated by the trajectory generator. An IK 

module processes the data from the trajectory generator to 
obtain the requested leg positions, which become the input for 
the control system of the Stewart platform. 

 
Fig. 3. Ocean wave simulator system. 
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A. Trajectory Generations 

Ocean wave models used in this paper is presented in 
Table I. They are the modification of ocean wave models 
presented in [1]. This modification is necessary because the 
parameter of the Stewart platform is different and the Stewart 
platform has the workspace which depends on the parameter of 
the Stewart platform. 

TABLE I. OCEAN WAVE MODELS [1] 

Motion forms Model (cm) 

Lateral 8sin (0.25𝜋𝑡) 

Transverse 8sin (0.25𝜋𝑡) 

Lifting 8sin (0.25𝜋𝑡) 

Rolling 
10𝜋

180
sin (0.25𝜋𝑡) 

Pitching 
8𝜋

180
sin (0.25𝜋𝑡) 

IV. CONTROL SYSTEM OPTIMIZATIONS 

Fig. 5 illustrates the algorithm of the control system 
optimization. Ocean wave models need to be converted to leg 
length trajectories via the IK. These leg length trajectories 
become the reference trajectories that need to be tracked by the 
control system of the motion simulator. This paper uses the 
PID-based control system to be optimized by the SSA. A 
comprehensive computation is necessary through integration of 
MATLAB software, Simulink, and Simscape Multibody. The 
responses of the Stewart platform are obtained using the 
Simulink to examine the Simscape Multibody modeling of 
Stewart platform. 

Fig. 4 shows the block diagram of the ocean wave model 
represented in Table I. The Stewart platform uses in this paper 
has parameter as presented in Tabel II. 

Finding the optimal gains by meta-heuristic optimization 
are performed by writing the code in m-file, MATLAB. Using 
the IK presented in the previous section, the trajectories of leg 
lengths can be obtained. These leg lengths trajectories should 
be within the ∆𝑙𝑚𝑎𝑥  boundary. In the case the leg length 
trajectories are outside the boundary, the initial condition, 
which is the initial distance between the fixed base and moving 
base H, possibly needs to be recalculated. The ∆𝑙𝑚𝑎𝑥 can be 
obtained by the geometric analysis of the Stewart platform. 

A. PID Control System 

Leg lengths trajectories from the trajectories generator 
become the reference signal of the control system. This paper 
uses the conventional PID control system optimized by the 
SSA. The detail of the simplified PID control system as the 
Simulink block diagram is illustrated in Fig. 6. 

TABLE II. STEWART PLATFORM PARAMETER 

Parameters Values 

Radius of moving platform (hexagon) 18 cm 

Radius of fixed platform (hexagon) 28 cm 

Cylinder radius of leg 3 cm 

Maximum upper leg length 10 cm 

Maximum lower leg length 30 cm 

Initial distance between the fixed base and moving platform, H 13.5 cm 
 

 
Fig. 4. Diagram block of trajectory generation of ocean wave motion. 
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Fig. 5. Control system algorithm of the Stewart platform. 

 
Fig. 6. Simplified conventional PID control system block diagram. 

The simplified conventional PID control law is employed 
as follows: 

           𝐹 = 𝐾𝑝𝑒 + 𝐾𝑖𝜀 − 𝐾𝑑∆𝑙̇                               (4) 

𝑒 = (∆𝑙𝑟𝑒𝑓 − ∆𝑙) ; 𝜀̇ = 𝑒 

where, F, e, ∆𝑙, ∆𝑙𝑟𝑒𝑓, ∆𝑙̇ , 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 are force feedback 

control, error leg length, actual leg length, desired leg length, 
actual leg velocities or first derivative of ∆𝑙, proportional gain, 
integral gain, and derivative gain, respectively. 

B. Salp Swarm Algorithm 

The PID gains are optimized by the SSA with the objective 
optimization is to minimize the Root Mean Square Error 
(RMSE) as the cost function. The SSA is relatively new meta-
heuristic optimization proposed in 2017 by Mirjalili et al. [26]. 
The SSA is inspired by the salps swarming behaviour when 
they are navigating and foraging in deep oceans. 

The populations consists two groups, namely leader and 
followers. The leader is the salp at the chain front. The leader 
position is updated as follows: 

𝑥𝑗
1 = {

𝐹𝑗 + 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗) 𝑐3 ≥ 0

𝐹𝑗 − 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗) 𝑐3 < 0
            (5) 

where, 𝑥𝑗
1, 𝐹𝑗 , 𝑢𝑏𝑗, and 𝑙𝑏𝑗 , are the leader position in jth 

dimension, the food source in jth dimension, upper bound in jth 
dimension, lower bound in jth dimension, respectively. 
Parameters 𝑐1, 𝑐2, and 𝑐3 are random numbers. 

Above leader position is updated based on the food source. 
For exploration and exploitation, the following parameter is 
defined: 
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𝑐1 = 2𝑒−(
4𝑙

𝐿
)

2

                                  (6) 

where, l and L is the current iteration and the maximum 
iteration number, respectively. The 𝑐2, and 𝑐3 parameters are 
generated randomly in interval [0, 1]. 

The follower position is updated as follows: 

                  𝑥𝑗
𝑖 =

1

2
(𝑥𝑗

𝑖 − 𝑥𝑗
𝑖−1)                        (7) 

where, i  ≥ 2 and  𝑥𝑗
𝑖 is the ith follower salp position in jth 

dimension. 

V. RESULTS  

Besides the SSA, other meta-heuristic optimizations, which 
are the Genetic Algorithm (GA) and Particle Swarm 
Optimization (PSO), are also executed as comparison methods. 
The GA, PSO, and SSA use 10 individuals in the population 
evaluated for 50 iterations. The optimization parameters are 
searched within the search area [100, 10000] for Kp gain and 
[2, 1000] for the Ki and Kd gains. The result of ∆𝑙𝑚𝑎𝑥 is 30 cm 
for the Stewart platform used in this paper (Table II). The 
computation of the gain optimization is performed within 2.5 
seconds and divides the motion into 200 sampling times. 

Fig. 7 shows the results of the leg length trajectories using 
the IK for the value of H = 13.5 cm. It can be observed that the 
leg lengths trajectories are within their workspace, where all 
trajectories are within ∆𝑙𝑚𝑎𝑥 boundary. 

A. Trial-and-Error Gains 

It is generally known that tuning the PID gain is a 
challenging computational problem, while using a trial-and-
error approach is a tedious task. The fitness value using this 
gain is 6.642 for the trial-and-error gain, [Kp Ki Kd] = [300 100 
100]. Fig. 8 shows the system response for the trial-and-error 
gains. The difference between the desired trajectories and the 
actual trajectories is not small, so tuning the gains is necessary 
to obtain the efficient motion. 

B. Optimal Gains 

Results of the optimal gains by the GA, PSO, and SSA are 
presented in Table III. The computation of the RMSE as the 
fitness function is performed for 2.5 second running time. It 
shows that the SSA algorithm is outperformed the GA and 
PSO where the SSA has the lowest fitness value. It can also be 
observed that the SSA does not trap to the upper bound value 
and lower bound value. 

The SSA has ability to explore and exploit the searching 
area through parameter  𝑐1 in Eq. (6). On the contrary, the PSO 
has been trapped to the upper bound value for the Kp (Kp = 
10000). Fig. 9 shows the fitness value evolution during 50 
numbers iterations. The fitness value of the SSA is 16.8% and 
8.7% lower than the GA and the PSO, respectively. 

 
Fig. 7. Leg lengths trajectories of the ocean wave model within ∆𝑙𝑚𝑎𝑥 

boundary. 

TABLE III. RESULTS OF GA, PSO, SSA 

Methods Fitness value Best [Kp Ki Kd] 

GA 0.0781 [9661.2    992.4    20] 

PSO 0.072 [10000   6190   20] 

SSA 0.066 [7472.4   747.24    5] 
 

 
Fig. 8. System response for the trial and error approach [Kp Ki Kd] = [300 100 100]. 
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Fig. 9. Fitness value of GA, PSO, and SSA. 

 
Fig. 10. System response for the SSA method, [Kv Kp Ki] = [7472.4   747.24    5]. 

 

Fig. 11. Zoom in of system response by SSA and trial-and-error gain. 

 
                  (a)                         (b)                        (c)                     (d) 

Fig. 12. Motion frames of the ocean wave simulator K=[7472.4   747.24    5] 

(a) 0 second (b) 2.5 second (c) 5 second (d) 7.5 second. 

Fig. 10 shows the system response of the SSA gains. As 
compare with the respond from the trial-and-error gain, it can 
be observed that the SSA has significantly improved the trial-
and-error approach. Fig. 11 shows detail of comparison 
between the results of the SSA gains and the trial and error 
gains for fist leg length trajectories. Fig. 12 shows the motion 
frame of the Stewart platform during tracking the ocean wave 
model. 

C. PID with Velocity Reference 

The previous result was obtained from the simplified 
version of the PID control system without feedforward of the 
velocity setpoint. This section investigates the performance of 
full PID control system when the velocity reference is included 
as an input to the controller. 

The full version of the PID control law, in which the 
velocity reference is used as the control input, is expressed as 
follows: 

                   𝐹 = 𝐾𝑝𝑒 + 𝐾𝑖𝜀 − 𝐾𝑑 𝑒̇                          (8) 

𝑒 = ∆𝑙̇ 𝑟𝑒𝑓 − ∆𝑙̇  
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The detail of the block the Simulink block diagram is 
illustrated in Fig. 13. 

 

Fig. 13. Full version of PID control system block diagram. 

Table IV presents the results of the trial-and-error and SSA 
gains for the PID control system with velocity reference input. 
By accommodating the velocity reference in the simplified 
conventional PID control, using the same trial-and-error gain K 
= [300 100 100], the fitness value has significantly improved to 
0.7450. However, this value is still far from the SSA gain, 
where the fitness achieved to 0.066 (Table III). 

VI. DISCUSSIONS 

The SSA has significantly improved the RMSE of the 
ocean wave simulator’s motion. Fig. 14 presents the detailed 
system response for the trial-and-error gains of the full version 
PID control system. However, when the SSA gains from the 
previous section (see Table III) are applied with the velocity 
reference included, the resulting fitness value is 0.1052—worse 
than that of the simplified PID control system. 

The performance of the full version of the PID control 
system is further investigated by tuning the gains using the 
SSA. Using the same computation parameters as in the 
simplified PID, the optimization result is presented in 
Table IV. The SSA gain for the PID control is K = [8148.97 
814.9 b37.64] with the fitness value is 0.099443. Based on the 
fitness value result, the simplified PID-SSA has better 
performance than that of the PID-SSA. 

TABLE IV. RESULTS OF SSA FOR FULL VERSION OF THE PID SYSTEM 

Methods Fitness value [Kp Ki Kd] 

Trial-and-error 0.7450 [300 100 100] 

Gain from previous 

section 
0.1052 [7472.4   747.24    5] 

SSA 0.099443 [8148.97   814.9      37.64] 
 

 
Fig. 14. System response of PID with velocity reference for the trial and error approach, [Kp Ki Kd] = [300 100 100]. 

Employing the SSA in the PID control system of the ocean 
wave simulator has yielded promising results. Adding the 
velocity reference input into the PID improves the simulator’s 
response for the trial-and-error gain, as reflected in the fitness 
value results. However, when the SSA is applied to correct the 
required force, the simplified PID (without the velocity 
reference input) outperformed the SSA-PID. The main 
challenge in reducing the position tracking error likely stems 
from the highly nonlinear dynamics of the 6-DOF Stewart 
platform. Standard PID control systems often require 
additional compensation to handle such nonlinearities 
effectively. Therefore, for future work, incorporating advanced 
nonlinear compensation methods, such as computed-force 

control, can be investigated to further enhance the system 
respond of the PID control system. 

VII. CONCLUSIONS 

The control system optimization of the Stewart-platform-
based ocean wave simulator using the PID-SSA method has 
been presented. The system solved the IK to obtain leg length 
trajectories, used as reference inputs for the PID controller. By 
employing Simscape Multibody to handle the forward 
dynamics, IK module, and PID control, the SSA was applied to 
tune the PID gains. Results showed that the SSA not only 
success to identify the optimal gain, but also significantly 
enhance the performance of the simplified PID controller as 
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compare to the full version of the PID controller. The 
promising performance of SSA in improving simplified PID 
control suggests strong potential for its application to ocean 
wave compensators in ships and ocean floating platforms. 
Future work should address nonlinear compensation in 
simulator dynamics and extend the proposed method to wave-
induced motion control on offshore platforms. 
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