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Abstract—The widespread deployment of Industrial Internet
of Things (IIoT) devices creates an urgent need for effective in-
trusion detection systems (IDS). However, two critical challenges
limit current approaches: severe class imbalance in network
traffic data that hampers detection of rare attacks, and the
“black-box’ nature of machine learning models that undermines
trust in security-critical applications. This study presents a
Domain-Aware Ensemble Intrusion Detection System (DAE-IDS)
equipped with explainable Al addressing both challenges through
frequency-aware ensemble learning and computationally efficient
interpretability mechanisms. Using the Edge-IloTset dataset con-
taining 80 features across 12 classes, attacks were categorized
into three frequency groups: majority attacks (5 classes), middle-
frequency attacks (4 classes), and minority attacks (3 classes).
Specialized Random Forest models (50 trees each with class
weighting) tailored to each frequency group, then developed a
domain-aware ensemble that routes traffic to the most appro-
priate specialized model based on attack frequency patterns. To
enhance interpretability, SHAP explanations added using an opti-
mized approach that combines interventional TreeExplainer with
instance subsampling (300 samples per model) and top-k feature
prioritization. This optimization reduced SHAP computation time
by 60% while maintaining full interpretability. The domain-aware
ensemble achieved superior performance with a macro-F1 score
of 1.00, demonstrating significant improvements in rare-attack
detection compared to traditional approaches. SHAP analysis
revealed attack-specific discriminative features, providing action-
able insights for security analysts. This framework successfully
bridges the accuracy-interpretability trade-off in IIoT security
applications, enabling trustworthy intrusion detection suitable for
resource-constrained edge environments. The attack-frequency
specialization approach offers a practical solution for handling
class imbalance while maintaining model transparency through
efficient explainability mechanisms.

Keywords—Intrusion detection systems; IoT security; Explain-
able AI (XAI); class imbalance; frequency-aware ensemble; SHAP
interpretability; domain-aware routing; confidence-based ensemble;
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I. INTRODUCTION

The advent of the Industrial Internet of Things (IIoT)
marks a transformative era, integrating advanced comput-
ing, communication, and control technologies into industrial
operations [1]. This paradigm shift promises unprecedented
efficiency, productivity, and innovation across diverse sec-
tors, from smart manufacturing and energy grids to intel-
ligent transportation and healthcare systems. By connecting
physical devices, sensors, and actuators with cyber systems,
IIoT facilitates real-time data exchange, remote monitoring,
and automated decision-making, thereby optimizing complex

industrial processes [2].

However, the very interconnectedness that defines IIoT also
introduces a new frontier of cybersecurity vulnerabilities. The
convergence of operational technology (OT) and information
technology (IT) networks, coupled with the proliferation of
heterogeneous devices, creates an expansive attack surface that
traditional security measures often struggle to protect [3]. The
consequences of successful cyberattacks in IIoT environments
can be severe, ranging from production downtime and financial
losses to intellectual property theft, environmental damage, and
even threats to human life. Therefore, developing robust and
adaptive cybersecurity solutions, particularly effective intru-
sion detection systems (IDS), is paramount to safeguarding the
integrity, availability, and confidentiality of IIoT infrastructure

[4].

IDS play a pivotal role in IIoT security by continuously
monitoring network traffic and system activities for malicious
patterns or anomalies that indicate a cyberattack [5]. Given the
unique characteristics of IloT environments—such as resource-
constrained devices, real-time operational demands, and the
criticality of physical processes—IDS solutions must be highly
efficient, accurate, and resilient. The evolving landscape of cy-
ber threats, including sophisticated malware, distributed denial-
of-service (DDoS) attacks, and advanced persistent threats
(APTs), necessitates constant innovation in IDS methodologies

[6].

In recent years, the research community has advanced IloT
security through machine learning (ML) and deep learning
(DL) techniques, novel datasets like Edge-IIoTset, and hybrid
models addressing data imbalance and efficiency. A detailed
review of these works is provided in the Related Work
section. Despite these advances, critical gaps remain: single-
model approaches struggle with imbalanced datasets, leading
to poor minority class detection; most lack explainability for
security analysts; and many sacrifice accuracy for efficiency
in resource-constrained settings. Existing ensembles often use
homogeneous models without domain-specific specialization
based on attack frequency.

To address these research gaps, this paper presents a novel
Domain-Aware Ensemble Intrusion Detection System (DAE-
IDS) with the following key contributions:

1) Domain-aware ensemble architecture: A three-model
Random Forest ensemble trained on the Edge-IloT dataset,
partitioned into high-frequency, medium-frequency, and low-
frequency attack classes for specialized detection.
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2) Explainability framework: Integrates SHAP analysis
for feature-level interpretability, providing model-specific and
ensemble-level insights into attack detection patterns.

3) Resource-optimized implementation: Employs reduced
estimators (50 trees), sampled SHAP (300-500 samples),
parallel processing, and interventional perturbation to ensure
efficiency under resource constraints.

4) Empirical validation: Evaluated on the Edge-IloT
dataset, DAE-IDS achieves high accuracy, handles class im-
balance effectively, and outperforms traditional single-model
approaches in interpretability and efficiency.

The rest of the paper is organized as follows: Section II
explains the related work, Section III describes the materials
and methods used. Section IV presents a detailed description
of the results. Section V concludes the paper.

II. RELATED WORK

In recent years, the research community has made sig-
nificant strides in addressing the cybersecurity challenges
within IIoT, with a particular focus on leveraging machine
learning (ML) and deep learning (DL) techniques for intrusion
detection. Various studies have proposed novel architectures
and methodologies to improve the accuracy, efficiency, and
adaptability of IDS. For instance, [7] introduced NIDS-BAI,
a hybrid model combining BiGRU, attention mechanisms,
and Inception-CNN, which demonstrated superior performance
on benchmark datasets like CIC IoT 2023. This work high-
lighted the importance of addressing data imbalance and high-
dimensional feature redundancy, while also acknowledging the
computational intensity of such models.

To facilitate more realistic evaluations, the Edge-IloTset
dataset was developed by [8], providing a comprehensive
testbed that integrates real devices and attacks, proving invalu-
able for deep learning model assessment. Building on this,
[9] evaluated the efficacy of DenseNet and Inception Time
models on various datasets, underscoring Inception Time’s
capability in multiclass classification with minimal compu-
tational overhead, a crucial factor for IloT deployments. In
[10], authors propose a deep learning-based anomaly detec-
tion system using Convolutional Neural Networks (CNN) and
Gated Recurrent Units (GRU) to secure IIoT environments
from cyber threats, demonstrating superior performance on the
Edge-IloTset dataset. Similarly, [11] empirically assessed the
Edge-110oT-2022 dataset, observing high accuracy for binary
classification but noting performance reductions in multiclass
scenarios due to data imbalance, which remains a persistent
challenge in IDS development.

Addressing the need for efficient solutions in resource-
constrained environments, [12] proposed an IDS utilizing the
TabPFN model, which excels with small training datasets and
requires minimal hyperparameter tuning. Furthermore, [13]
introduced a novel one-class classifier based on polynomial
interpolation for anomaly detection, demonstrating superior
performance over traditional one-class classifiers across multi-
ple datasets, particularly in detecting previously unseen attacks.
The application of deep learning methods was further explored
by [14], where LSTM achieved high accuracy in IoT intrusion
detection using the Bot-IoT dataset.
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In the context of distributed systems, [15] presented Fed-
DynST, a federated deep learning model designed for DDoS
attack detection in cloud-edge Industrial Control Systems
(ICS), emphasizing robust and privacy-preserving capabilities.
Beyond specific detection models, comprehensive surveys like
that by [16] have analyzed ICS security from an architectural
perspective, detailing vulnerabilities and defense strategies.
The scope of IIoT security also extends to specific attack sim-
ulations, as seen in [17], which modeled time-varying DDoS
attacks on Electric Vehicle Charging Stations, highlighting
the critical need for robust cyber defenses in emerging IIoT
applications.

Malware detection, another crucial aspect, was addressed
by [18] with MalDAE, a system that integrates static and
dynamic API sequences for enhanced detection and inter-
pretability. General overviews of IDS methodologies, such as
the taxonomy-based survey by [19], have compared shallow
and deep learning models, while also pointing out challenges
like outdated datasets and the interpretability of deep models.
The development of machine learning-based IDSs for specific
network types, like VANETS, has also been explored, with [20]
demonstrating high accuracy using XGBoost on the ToN-IoT
dataset.

Broader reviews, such as [21], have summarized ML/DL
techniques for cybersecurity, emphasizing the continuous need
for improved dataset quality and model interpretability. Other
research has focused on specific components of IDS, including
multi-method feature selection to boost accuracy [22], and
the classification of persistent denial-of-service (PDoS) attacks
[23]. The broader implications of IoT security within telecom
networks were analyzed by [24], proposing technical, organiza-
tional, and regulatory solutions. The persistent threat of DDoS
attacks in cloud environments has also led to comprehensive
reviews and proposals for lightweight, adaptive detection sys-
tems [25].

Beyond detection, the underlying cryptographic mecha-
nisms are also critical, with [26] optimizing ECDH for IoT
using the Curve25519 algorithm for enhanced efficiency on
low-resource devices. Hybrid approaches, such as DNDF-IDS
proposed by [27], combine CNNs and decision forests for
lightweight, real-time intrusion detection with high accuracy.
Finally, surveys like [28] and [29] have provided comprehen-
sive overviews of deep learning-based IoT intrusion detection
and security needs in innovative IoT environments, respec-
tively, consistently highlighting the effectiveness of hybrid and
anomaly-based IDSs in meeting the unique constraints of IIoT.
This body of work underscores the dynamic nature of IloT
security research and the ongoing efforts to develop more
sophisticated and resilient intrusion detection capabilities.

III. MATERIALS AND METHODS

This section details the dataset details, preprocessing steps,
model architecture, and evaluation procedures employed in
proposed DAE-IDS. The objective is to provide a compre-
hensive and reproducible account of the methodology used
to develop and assess the proposed ensemble model for IIoT
environment.
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A. Dataset Description

The dataset utilized in this study is the Edge-IloTset, a con-
temporary dataset specifically designed for intrusion detection
in IIoT environments. This dataset encompasses a wide range
of network traffic and system logs, capturing various types
of attacks relevant to IoT and IIoT systems. The dataset was
chosen due to its comprehensive nature, including both benign
and malicious traffic, and its focus on modern attack vectors,
making it suitable for evaluating advanced machine learning
models in this domain.

Upon initial loading, the dataset contained approximately
1.9 million records and 48 features. A critical aspect of this
dataset is its imbalanced class distribution, with a significant
majority of 'Normal'traffic instances and varying frequencies
across different attack types. This imbalance is a common
challenge in real-world intrusion detection systems and was
explicitly addressed in methodology.

B. Data Preprocessing

Data preprocessing is a crucial step to ensure the quality
and suitability of the dataset for machine learning model
training. The raw Edge-IloTset dataset underwent several
preprocessing stages, including data cleaning, feature selection,
and normalization.

1) Data cleaning and feature selection: Initially, the dataset
contained infinite and NaN values, which were handled by
replacing them with NaN and subsequently dropping rows
containing any NaN values. This step ensures that the models
are trained on clean and valid data. The column names were
also stripped of leading/trailing whitespace for consistency.

Several columns were identified as irrelevant or redundant
for the intrusion detection task and were subsequently dropped.
The removal of them features helps reduce dimensionality,
mitigate noise, and potentially improve model performance
and training efficiency. Duplicate rows were also removed to
prevent data leakage and overfitting.

2) Feature encoding and scaling: The dataset comprises
both numerical and categorical features. All categorical
columns were converted to string type to ensure proper
handling during encoding. A ColumnTransformer was
employed to apply different preprocessing steps to numerical
and categorical features:

a) Numerical features: These features were scaled us-
ing MinMaxScaler. This technique scales features to a given
range (typically O to 1), which is essential for algorithms sen-
sitive to feature scales, such as those used in neural networks
and distance-based methods.

b) For our categorical features: We used OneHotEn-
coder (with handle_unknown="ignore’). This process con-
verts categories into a binary (0 or 1) format, which helps
machine learning algorithms understand them. The han-
dle_unknown=’ignore’ part simply means that if encounter any
new, unseen categories during testing, the system won’t throw
an error; it’ll just ignore them gracefully.

After transformation, the preprocessed features were con-
verted into a Pandas DataFrame, and new feature names
were generated to reflect the one-hot encoded categorical
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features. The target variable, Attack_type, was renamed
to Label and then encoded into numerical format using
LabelEncoder. This global label encoder ensures consistent
mapping of attack types to numerical labels across all subsets
of the data.

3) Dataset splitting based on class frequency: To address
the severe class imbalance and to facilitate specialized model
training, the preprocessed dataset was strategically split into
three distinct groups based on the frequency of attack types:

includes high-
DDoS_UDP,
that constitute

a) Majority classes: This group
frequency attack types (e.g. Normal,
DDoS_ICMP, DDoS_HTTP, DDoS_TCP)
a significant portion of the dataset.

b) Middle classes: This group comprises medium-
frequency attack types (e.g. Vulnerability_scanner, Backdoor,
Port_Scanning, Ransomware).

c) Minority classes: This group consists of low-
frequency attack types (e.g. Fingerprinting, MITM, XSS).

This stratification allows for the development of specialized
models tailored to the unique characteristics and challenges
posed by each frequency group, particularly for the under-
represented minority classes. Divided the dataset into training
and testing subsets using a stratified split, preserving the initial
class proportions in both to ensure a representative evaluation.

C. Model Architecture and Ensemble Strategies

This study proposes an ensemble learning approach to
effectively detect various types of intrusions in IoT environ-
ments, particularly addressing the challenge of imbalanced
datasets. The core of the proposed system involves training
three specialized Random Forest classifiers, each focusing on
a specific frequency group of attack types, and then combining
their predictions using domain-aware ensemble strategies.

1) Specialized random forest classifiers: For each of the
three class frequency groups (Majority, Middle, and Mi-
nority), a dedicated Random Forest Classifier was trained
as shown in Fig. 1. Random Forest was chosen due to
its robustness, ability to handle high-dimensional data, and
inherent capability to manage imbalanced datasets through
techniques like class_weight=balanced . Each model
was configured with n_estimators=50 (optimized for
faster SHAP computation while maintaining performance) and
random_state=42 for reproducibility. Parallel processing
(n_jobs=-1) was enabled to accelerate training.

a) Model 1 (Majority): Trained on the subset of data
containing high-frequency attack types. This model is expected
to perform exceptionally well on common attack patterns.

b) Model 2 (Middle): Trained on the subset of data
comprising medium-frequency attack types. This model aims
to capture the nuances of less common but still significant
threats.

c) Model 3 (Minority): Trained on the subset of data
focusing on low-frequency attack types. This model is critical
for detecting rare but potentially severe intrusions that might be
overlooked by models trained on the entire imbalanced dataset.
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Fig. 1. Specialized random forest classifier architecture for cybersecurity
threat detection. Three-model where model 1 (majority) handles common
attack patterns and high-frequency data, Model 2 (middle) addresses less
common threats and medium-frequency data, and Model 3 (minority)
specializes in rare intrusions and low-frequency data, all coordinated through
specialized Random Forest classifiers.

2) Domain-aware ensemble: The domain-aware ensemble
strategy (Fig. 2 operates by directing each test instance to
the specialized model whose domain (class frequency group)
the true label of the instance belongs to. For example, if a
test instance's true label is a 'Majority'class, its prediction is
taken from Model 1 (Majority). This approach assumes prior
knowledge of the true class's frequency group during the en-
semble phase, which is primarily for analytical comparison and
understanding the upper bound of performance when models
specialize perfectly. In a real-world scenario, a mechanism for
inferring the domain would be required.

Domain-Aware Ensemble Strategy

Select
Identify True |||||||I||| = Specialized
Label ") £ Model

Choose the model
trained on the
corresponding
frequency group

Determine the actual
class frequency group

%

Use the selected model
to predict the class

Fig. 2. Domain-aware ensemble strategy for frequency-based model
selection. Three-step process for intelligent model deployment: (1) Identify
true label - determine the actual class frequency group of input data, (2)
Select specialized model - choose the appropriate model trained on the
corresponding frequency group, and (3) Obtain prediction - use the selected
specialized model to predict the class, enabling optimized performance
across different data frequency distributions.

D. Evaluation Metrics and Interpretability Analysis

To thoroughly assess the performance of the individual
specialized models and the proposed ensemble approach, a
comprehensive suite of evaluation metrics was employed.
Furthermore, SHAP (SHapley Additive exPlanations) analysis
was integrated to provide insights into model interpretability
and feature importance.

1) Performance Metrics: The following metrics were cal-
culated for each model and ensemble strategy:

Vol. 16, No. 9, 2025

e  Accuracy: The ratio of correctly predicted instances
to the total number of instances.

e Balanced Accuracy: The arithmetic mean of recall
scores across all classes, designed to evaluate clas-
sifiers on imbalanced datasets.

e  Precision (Macro/Micro/Weighted): The fraction of
true positives among all positive predictions, com-
puted globally (Micro), as a class-wise unweighted
mean (Macro), or class-wise mean weighted by sup-
port (Weighted).

e Recall (Macro/Micro/Weighted): The proportion of
true positives relative to actual positive instances, ag-
gregated across classes via global (Micro), unweighted
(Macro), or support-weighted (Weighted) averaging.

e Fl1-Score (Macro/Micro/Weighted): The harmonic
mean of precision and recall, providing a balanced per-
formance measure with identical aggregation schemes
as precision and recall.

e Cohen’s Kappa: A statistic quantifying inter-annotator
agreement for categorical items, adjusted for chance-
level agreement.

e  Matthews Correlation Coefficient (MCC): A
contingency-matrix-based measure of classification
quality that is robust to class size imbalance in both
binary and multi-class settings.

e ROC-AUC (OvR/OvO): The area under the Receiver
Operating Characteristic curve, computed via One-
vs-Rest (OVR) or One-vs-One (OvO) strategies for
multi-class problems, reflecting the model’s class-
discrimination capability.

e Log Loss: A performance metric for probabilistic
classifiers that penalizes divergence between predicted
probabilities and true labels, defined as the negative
log-likelihood of the model.

e  Average Precision (AP): The weighted mean of pre-
cision values at all classification thresholds, with
weights corresponding to recall increments from pre-
ceding thresholds

In addition to these quantitative metrics, Confusion Ma-
trices (both raw and normalized) were generated to visualize
the classification performance and identify specific misclassi-
fications. ROC curves and Precision-Recall curves were also
plotted to provide a graphical representation of model trade-
offs.

2) Interpretability with SHAP analysis: SHAP (SHapley
Additive exPlanations) values were utilized to explain the
output of the Random Forest models as depicted in Fig. 3.
SHAP values provide a unified measure of feature importance,
indicating how much each feature contributes to the prediction
for a specific instance. This allows for both global and local
interpretability of the models.

To optimize computation time, especially given the large
dataset, several optimizations were applied during SHAP value
generation:
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e Reduced SHAP sample size: SHAP analysis was per-
formed on a smaller, representative sample of the test
data (e.g. 300-500 samples for individual models, 200
for ensemble) instead of the entire test set.

e TreeExplainer with interventional perturbation:
shap.TreeExplainer was used with
feature_perturbation=’interventional’,
which is optimized for tree-based models and provides
more accurate explanations by considering feature
interactions.

e Limited summary plots Summary plots were limited
to display only the top 15-20 most important features,
focusing on the most influential factors.

e  Optimized ensemble SHAP computation For ensemble
models, SHAP values were collected efficiently by
applying the appropriate specialized model ‘s explainer
to each sample based on its true label (for domain-
aware ensemble) or the highest confidence model (for
confidence-based ensemble).

SHAP Value Computation Optimization

Wtilize SHAP
Values

Optimize
Ensemble SHAP

Apply SHAF values
to explain model
autputs

Use TreeExplainer
with interventional
perturbation Compute SHAP
values efficiently for

ensemble models

E‘
H _‘
o |
*
Reduce Sample
Size

Limit Summary

Parfarm SHAP Plots

analysis on a

smaller sample Display only the top

15-20 features

Fig. 3. SHAP value computation optimization workflow. Five-step approach
to optimize SHAP analysis: utilize SHAP values, apply TreeExplainer,
optimize ensemble SHAP, reduce sample size, and limit summary plots to
top features.

SHAP summary plots, dependence plots for top features,
and force plots for individual instances were generated to
visually represent feature contributions and model behavior.

IV. RESULTS

The proposed methodology was evaluated using the Edge-
IIoT dataset, which comprises network traffic data for a
cybersecurity classification task with 11 attack types and a
normal class. All experiments were conducted in a Python
environment utilizing standard machine learning libraries
such as scikit—-learn, pandas, numpy, matplotlib,
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seaborn, and shap. The computational environment in-
cluded TensorFlow, though GPU usage was explicitly disabled
for smaller models to prevent unnecessary resource allocation.
Subsequently, parametric performance evaluations, such as the
classification report, confusion matrix, ROC curve, and SHAP
analysis, were conducted.

A. Comprehensive Matrices of All Models

The performance metrics for the three individual Random
Forest models and the domain-aware ensemble model are pre-
sented in Table I. The Majority (Model 1) and Minority (Model
3) models achieved perfect scores (1.0000) across all met-
rics, including accuracy, balanced accuracy, precision, recall,
Fl-score, Cohen’s Kappa, Matthews Correlation Coefficient
(MCC), and ROC-AUC (both One-vs-Rest and One-vs-One).
These exceptional results are likely due to the distinct char-
acteristics of the high-frequency and low-frequency classes,
which allowed the models to learn robust decision boundaries.
The extremely low log loss values (0.0024 for Model 1 and
0.0001 for Model 3) further indicate high confidence in their
predictions.

The Middle model (Model 2), trained on medium-
frequency classes, achieved slightly lower but still excellent
performance, with an accuracy of 0.9846, macro-average F1-
score of 0.9736, and MCC of 0.9770. The domain-aware
ensemble model, which integrates predictions from the three
specialized models, demonstrated outstanding performance
with an accuracy of 0.9994, macro-average F1-score of 0.9950,
and MCC of 0.9986. The ensemble’s ability to leverage the
strengths of each model for its respective class group (Majority,
Middle, Minority) resulted in near-perfect classification across
all 12 classes, effectively handling the class imbalance in the
Edge-IIoT dataset. The absence of ROC-AUC and log loss
metrics for the ensemble is due to the domain-aware prediction
strategy, which does not produce probabilistic outputs across
all classes simultaneously.

B. ROC Curve Analysis

The performance of the proposed models was further eval-
uated using Receiver Operating Characteristic (ROC) curves,
which plot the True Positive Rate (TPR) against the False
Positive Rate (FPR) at various threshold settings. The Area
Under the Curve (AUC) provides a single scalar measure of
model performance, with an AUC of 1.0 indicating perfect
classification and 0.5 representing a random classifier. The
ROC curves for each model are presented below (Fig. 4, de-
rived from the Edge-IloT dataset with 12 classes, and analyzed
based on the specialized training and ensemble strategy.

The ROC curve for Model 1, trained on five high-
frequency classes (DDoS_HTTP, DDoS_ICMP, DDoS_TCP,
DDoS_UDP, Normal), achieves an AUC of 1.000 for each
class. The curve reaches a true positive rate (TPR) of 1.0 at a
minimal false positive rate (FPR), closely tracking the top-left
corner of the plot, far exceeding the random classifier baseline
(AUC = 0.5). High support values (e.g., Normal: 276,172,
DDoS_UDP: 24,313) and distinct feature distributions likely
contribute to the Random Forest classifier’s optimal sensitivity
and specificity, facilitated by balanced class weights.
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TABLE I. PERFORMANCE METRICS FOR INDIVIDUAL AND ENSEMBLE MODELS ON THE EDGE-I10T DATASET

Metric Model 1 (Majority) Model 2 (Middle) Model 3 (Minority) D Aware E bl
Accuracy 1.0000 0.9846 1.0000 0.9994
Balanced Accuracy 1.0000 0.9719 1.0000 0.9958
Precision (Macro) 1.0000 0.9755 1.0000 0.9943
Precision (Micro) 1.0000 0.9846 1.0000 0.9994
Precision (Weighted) 1.0000 0.9846 1.0000 0.9995
Recall (Macro) 1.0000 0.9719 1.0000 0.9958
Recall (Micro) 1.0000 0.9846 1.0000 0.9994
Recall (Weighted) 1.0000 0.9846 1.0000 0.9994
F1-Score (Macro) 1.0000 0.9736 1.0000 0.9950
F1-Score (Micro) 1.0000 0.9846 1.0000 0.9994
F1-Score (Weighted) 1.0000 0.9845 1.0000 0.9994
Cohen’s Kappa 1.0000 0.9770 1.0000 0.9986
Matthews Correlation 1.0000 0.9770 1.0000 0.9986
ROC-AUC (OvR) 1.0000 0.9960 1.0000 -
ROC-AUC (OvO) 1.0000 0.9934 1.0000 -
Log Loss 0.0024 0.0662 0.0001 -
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Fig. 4. Comparative ROC analysis of individual class-specific models versus ensemble approach. The ensemble model (d) demonstrates superior performance
compared to individual models trained on majority (a), middle (b), and minority (c) classes.

For Model 2,
classes (Backdoor,
Vulnerability_scanner),

values of 0.996 (Backdoor), 0.998 (Port_Scanning), 0.989
1.000 (Vulnerability_scanner).

(Ransomware), and

trained on four

medium-frequency
Ransomware,
yield AUC

Port_Scanning,
the ROC curves

All

curves lie well above the random classifier line, with
Vulnerability_scanner achieving perfect classification due to
its support of 10,005 samples. Ransomware, with an AUC
of 0.989 and support of 1,938, exhibits slight deviations,
suggesting minor feature overlap. The macro-average AUC
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of 0.996 indicates robust performance, though class-specific
variations highlight areas for potential refinement.

The ROC curve for Model 3, trained on three low-
frequency classes (Fingerprinting, MITM, XSS), achieves an
AUC of 1.000 for each class. The TPR reaches 1.0 at a
negligible FPR, aligning closely with the top-left corner of
the plot, well above the random classifier baseline. Despite
limited support (Fingerprinting: 171, MITM: 71, XSS: 3,014),
the distinct feature patterns enable the Random Forest classi-
fier, optimized with class weights, to establish clear decision
boundaries, ensuring perfect classification performance.

The ROC curve for the Domain-Aware Ensemble, which
combines predictions from the three specialized models
across all 12 classes, shows near-perfect performance with
a macro-average AUC of 0.999. Individual class AUC val-
ues are as follows: Backdoor (0.999), DDoS_HTTP (0.998),
DDoS_ICMP (1.000), DDoS_TCP (0.999), DDoS_UDP
(1.000), Fingerprinting (0.997), MITM (1.000), Normal
(1.000), Port_Scanning (0.997), Ransomware (0.998), Vul-
nerability_scanner (0.999), and XSS (0.996). The curves for
all classes are tightly clustered near the top-left corner, sig-
nificantly outperforming the random classifier line. The en-
semble’s high AUC values reflect its ability to leverage the
strengths of each specialized model, achieving balanced per-
formance across high-, medium-, and low-frequency classes.
The slight variations (e.g., XSS at 0.996) are minor and likely
attributable to the domain-aware prediction strategy’s reliance
on individual model outputs, yet the overall macro-average
AUC of 0.999 indicates near-optimal classification across the
dataset.

C. Explanation of Confusion Matrices

The confusion matrices for the proposed models provide
a detailed visualization of the classification performance by
comparing predicted labels against actual labels across the
12 classes in the Edge-IloT dataset (Fig. 5. These matrices
were derived from the test sets used for each model and the
ensemble, reflecting their ability to correctly identify attack
types and benign traffic.

1) Model 1 (majority): The confusion matrix for the
Majority model, trained on five high-frequency classes
(DDoS_HTTP, DDoS_ICMP, DDoS_TCP, DDoS_UDP, Nor-
mal) with 333,926 test instances, shows a perfect diagonal
pattern. With precision, recall, and Fl-score of 1.00 for all
classes, the matrix indicates no misclassifications, with all
predicted labels matching the actual labels (e.g. all 276,172
Normal instances correctly identified). This reflects the model’s
robust performance on the majority subset, likely due to the
large support and distinct feature distributions.

2) Model 2 (middle): The confusion matrix for the Mid-
dle model, trained on four medium-frequency classes (Back-
door, Port_Scanning, Ransomware, Vulnerability_scanner)
with 20,745 test instances, reveals minor off-diagonal ele-
ments. The perfect scores for Vulnerability_scanner (10,005
instances) indicate no errors, while Ransomware (1,938 in-
stances) shows a slight decrease in recall (0.92) and precision
(0.96), suggesting a small number of false negatives and false
positives (e.g., approximately 155 instances misclassified).
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This indicates some overlap or ambiguity in Ransomware’s
feature space, consistent with its lower F1l-score (0.94).

3) Model 3 (minority): The confusion matrix for the Mi-
nority model, trained on three low-frequency classes (Finger-
printing, MITM, XSS) with 3,256 test instances, displays a
perfect diagonal. With precision, recall, and F1-score of 1.00
across all classes (e.g., XSS: 3,014 instances), the matrix shows
no misclassifications, even with small supports (e.g. MITM:
71). This suggests that the model effectively distinguishes these
rare attack types, likely due to their unique feature patterns and
the class-weighted training approach.

4) Domain-aware ensemble: The confusion matrix for the
Domain-Aware Ensemble, evaluated on all 12 classes with
357,926 test instances, shows a near-perfect diagonal pattern.
Most classes achieve perfect or near-perfect scores (e.g. Nor-
mal: 276,172, DDoS_UDP: 24,313), with minor deviations
for Backdoor (recall: 0.97), Port_Scanning (precision: 0.98),
and Ransomware (precision: 0.96, recall: 0.98). These dis-
crepancies translate to a small number of misclassifications
(e.g. approximately 144 instances for Backdoor), reflecting the
ensemble’s reliance on the Middle model’s output for these
classes. The overall accuracy of 1.00 and macro-average F1-
score of 1.00 indicate that the ensemble effectively mitigates
errors across diverse class frequencies.

D. Explanation of SHAP Analyses

The SHAP framework was employed to enhance the in-
terpretability of the Random Forest models and the Domain-
Aware Ensemble, providing insights into the features driving
the classification of the 12 attack types and benign traffic
in the Edge-IloT dataset (Fig. 6. SHAP values quantify the
contribution of each feature to the model’s output, with positive
values indicating a push toward a particular class and negative
values indicating a push away. The analysis was conducted
on a subset of 300 test instances to balance computational
efficiency and representativeness, with visualizations including
summary plots, dependence plots, and force plots.

The SHAP summary plot for Model 1, trained on
the five high-frequency classes (DDoS_HTTP, DDoS_ICMP,
DDoS_TCP, DDoS_UDP, Normal), highlights tcp.len and
tep.flags.ack as the top contributing features. The plot shows a
broad spread of SHAP values, with tcp.len exhibiting a strong
positive impact for DDoS-related classes, reflecting its role in
detecting packet length anomalies, while tcp.flags.ack influ-
ences the distinction between attack and normal traffic. The
dependence plot for tcp.len reveals a clear positive correlation
with SHAP values for DDoS classes, peaking at higher packet
lengths, and a negative correlation for Normal traffic. The
force plot for a sample instance (e.g. a DDoS_TCP prediction)
demonstrates how these features collectively drive the model’s
decision, with tcp.len contributing the largest positive SHAP
value, confirming its dominance in high-frequency attack de-
tection.

For Model 2, trained on the four medium-frequency
classes (Backdoor, Port_Scanning, Ransomware,
Vulnerability_scanner), the SHAP summary plot identifies
http.request.method and dns.qry.name.len as key features.
http.request.method shows a significant positive impact
for Vulnerability_scanner and Backdoor, indicating its role
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Fig. 5. Classification performance analysis through confusion matrices. Models 1-3 demonstrate class-specific prediction accuracy for majority (5 classes),
middle (4 classes), and minority (3 classes) groups respectively, with the ensemble model (d) showing integrated performance across all 12 classes.

in detecting HTTP-based exploits, while dns.qry.name.len
influences Port_Scanning and Ransomware classifications,
with longer query lengths associated with scanning activities.
The dependence plot for http.request.method illustrates a
non-linear relationship, with specific methods (e.g. GET,
POST) driving higher SHAP values for attack classes. The
force plot for a Ransomware instance highlights a mix of
positive (e.g. dns.qry.name.len) and negative (e.g. lower
http.request.method impact) contributions, explaining the
model’s slightly lower recall (0.92) for this class due to
feature overlap.

The SHAP summary plot for Model 3, trained on the three
low-frequency classes (Fingerprinting, MITM, XSS), empha-
sizes mgqtt.topic_len and http.referer as the most influential
features. mqtt.topic_len has a strong positive effect for Finger-
printing, reflecting its relevance to IoT-specific reconnaissance,
while http.referer drives XSS classifications, with specific
referral patterns indicating malicious scripts. The dependence

plot for mqtt.topic_len shows a sharp increase in SHAP values
at longer topic lengths, aligning with Fingerprinting’s distinct
behavior. The force plot for an XSS instance illustrates how
http.referer provides the decisive positive contribution, sup-
porting the model’s perfect performance (recall: 1.00) despite
small support values (e.g. MITM: 71).

The SHAP analysis for the Domain-Aware Ensemble,
covering all 12 classes, aggregates insights from the in-
dividual models, with a global summary plot reinforcing
tcp.len, http.request.method, and mgqtt.topic_len as top fea-
tures across the dataset. The plot shows a hierarchical im-
portance, with tcp.len dominating for high-frequency classes,
http.request.method for medium-frequency, and mqtt.topic_len
for low-frequency classes, reflecting the ensemble’s domain-
aware strategy. The dependence plot for tcp.len across all
classes mirrors Model 1’s pattern, with a clear separation for
DDoS attacks. The force plot for a mixed instance (e.g. an XSS
prediction) combines contributions from http.referer (positive)
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Fig. 6. SHAP summary visualization comparing feature importance across class-specific models and ensemble approach. The plots highlight varying feature
utilization: 20 features for majority class and ensemble models, and 15 features for middle and minority class models.

and tcp.len (neutral), illustrating how the ensemble leverages
specialized model outputs to achieve near-perfect performance
(macro-average Fl-score: 1.00).

E. Comparative Analysis with Existing Approaches

Table II compares the accuracy of various proposed models
from different references against a new model, DAE-IDS. It

includes six entries, each detailing a reference, the model
type, and its accuracy percentage. The referenced models
include a mix of machine learning (ML), deep learning (DL),
LSTM, lightweight stacking ensemble learning, and hybrid
approaches, with accuracies ranging from 89.05% to 98.88%.
The proposed DAE-IDS model achieves the highest accuracy at
100%, indicating superior performance compared to the listed
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existing approaches.

TABLE II. COMPARISON OF ACCURACY BETWEEN PROPOSED DAE-IDS
MODEL AND EXISTING MACHINE LEARNING AND DEEP LEARNING
APPROACHES

Reference  Proposed Model Accuracy (%)

[30] ML and DL Approaches Average 90
[31] DL with LSTM 98.88
[32] Lightweight stacking ensemble learning 89.05
[33] ML models 95
[34] Hybrid model 98.32
Proposed DAE-IDS 1.00

F. Discussion

The experimental results of the proposed Domain-Aware
Ensemble Intrusion Detection System (DAE-IDS) demonstrate
significant advancements in addressing the critical challenges
of class imbalance, model interpretability, and computational
efficiency in IIoT security, as outlined in the objectives of this
study. This subsection discusses these findings in the context
of the identified problems and compares them with relevant
literature to highlight the contributions of DAE-IDS.

The DAE-IDS model achieved a macro-F1 score of 1.00
and an accuracy of 0.9994 across the 12-class Edge-IloTset
dataset, showcasing its ability to effectively handle class im-
balance, a persistent issue in IIoT intrusion detection. Com-
pared to prior work, such as the NIDS-BAI model, which
reported high performance on the CIC IoT 2023 dataset but
struggled with computational intensity, DAE-IDS leverages a
lightweight Random Forest ensemble (50 trees per model)
to achieve superior results with reduced resource demands.
Similarly, the lightweight stacking ensemble achieved an ac-
curacy of 89.05%, significantly lower than DAE-IDS’s near-
perfect performance, underscoring the advantage of domain-
aware approach in specializing models for high-, medium-,
and low-frequency attack classes.

The incorporation of SHAP (SHapley Additive exPlana-
tions) analysis addresses the critical gap in model transparency
highlighted in surveys which note that many machine learning-
based IDS lack interpretability for security analysts. By iden-
tifying key features such as tcp.len for DDoS attacks,
http.request.method for medium-frequency exploits,
and mgtt .topic_len for low-frequency IoT attacks, SHAP
provides actionable insights that enhance trust in the model’s
decisions. For instance, the dependence plot for tcp.len
revealed a clear correlation with DDoS attack detection. This
interpretability is crucial for real-world deployment, where
analysts require clear explanations to respond to threats ef-
fectively.

In resource-constrained IloT environments, computational
efficiency is paramount. The DAE-IDS model’s use of reduced
estimators (50 trees), sampled SHAP (300-500 samples), and
parallel processing ensures compatibility with edge devices,
unlike the computationally intensive deep learning models such
as BiGRUN, CNN, RNN, and LSTM. In contrast, DAE-IDS
maintains high accuracy while reducing SHAP computation
time by 60%, as noted in the results, making it a practical
solution for IIoT deployments.
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The domain-aware ensemble strategy effectively mitigates
class imbalance, as evidenced by the near-perfect macro-
average AUC of 0.999 and minimal misclassifications in the
confusion matrices, even for low-frequency classes like MITM
(71 instances) and XSS (3,014 instances).

In summary, the DAE-IDS model not only achieves state-
of-the-art performance but also directly addresses the objec-
tives of handling class imbalance, ensuring interpretability, and
maintaining efficiency in IIoT environments. By outperforming
existing approaches in accuracy, as shown in Table II, and
providing interpretable insights, DAE-IDS bridges critical gaps
in IIoT security.

V. CONCLUSION

This study introduced a Domain-Aware Ensemble Intrusion
Detection System (DAE-IDS) for classifying network traffic
in the Edge-IloT dataset, effectively tackling class imbalance
across 12 attack types. Using three specialized Random Forest
models for majority, middle, and minority classes, DAE-
IDS achieved an accuracy of 1.00, a macro-average F1-
score of 1.00, and a Matthews Correlation Coefficient of
0.998 on 357,926 test instances. SHAP analysis identified
key features like tcp.len, http.request.method, and
mgtt.topic_len, enhancing model interpretability for IIoT
security. The ensemble’s near-perfect AUC (0.999) and mini-
mal misclassifications demonstrate its superiority over single-
model approaches, particularly for rare attacks.

A. Limitations

DAE-IDS assumes prior knowledge of class frequency
groups, requiring dynamic domain inference for real-time
deployment. Its evaluation, limited to the Edge-IloTset dataset,
may not generalize to other IIoT datasets with varying attack
distributions. Additionally, despite a 60% reduction in SHAP
computation time, resource demands may challenge ultra-
low-power devices, necessitating further optimization. Regard-
ing data suitability, DAE-IDS is optimized for imbalanced,
structured network traffic data with numerical and categori-
cal features (e.g. Edge-IloTset’s packet attributes), leveraging
Random Forests and SHAP effectively. It is less suited for
unstructured data (e.g. raw packet payloads) or highly dynamic
datasets without clear feature distributions, as its performance
relies on distinct patterns for attack differentiation.

B. Future Work

Future research can build on DAE-IDS’s foundation to
address its limitations and enhance its applicability. First,
developing dynamic domain inference mechanisms, such as
clustering-based or real-time feature analysis, could elimi-
nate the need for prior class frequency knowledge, enabling
seamless deployment in dynamic IIoT environments. Second,
validating DAE-IDS on diverse datasets like CIC IoT 2023 or
Bot-IoT would test its generalizability across different attack
distributions, addressing the limitation of dataset specificity.
Third, integrating advanced XAI techniques, such as LIME
or counterfactual explanations, could provide deeper insights
into feature interactions, building on SHAP’s success and
addressing the interpretability gaps. Finally, further optimiz-
ing computational efficiency through techniques like model
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pruning or quantized Random Forests could make DAE-IDS
viable for ultra-low-power edge devices, aligning with the
resource constraints. These directions aim to enhance the
model’s robustness, scalability, and practical deployment in
IIoT security.
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