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Abstract—The existence of complex networks can be observed
in various real-world contexts, such as social, biological, and/or
neurological networks. A critical analytical challenge in such
networks is community detection, which entails detecting group-
ings of nodes with dense internal connectivity. Numerous studies
have been conducted on the subject of overlapping communities,
wherein nodes may concurrently belong to multiple communities.
In this paper, we propose an enhanced fuzzy clustering method
for overlapping community detection based on neighborhood
similarity. The core idea is to observe the community membership
as a continuous feature; hence, nodes can belong to more than
one community following different levels of affiliations. Our
method consists of four stages: first, we find local structural
features; then, we make a neighborhood similarity matrix based
on common neighbors; next, we give initial fuzzy memberships
using an Enhanced Fuzzy C-Means approach; and last, we
improve memberships using a local optimization strategy. We
evaluated our method on various real-world datasets of differing
sizes and determined that it outperforms multiple state-of-the-
art techniques, as indicated by overlapping modularity, F-score,
and statistical significance assessments. The proposed method is
a useful and scalable solution that is easier to understand and
more accurate.

Keywords—Fuzzy clustering; neighborhood similarity; extended
modularity; overlapping community; complex networks

I. INTRODUCTION

Complex networks can be used to resemble a lot of
complex systems that exist in the actual world, like social, bio-
logical, technical, and information systems. In such networks,
entities represent nodes, whereas edges depict how those
entities are related to each other [1]. Many social networks
[2], [3], [4], [5], biological networks [6], information networks
[7], and electric power grids [8] are among popular examples.
Identifying communities requires finding clusters of nodes
that exhibit greater connectivity among themselves compared
to their connections with the broader network, representing
a fundamental challenge in the study of such networks. A
community is widely recognized as a subset of nodes with
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a high density of intra-group connections and relatively sparse
connections to other sections of the graph, despite the lack of
a universally accepted definition. Many algorithms have been
devised over the years to discover community structures. Some
of these are Walktrap, Infomap, edge betweenness, CNM, and
Louvain approaches [9], [10], [11], [12], [13]. These methods
have been able to identify communities that don’t overlap
(disjoint), but they don’t always accurately represent the more
realistic situation where nodes can belong to more than one
community simultaneously.

Recent years have witnessed a notable rise in interest
regarding network information extraction. Link prediction [14],
cluster analysis [15], and community identification [16] are
just a few of the areas of study that use these methods.
Finding communities is crucial not only for finding natural
modular structures in complicated networks [17], [18], but
also for building tailored recommendation systems, optimizing
impact, and making network analysis more robust [19]. To
better comprehend the various kinds of topologies in complex
systems, researchers have turned their attention to overlapping
community identification [20]. Overlapping communities pro-
vide a more accurate representation of numerous systems, as
they allow nodes to belong to multiple communities, a char-
acteristic commonly observed in real-world complex systems.
This has led to the creation of several other algorithms that
either build on existing clustering methods or use fuzzy and
probabilistic insights. Even with these advancements, it is still
hard to attain a balance between precision, interpretability, and
computational efficiency.

This paper presents a fuzzy clustering-based technique for
identifying overlapping communities through the analysis of
neighborhood similarity. The main idea is that community
membership isn’t black and white; it’s more of a spectrum,
and nodes can belong to multiple communities at different
levels at the same time. Our method builds a local similarity
matrix from common neighbors, which is the basis for figur-
ing out fuzzy membership. This structure-aware method not
only keeps track of local topological equivalence, but it also
maintains scalability. The algorithm functions in four primary
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phases: 1) Preprocessing and feature extraction of the graph
structure, 2) Development of a neighborhood-based similarity
matrix, 3) Preliminary fuzzy community assignment utilizing
a Fuzzy C-Means-like approach, and 4) Enhancement of
overlapping community memberships via a local neighborhood
optimization technique. This multi-stage framework facilitates
the identification of overlapping structures without dependence
on global heuristics or external metadata, rendering it both
efficient and adaptable.

To assess the efficacy of our proposed approach and
analyze its performance, we conduct comprehensive tests on
a range of benchmark datasets, varying from small to large.
We evaluate our results against various prominent overlap-
ping community detection algorithms, including OSLOM [21],
BIGCLAM [22], GREESE [23], and LC [24], utilizing evalu-
ation metrics such as extended modularity (EQ) and F-score.
The empirical findings indicate that our algorithm is compet-
itive, frequently surpassing or equaling state-of-the-art tech-
niques, especially in contexts necessitating precise delineation
of overlapping community boundaries. We further evaluate
and compare the computational complexity, execution time
comparison of the methods including the proposed method.
Furthermore, we utilize Friedman rank-based statistical testing
and Nemenyi post-hoc analysis to confirm the consistency and
significance of our findings across datasets. These experiments
validate the efficacy of our technique, demonstrating its ca-
pacity to sustain reduced computing overhead relative to other
methods. We can precise the main contributions of this paper
as:

A. Main Contributions

The primary contributions of this work can be summarized
as follows:

1) Locally accurate similarity measure: The algorithm
employs a neighborhood-based similarity that captures fine-
grained structural relationships between nodes, allowing for
more precise community boundaries than global or seed-based
approaches.

2) Effective and controlled overlapping: A lightweight
fuzzy clustering process is integrated with a mechanism to
limit the number of overlapping communities per node, effec-
tively reducing redundant overlaps while preserving meaning-
ful structure.

3) Scalable and parameter-free-based: The method
circumvents expensive computations such as eigen-
decomposition or resolution tuning, making it fast, scalable
to large-scale networks, and easy to deploy with minimal
parameter adjustments.

The remainder of the paper is organized as follows: Section
II outlines the literature that is relevant to our research. Section
III highlights the definitions of the principal terminology
utilized in this paper and articulates the primary problem
statement. Section IV discusses the specifics of the primary
approach behind the proposed idea of this paper. Section V
illustrates the experimental configuration, acquired results, and
analysis. Section VI discusses the possible applications of the
proposed methodology. And finally, Section VII concludes the
work.

II. RELATED WORK

A. Local Similarity and Clustering-based Methods

Local-first approaches leverage node connectivity fea-
tures—especially clustering coefficients and common neigh-
bors—to detect overlapping communities. For instance, Asmi
et al. introduce a method that combines clustering coefficient
thresholds with neighbor similarity driven by weighted belong-
ing degrees [24]. Their work demonstrates robust detection of
overlapping communities in small-scale graphs but lacks finer
control via fuzzy membership assignments.

Similarly, Zhang et al. propose a greedy neighborhood-
overlap approach (NOVER) that iteratively removes low-
overlap edges to maximize modularity [25]. While effective at
capturing structural cohesiveness, NOVER’s reliance on global
modularity maxima can limit its flexibility in nuanced over-
lapping contexts. More recently, Liu et al. proposed OCDIF,
a hybrid local/global method using clustering coefficient and
degree that achieves high F-score and NMI on large networks
like DBLP and Amazon, although it still lacks fuzzy member-
ship nuances [26].

B. Seed-Expansion and Interaction Model Techniques

Seed-expansion techniques have become widely adopted
for overlapping community detection due to their efficiency
and local focus. These methods typically identify high-quality
seed nodes or structures and iteratively expand communities
by aggregating neighboring nodes based on local fitness or
structural heuristics.

For example, the Greedy Coupled-Seeds Expansion method
[23] introduces a dual-seed strategy where two strongly cou-
pled nodes act as the initial seed pair. The expansion sub-
sequently advances by incorporating nodes that enhance the
local fitness function, considering both internal and external
connectivity. This method has shown significant effectiveness
in social networks by identifying both densely and loosely
connected overlapping communities.

Another example, the TES algorithm (Two-step Expansion
of Seeds), proposed by Li [27], selects central nodes as
seeds using topological features and then performs greedy
expansion to maximize community fitness. This method ef-
fectively handles overlapping structures without requiring pre-
specified community counts. Another method, GLOD (local
greedy extended dynamic overlapping community detection)
[28], centers on dynamic graphs and leverages local fitness
and similarity functions to iteratively expand communities and
merge overlapping results. Additionally, the Interaction-based
Local Model by Jia et al. [29] uses two tunable parame-
ters to control the clustering radius and community fusion
threshold, enabling robust overlapping detection by modeling
node interactions and structural similarity. These methods
highlight a shift toward local, adaptive expansion techniques
that rely on node interaction cues rather than global modularity
maximization.

C. Spectral and Fuzzy Hybrid Models

Spectral embeddings paired with fuzzy clustering have
emerged to enhance recall in overlapping community detec-
tion. LapEFCM reduces graph representation via Laplacian
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eigenmaps before applying fuzzy C-means, yielding refined
but computationally expensive clustering [30].

More recently, Pourabbasi et al. proposed a novel intelli-
gent evolutionary algorithm that integrates Fuzzy Analytic Hi-
erarchy Process (Fuzzy-AHP) with evolutionary computation
for detecting communities in complex networks [31]. Their
method optimizes membership functions using an adaptive
multi-objective evolutionary strategy, significantly improving
interpretability and convergence in fuzzy community models.
Similarly, Jokar et al. introduced a hybrid method combining
fuzzy set theory, balanced link density metrics, and label
propagation [32]. Their approach leverages local link structure
with fuzzy decision rules, enabling more flexible overlapping
detection in weighted and sparse networks. These hybrid
models demonstrate the growing effectiveness of fuzzy-based
frameworks for community detection. However, their reliance
on global graph embeddings, evolutionary tuning, or cus-
tomized label dynamics can introduce scalability limitations.

D. Deep-Learning Methods

Graph Neural Networks (GNNs) are currently being
adapted to tackle the complex challenge of overlapping com-
munity identification, where nodes may sequentially belong
to numerous communities at the same time. UCoDe, as pro-
posed by Li et al. [33], presents a cohesive GNN frame-
work that identifies both overlapping and non-overlapping
organizations by improving a contrastive loss that encapsu-
lates macro-level node similarity, demonstrating competitive
efficacy in both tasks without requiring extensive hyperpa-
rameter adjustment. DynaResGCN [34] enhances this field
by introducing a deep residual Graph Convolutional Network
(GCN) featuring dynamic dilated aggregation, alongside a
Bernoulli–Poisson decoder within an encoder–decoder frame-
work, specifically aimed at overlapping community detec-
tion and exhibiting robust performance on social and co-
authorship networks. VGAE-ECF [35] amalgamates varia-
tional graph autoencoders with structural graph data, including
edge weights and community-aware regularization, to gen-
erate superior latent embeddings for community detection,
and when paired with Leiden clustering, enhances accuracy
in large-scale networks. These models exemplify an increas-
ing trend towards data-driven, comprehensive solutions for
overlapping community detection, providing substantial ben-
efits in representation learning and scalability compared to
traditional methods. Nonetheless, many continue to rely on
distinct clustering phases or inadequately exploit fine-grained
local neighborhood structures—constraints that our suggested
fuzzy clustering method, grounded in neighborhood similarity,
effectively mitigates.

Our proposed method combines local neighborhood sim-
ilarity, fuzzy clustering, and a neighborhood-based overlap
optimization to effectively detect overlapping communities. It
uses an asymmetric, normalized measure of neighbor similarity
that avoids complex computations like eigenvalue analysis.
The fuzzy clustering is lightweight and adaptive, computing
memberships and cluster centers without needing a fixed
number of communities or spectral embeddings. Overlaps are
carefully controlled by assigning nodes only to communities
where their normalized strength is close to the maximum, pre-
venting unnecessary overlaps. Compared to other local or seed-

expansion methods, our approach integrates soft memberships
and overlap control with fewer parameters and lower compu-
tational cost. It offers a scalable and interpretable alternative
that performs competitively with spectral-fuzzy techniques
on benchmark networks, capturing overlapping community
structures efficiently across various network types.

III. PRELIMINARIES

A. Problem Statement

Let G = (V,E) represent an undirected, unweighted
graph that models a complex network, where V denotes
the set of vertices and E signifies the collection of edges.
The challenge is to locate communities that overlap with
one another. Let C = {C1, C2, . . . , Ck}, where a node may
belong to numerous communities with differing degrees of
membership. The objective is to develop an algorithm that
integrates local neighborhood similarity with fuzzy clustering
methods to represent the intensity of community affiliation.
The approach must maintain both structural proximity and
latent similarity among nodes, facilitating precise and scalable
detection of overlapping community structures in real-world
networks.

B. Definition 1 (Overlapping Community)

An overlapping community denotes a community struc-
ture wherein nodes are allowed to simultaneously belong to
multiple communities. This characteristic is prevalent in real-
world networks, such as social networks, where individuals
may belong to multiple social circles or interest groups.

Notation: Let Ci denote the set of communities that node i
belongs to, where Ci can contain more than one element, i.e.
|Ci| > 1.

C. Definition 2 (Neighbor of a Node)

The neighborhood of a node i, represented as N(i), com-
prises the set of nodes that are immediately connected to node
i. The neighborhood defines the local structure surrounding a
node within the graph.

Notation: N(i) = {j ∈ V : (i, j) ∈ E}, where (i, j) is an
edge in E.

D. Definition 3 (Fuzzy Clustering)

Fuzzy clustering is an extension of conventional hard
clustering techniques, allowing each data point to belong
to numerous groups with differing levels of membership.
In overlapping community detection, nodes can belong to
multiple communities, with their membership quantified by
a membership function, µij , representing the extent to which
node i is associated with community j.

Notation: The membership degree µij is typically con-
strained such that 0 ≤ µij ≤ 1, and the sum of memberships
for each node across all communities is normalized, i.e.∑

j µij = 1 for all nodes i.
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E. Definition 4 (Fuzzy Membership)

Let G = (V,E) denote the graph comprising vertices
1, 2, . . . , n. We examine representations of G using nonzero
vectors x1, x2, . . . , xn ∈ RN , characterized by the function
f : V → RN , where each node is depicted as a vector of
length N . Then a fuzzy set V in G is a set of ordered pairs
defined as:

Notation: V = {(x, µV (x)) | x ∈ G}
µV (x) is called the fuzzy membership function and ranges in
[0, 1].

F. Key Symbols and Descriptions

Following Table I provides the key symbols and their
descriptions used throughout the paper.

TABLE I. SYMBOL-DESCRIPTION TABLE

Symbol Description
G = (V,E) Input undirected, unweighted graph with node set V

and edge set E
C Set of communities

N(i) Set of neighbors of node i
ki Degree of node i
Sij Neighborhood similarity score between nodes i and j

D ∈ Rn×n Similarity matrix storing pairwise Sij scores
c Number of communities (clusters)

R ∈ Rc×n Fuzzy membership matrix; Rki represents membership
of node i in community k

V ∈ Rc×m Matrix of cluster centroids in feature space (for FCM)
q Fuzzifier parameter controlling softness of membership

(typically q > 1)
ϵ Convergence threshold for membership updates

EQ Extended modularity metric for evaluating overlapping
communities

F1 F-score metric for evaluating the accuracy of detected
overlapping structure

IV. METHODOLOGY

This section outlines the key idea presented in this study,
which is an overlapping community detection approach that in-
corporates neighbor similarity metrics based on fuzzy cluster-
ing techniques to effectively identify overlapping communities
inside various complex network configurations. The key idea is
based on the fact that nodes exhibit both topological proximity
and structure-based equivalence within the same community.
Comprising four main phases, the proposed method starts
from the preprocessing of the graph to extract the main
topological characteristics, which include the degree of a
node, the neighborhood list, and centrality metrics, which are
required for further operation. Followed by preprocessing, the
construction of the similarity matrix begins, which measures
node affinity based on shared neighborhood characteristics
and captures both direct and implicit structural linkages. The
third phase employs the fuzzy C-means clustering algorithm
to initiate community assignments, enabling nodes to belong
to many communities with varying degrees of membership, a
crucial aspect for imitating real-world overlaps. Then, finally,
an iterative community refinement mechanism improves such
assignments by using the network topology to limit the overlap
granularity to make sure that nodes are assigned to only
those communities that meet the structural similarity threshold.

Fig. 1 illustrates the enhanced fuzzy clustering pipeline for
overlapping community detection. The process begins with
the input graph, where neighborhood similarity is computed
to construct the similarity matrix. Based on this matrix, initial
fuzzy memberships are assigned, giving nodes soft affiliations
to multiple communities. A neighborhood-based optimization
stage then refines these memberships by balancing maximum
membership strength with structural neighborhood constraints,
enabling controlled overlaps. The final output highlights over-
lapping communities, with multi-colored halos representing
nodes that belong to more than one group. This multistage
paradigm strikes a balance between computational efficiency
and the ability to capture complex, overlapping structures in
diverse network scenarios.

Input Graph Similarity Matrix Initial Fuzzy Memberships

Optimization
Overlapping Community Structure

Max Membership

Neighborhood Strength

Overlapping Assignment

Enhanced Fuzzy Clustering Approach for Overlapping Community Detection via Structural Neighborhood Similarity –

Process Diagram

Fig. 1. Process diagram of fuzzy clustering for overlapping community
detection using neighborhood similarity.

A. Stage 1: Graph Initialization and Preprocessing

The algorithm initiates by loading the graph data from an
edge list provided as input, constructing the unweighted and
undirected graph, i.e. G = (V,E). To ensure consistency in
computations, nodes V are relabeled with continuous integer
indices starting at 1. Basic structure-based properties are then
extracted such as the degree of node ki = |N(i)| (where
N(i) represents the neighbor set of node i), detailed neighbor
lists, and centrality metrics (degree centrality and betweenness
centrality) as shown in Fig. 2. These properties can be used
for later similarity computation and community structure eval-
uation, allowing the thorough characterization of node roles
inside the network.

Graph Initialization and Node Feature Extraction Process

Raw Edge List
Load and Parse

Constructed 

Graph G= (V,E)

Relabel Nodes 

(1-based index)

Extract Node 

Degrees K(i)

Generate 

Neighbor Lists 

N(i)

Node ID Degree Neighbor Deg. 
Centrality

1 2 [2, 3] 0.1

2 3 [1, 3, 4] 0.15

3 ... ... ...

1

2 3

source target 

1 5

1 7

2 6

... ...

Fig. 2. Preprocessing stage of the algorithm: graph construction, relabeling,
and feature extraction.
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B. Stage 2: Neighborhood Similarity Matrix Construction

A neighborhood similarity matrix D ∈ Rn×n is generated
as an essential component of the fuzzy clustering process to
quantify the structural similarity between each pair of nodes
in the network. For every node pair (i, j), the similarity
score Sij (refer to Eq. 1) is calculated according to their
local connectivity patterns. Specifically, for each node i, its
neighbors are extracted from the input graph, and the similarity
with node j is computed as follows:

Sij =


1, if i = j
|N(i)∩N(j)|+1

|N(i)| , if (i, j) ∈ E

0, otherwise
(1)

• If i = j, then Sij = 1, assigning full similarity to a
node with itself.

• If i and j are directly connected (i.e. (i, j) ∈ E), the
similarity score is computed as:

N(i) and N(j) denote the sets of neighbors of nodes
i and j, respectively. The term “+1” is added to prevent
zero similarity in cases where neighbors have no common
neighbors. The similarity score is then normalized by dividing
by |N(i)|. In the case of unconnected pairs (i, j) /∈ E, the
similarity Sij is assigned a value of 0.

This technique produces an asymmetric similarity matrix
with fine-grained local topological links. It emphasizes the
importance of shared local structures among directly connected
nodes and successfully separates strongly connected node pairs
from weakly or non-associated ones. Unlike traditional simi-
larity metrics, which may treat unconnected nodes using global
routes or statistical likelihoods, this approach is extremely
confined, computationally efficient, and directly applicable to
the later fuzzy membership updating stage. The matrix D is
crucial for shaping soft assignments and identifying commu-
nity structures in the network, both separate and overlapping.
The sequence-wise process of this stage is also described in
Algorithm 1 for better understanding.

C. Stage 3: Fuzzy Clustering-Based Community Initialization

A fuzzy clustering method utilizing the Fuzzy C-Means
algorithm is employed to achieve an initial community assign-
ment. We start with a random membership matrix R ∈ Rc×n.
Each column (which represents a node) shows the probability
distribution over c communities. At the same time, the simi-
larity matrix S ∈ Rn×n is used to update the feature matrix
U ∈ Rn×m, which originates from node attributes or centrality
measurements, in a loop as described in Eq. 2. In particular,
the representation of each node is improved by propagating the
attribute vectors of its neighbors, with the weights determined
by their pairwise similarity:

U ′
i =

1

|N(i)|

n∑
j=1

Sij · Uj (2)

where:

• Sij is the similarity between node i and node j;

Algorithm 1 Construct Neighborhood Similarity Matrix

Require: Graph G = (V,E); Neighbor list N(i) for each
node i ∈ V

Ensure: Similarity matrix D ∈ Rn×n, where Dij denotes
similarity between nodes i and j

1: Initialize matrix D ← 0n×n

2: for each node i ∈ V do
3: for each node j ∈ V do
4: if i = j then
5: Dij ← 1.0
6: else if (i, j) ∈ E then
7: Let Ni ← N(i), Nj ← N(j)
8: Compute intersection: I ← Ni ∩Nj

9: Compute union (or denominator): di ← |Ni|
10: Dij ← |I|+1

di

11: else
12: Dij ← 0
13: end if
14: end for
15: end for
16: return D

• Uj is the feature vector of node j;

• |N(i)| is the number of non-zero similarity linkages
for node i, which is its “soft neighborhood size”;

• (·) means matrix multiplication or scaling a vector by
its elements.

Alternatively, the entire matrix update can be expressed
compactly as shown in Eq. 3:

U ′ = Normalize(S · U) (3)

This normalizes each row to consider the number of con-
tributing neighbors. The cluster centroids V ∈ Rc×m are then
changed to the weighted average of the node representations.
This is done by raising the fuzzy membership values to the
fuzzifier parameter q, as illustrated in Eq. 4:

Vi =

∑n
k=1(Rik)

q · Uk∑n
k=1(Rik)q

(4)

The membership parameters for Rik are modified accord-
ing to the distance of the k-vector from each cluster centroid,
demonstrated in Eq. 5.

Rik =

 c∑
j=1

(
||Uk − Vi||
||Uk − Vj ||

) 2
q−1

−1

(5)

The process continues until convergence occurs, defined as
the maximum change in R between two iterations falling below
a predetermined threshold ϵ, or until the maximum iteration
limit is attained.
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D. Stage 4: Community Label Assignment and Optimization

In the final stage, we use the fuzzy membership matrix R ∈
Rc×n to determine which community each node belongs to.
Each of the entries of Rk,i denotes the degree of membership
of node i in community k. Eq. 6 indicates the procedure for
acquiring an initial distinct partition by allocating each node
to the community exhibiting the highest membership score in
R. This phase creates a foundational framework in which each
node belongs to a single community exclusively.

labeli = arg max
k

Rki (6)

We do a neighborhood-based optimization to allow for
overlapping memberships and to better capture the complex
local structure of the network. We find a community strength
vector Ci ∈ Rc for each node i, where the k-th component
Ci,k is found using Eq. 7:

Ci,k =

∑
j∈N(i) Sij · δjk∑

j∈N(i) Sij
(7)

• Sij is the similarity between node i and neighbor j,

• δjk = 1 if node j is assigned to community k, and 0
otherwise,

• N(i) denotes the set of neighbors of node i.

A node i is assigned to community k if its score Ci,k Eq.
8 satisfies:

Ci,k ≥ 0.9 ·max
l

Ci,l (8)

The threshold rule ensures that nodes with comparable
strength in more than one community are assigned to all
of them, enabling controlled and meaningful overlaps. The
iterative assignment process stabilizes the labels and ensures
that overlapping community structures align well with both
fuzzy membership scores and the local neighborhood structure.

This final optimization stage is crucial for transitioning
from a distinct division to a nuanced, overlapping commu-
nity detection outcome that effectively captures the complex
relationships between nodes in the network.

E. Computational Complexity

The proposed technique’s computing complexity is pre-
dominantly influenced by three stages: the formation of the
neighborhood similarity matrix, the allocation of fuzzy mem-
berships, and the enhancement of overlapping community
memberships. The similarity matrix is generated by calculating
local similarity, such as common neighbors, between pairs of
connected nodes. The worst-case complexity isO(n2) when all
node pairs are compared; however, in reality, the computation
is restricted to adjacent nodes, yielding a practical complexity
of O(m · d), where m represents the number of edges and d
denotes the average node degree. The fuzzy clustering phase
iteratively allocates community memberships with a Fuzzy C-
Means-inspired update process, characterized by a complexity
of O(n · c · t), where c denotes the number of communities

and t represents the number of iterations. The refining phase
modifies memberships according to neighborhood similarity
and local consistency, exhibiting a complexity of O(n · d · c).

Thus, the proposed method attains a cumulative complexity
of O(m·d+n·c·(t+d)), rendering it efficient and scalable for
sparse real-world networks. Contrary to more computationally
demanding methods such as OSLOM and BIGCLAM, our
approach is efficient, interpretable, and particularly effective
for large graphs, while still achieving competitive accuracy. For
further understanding, Table II provides the precise comparison
of computational complexities of different methods.

TABLE II. COMPUTATIONAL COMPLEXITY COMPARISON OF
COMMUNITY DETECTION METHODS

Method Complexity Scalability Key Operations
Proposed Method O(m · d + n · c · (t + d)) High Local similarity computation,

fuzzy membership updates,
neighborhood refinement

OSLOM O(n · d−1 · logn) Medium-Low Local expansion and statisti-
cal significance testing

BIGCLAM O(k · (n + m)) High Non-negative matrix factor-
ization

GREESE O(k · n · d) Medium Greedy seed expansion
LC O(t · m) Very High Label propagation, iterative

voting

V. EXPERIMENTS AND RESULTS

The following section presents an experimental analysis of
the proposed approach across networks of varying sizes and
structural features to demonstrate its effectiveness in detecting
overlapping communities. The evaluation is conducted by
comparing it with numerous reputable overlapping community
detection techniques, such as OSLOM [36], BIGCLAM [37],
GREESE [23], and Label Clustering (LC) [38], respectively.

A. Evaluation Metric

We use two common measures for overlapping community
detection, Overlapping Modularity (EQ) or Qov , and F-score,
to measure how well the proposed approach works. The
overlap modularity Qov is measured with no ground truth.

1) Overlapping modularity: EQ, or Qov , or overlapping
modularity, is a new way to assess modularity that takes into
account nodes that overlap. It evaluates the quality of the
identified community structure by contrasting the number of
edges within communities against a null model that permits
nodes to belong to multiple communities. The EQ score is in
Eq. 9 as:

EQ =
1

2m

∑
c

∑
i,j∈c

[
Ai,j −

kikj
2m

]
1

OiOj
(9)

Oi is the number of communities that node i is a part of,
ki is the degree of node i, while m is the overall number of
edges.

2) F-score: The F-score is a common way to assess how
much the discovered communities overlap with the real ones.
It is the harmonic mean of recall and precision, which is
described for overlapping clustering as shown in Eq. 10:

F -score = 2× Precision× Recall
Precision + Recall

(10)
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B. Datasets

Table III outlines the datasets utilized in our experiments,
with N denoting the number of nodes, E representing the
number of edges, and k showing the average node degree.
Our version utilizes Python’s NetworkX package for graph
preprocessing, whereas community assignment and similarity
calculations are conducted using NumPy. The visualization
of identified communities is executed with Matplotlib and
the force-directed layout from igraph, facilitating qualitative
analysis of community coherence and overlap. The comparison
underscores the precision and computational efficacy of our
methodology.

TABLE III. THE STATISTICS OF REAL-WORLD NETWORK DATASETS

Dataset V E Avg. Degree Description
Karate [39] 34 78 4.59 Zachary’s Karate Club network repre-

senting friendships between 34 mem-
bers of a university karate club.

Dolphins [40] 62 159 5.13 A network of 62 New Zealand bot-
tlenose dolphins’ frequent associations.

Football [41] 115 613 10.66 American college football team net-
work with nodes representing teams
and edges representing regular-season
games.

Polbooks [42] 105 441 8.4 Amazon political book network during
2004 U.S. presidential election. Edges
show often co-purchased books, and
nodes depict books.

Jazz [43] 198 2742 27.7 Collaboration network of jazz musi-
cians. An edge between two musicians
means they have played in the same
band.

Amazon [44] 334,863 925,872 5.53 A product co-purchasing network from
Amazon, where nodes are products
and edges link frequently co-purchased
items.

Dblp [45] 317,080 1,049,866 6.62 A co-authorship network from DBLP,
where nodes are authors and an edge
indicates co-authorship of one or more
papers.

C. Results and Discussion

In order to evaluate the effectiveness of the proposed
method, we applied it to a set of widely used benchmark
datasets and visualized the resulting community structures. The
outcomes are displayed in Fig. 3, 4, 5, and 6, where each
graph represents the community partitions generated by our
algorithm. Distinct colors are used to indicate separate com-
munities, while nodes that belong to more than one community
are emphasized in red. These overlapping nodes highlight their
dual or multiple affiliations, which often correspond to struc-
turally important positions within the network, such as bound-
ary spanners, information brokers, or connectors between
clusters. The presence of such nodes underscores the inherently
fuzzy and interconnected character of real-world community
organization. By accurately identifying them, the proposed
approach not only delineates clear community boundaries but
also reveals the subtle overlaps and shared memberships that
classical hard-clustering methods often fail to capture.

We evaluated the performance of the proposed method
across several real-world network datasets and compared it
to that of popular overlapping community detection meth-
ods, including OSLOM, BIGCLAM, GREESE, and LC. The
outcomes show that the proposed method works better on
networks of various sizes and typologies.

In smaller and medium-sized networks like Karate, Dol-
phins, and Jazz, the method proficiently identifies significant

Fig. 3. Community visuals for Karate Club network datasets

Fig. 4. Community visuals for Dolphins network datasets.

Fig. 5. Community visuals for Football network datasets.

overlapping groups, capturing significant dynamics that con-
ventional methods often neglect. The fuzzy similarity-based
approach enables the algorithm to assign nodes to various
communities flexibly, capturing the fundamental uncertainty in
community boundaries. While in large networks like dblp and
Amazon, the proposed approach consistently yields dependable
outcomes, demonstrating resilience and flexibility in handling
high-dimensional data. Although certain baseline techniques
may get slightly superior modularity in particular cases, our
methodology demonstrates robust consistency across datasets,
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Fig. 6. Community visuals for Jazz network datasets.

particularly when community overlaps are significant.

Fig. 7 shows the comparison of overlapping modularity
Qov results of the proposed method with four other state-of-
the-art overlapping community detection methods. The pro-
posed method attains an advantageous convergence between
optimization and interpretability. It adeptly combines local
topological characteristics with a systematic fuzzy clustering
approach, providing a viable alternative to more complex or
heavily parameterized algorithms.

Fig. 8 represents the F-score comparison on larger datasets.
The F-score analysis on the DBLP and Amazon network
datasets underscores the efficacy of the proposed method for
precisely detecting overlapping groups. In contrast to many
existing methods that either excessively cluster or inadequately
identify significant overlaps, our methodology preserves a
balanced framework by utilizing fuzzy membership scores
and neighborhood-based refinement. In the DBLP dataset,
the technique demonstrates consistent performance, closely
agreeing with the ground truth while remaining competitive
with more established algorithms. In the Amazon network,
marked by thick overlaps and varied community structures,
the technique exhibits constant precision and recall, indicating
its adaptation to real-world complexities. The results indicate
that the proposed approach can generate community assign-
ments that are both precise and comprehensible, even in large
networks with complex topologies.

Fig. 7. Qov values of real-world datasets on different algorithms.

Fig. 8. F-score values of real-world datasets on different algorithms.

D. Execution Time

The bar chart in Fig. 9 depicts the execution time (in
seconds) of different community discovery methods across
four benchmark datasets: Karate, Football, Dolphins, and Jazz.
OSLOM and BigClam consistently exhibit the lowest execu-
tion times, rendering them among the most computationally
effective algorithms in our comparison. Conversely, LC ex-
hibits the longest execution time across all datasets, signifying
considerable computational expense.

The proposed method demonstrates moderate execution
durations; it is often quicker than LC and GREESE, however
marginally slower than OSLOM and BigClam. This is a ju-
dicious compromise between computing expense and efficacy,
particularly given that the proposed approach emphasizes the
precise identification of overlapping and structurally intricate
communities. The Jazz dataset exhibits the longest execution
durations among all approaches, presumably attributable to its
greater size and edge density.

Although the proposed method may not be the most ex-
pedient, it ensures satisfactory execution times while offering
enhanced community quality, particularly in contexts where
overlapping detection is essential. This equilibrium indicates
that the algorithm is sufficiently efficient for practical applica-
tion, especially in small to medium-sized networks.

Fig. 9. Execution time of different algorithms compared with the proposed
method.
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E. Statistical Analysis

We used a non-parametric Friedman test on the EQ (Ex-
tended Modularity) values from many benchmark datasets to
see if the variations in performance between community detec-
tion techniques were statistically significant. Fig. 10 demon-
strates that the proposed method consistently outperforms the
baseline approaches. The highest average EQ score is observed
across all datasets, with the LC algorithm ranking second.
The Friedman test demonstrates that the differences among the
techniques are statistically significant, necessitating additional
pairwise comparisons.

We used a Nemenyi post-hoc test to find out where the
differences are, and the findings are shown in Fig. 11. This
test evaluates the algorithms based on how well they do
on average across datasets and shows if the differences are
statistically significant. The proposed technique comes in first,
followed by LC, while BIGCLAM always comes in last. The
red line showing the Critical Difference (CD) shows that the
difference in performance between the suggested technique and
the lower-ranked algorithms is statistically significant. This
analysis shows that our method is strong and competitive
when it comes to finding overlapping communities with better
quality outcomes.

Fig. 10. Friedman statistical analysis results.

Fig. 11. Nemenyi post hoc test results.

VI. APPLICATION DOMAINS OF THE PROPOSED
APPROACH

The ability to detect overlapping communities with varying
degrees of membership makes the proposed method applicable
across numerous real-world domains where entities simulta-
neously participate in multiple functional groups [46], [47],
[5]. Unlike hard clustering approaches, fuzzy membership and

local topological similarity enable the representation of nu-
anced interactions, making the method suitable for both small-
scale and large-scale systems. Table IV shows the primary
application areas where the proposed approach can improve
assessment, decision-making, and system optimization.

A. Social Networks

Identifying overlapping communities in social networks is
crucial for recognizing users with numerous social circles.
This helps platforms comprehend complex social interactions,
improve tailored recommendations, and target content. Deeper
insights into influence propagation and user engagement pat-
terns enable more effective viral marketing efforts, community-
driven promotions, and strategic network interventions using
user relationships [48].

B. Recommender Systems

In the context of recommender systems, individuals fre-
quently exhibit a wide array of interests spanning various do-
mains, including music, films, and online shopping. Modeling
diverse interest groups facilitates enhanced personalization and
more precise recommendations [49].

C. Biological Networks

Biological networks, including protein-protein interaction
networks, frequently display overlapping communities in
which proteins contribute to various functional modules. Rec-
ognizing these overlaps can uncover biological entities with
multiple functions and contribute to our comprehension of
disease pathways [50], [51].

D. Information and Citation Networks

Documents within information and citation networks can
encompass a variety of disciplines. The identification of over-
lapping communities has the potential to enhance the effec-
tiveness of topic modeling and the efficiency of information
retrieval [52].

E. Cybersecurity

User access logs and network traffic often reveal entities
assuming multiple roles or connecting across domains. Tradi-
tional clustering may overlook overlapping patterns and subtle
security risks. By capturing multi-role interactions, overlap-
aware community detection enables analysts to study network
structure and user behavior, helping identify unauthorized
access, privilege escalation, and coordinated attacks. It also
highlights advanced persistent threats, insider threats, and
malware propagation, enhancing overall network security and
monitoring [51].

F. Political and Behavioral Analysis

In the context of political and behavioral studies, it is
common for individuals to possess multiple affiliations. This
complexity underscores the importance of monitoring polar-
ization and the interactions that occur across different groups
[53].
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TABLE IV. APPLICATIONS AND BENEFITS OF THE PROPOSED METHOD IN VARIOUS DOMAINS

Domain Application Advantage
Social Networks Identifying users in multiple social cir-

cles
Enhanced recommendations and influence anal-
ysis

Recommender Systems Modeling multi-interest user groups Improved personalization and targeting
Biological Networks Detecting overlapping functional

gene/protein modules
Insights into multifunctional biological entities

Information/Citation Networks Classifying documents or topics across
disciplines

Better topic modeling and retrieval

Cybersecurity Multi-role detection in access or traffic
patterns

Improved intrusion detection and anomaly anal-
ysis

Political/Behavioral Analysis Overlapping affiliations in opinion or
behavior networks

Polarization tracking and behavioral segmenta-
tion

Marketing & Segmentation Multi-interest customer clustering Flexible and refined market profiling
Infrastructure/Transport Identifying shared zones across trans-

port routes
Route optimization and load balancing

G. Marketing and Infrastructure Systems

In the realm of infrastructure systems, especially within
smart cities, overlapping community detection can be utilized
to examine transportation networks, shared mobility facilities,
and urban flow patterns. Vehicles, commuters, and logistics
operators are some of the entities that typically use several
routes or service regions that overlap. City planners and service
providers can make better use of public transportation and
shared mobility systems by finding these overlaps, which lets
them improve traffic management, optimize transport timeta-
bles, and improve route allocation [54].

VII. CONCLUSION AND FUTURE WORK

This study presents a neighborhood similarity-based fuzzy
clustering method for identifying overlapping communities in
complex networks. Inspired by the fact that nodes in real-world
systems frequently display partial membership across various
communities, the proposed approach integrates local topo-
logical similarity into a fuzzy clustering framework to more
accurately represent this fundamental ambiguity. The proposed
approach establishes a similarity matrix based on shared
neighbors and enhances community memberships by local
optimization, achieving a balance among structural fidelity, in-
terpretability, and computing efficiency. Through comprehen-
sive analysis on standard benchmark datasets such as Karate,
Dolphins, Polbooks, and so on, we established that our method
competes effectively with renowned overlapping community
detection techniques, for example, OSLOM, BIGCLAM, LC,
and GREESE, frequently attaining enhanced outcomes both
in terms of quality metrics like extended modularity and F-
score. The method’s architecture eliminates dependence on
global heuristics or resource-intensive computations, rendering
it scalable and accessible for extensive applications. This study
emphasizes the significance of local structure in community
inference and the necessity of adaptable, membership-aware
frameworks for comprehending complicated networked sys-
tems, in addition to robust empirical findings.

Future research will investigate the incorporation of node
properties and temporal dynamics in order to improve the
model’s relevance to changing and heterogeneous networks.
We intend to integrate deep learning methodologies, specifi-
cally graph neural networks, to derive more expressive node
representations that enhance community detection precision.
Furthermore, we intend to examine the method’s applicability

in subsequent tasks, including link prediction, influence max-
imization, and anomaly detection.
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