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Abstract—This paper presents the first systematic investi-
gation into autonomous UAV-mounted fall protection lanyard
(FPL) deployment for high-voltage transmission tower inspec-
tions, addressing a critical safety gap in the power industry where
falls account for 34% of occupational fatalities. We propose a
novel geometry-based solution to overcome three fundamental
limitations of existing approaches: the isolated processing of UAV
imagery without sensor fusion, unreliable 2D-to-3D spatial cor-
respondence in anchor point detection, and the high annotation
costs of supervised learning methods. Our technical contribution
establishes a multi-view geometric perception framework that
decomposes the FPL anchoring task into ridge line identifica-
tion and optimal mounting point selection. The method first
develops a spacial edge distance perception algorithm specifically
for power inspection drones, which computes structural depth
through plane-induced homography transformations of tempo-
rally matched line features. Subsequently, a mounting position
planning algorithm integrates multiview geometric constraints
with practical operational requirements including ladder proxim-
ity, diagonal steel avoidance, and temporal stability. Experimental
validation on real-world power infrastructure data demonstrates
superior performance compared to learning-based alternatives,
achieving 10.98 MAE in positioning accuracy while maintaining
80ms processing efficiency for real-time operation. The proposed
approach eliminates dependency on manual climbing and expert
annotations, offering both theoretical advancements in stereo-
environment perception for complex structures and immediate
field applicability for safer power grid maintenance. This work
represents the first formal proposal and comprehensive solution
for autonomous FPL deployment in transmission tower inspection
scenarios.

Keywords—Fall protection lanyard; transmission tower inspec-
tion; anchor point localization; multiview geometry; spacial edge
distance perception; homography transformation

I. INTRODUCTION

Power transmission towers (PTT) are steel lattice struc-
tures supporting high-voltage power lines (110kV to ultra-
high voltage > 1000kV). These 25-215m tall structures
require regular inspection, which still predominantly relies
on hazardous manual climbing [1]. In China’s power sector
(2022), falls accounted for 40% of accidents and 34% of
fatalities [2] (Fig. 2), making them the leading occupational
hazard. While safety harnesses remain the primary protective
measure, their effectiveness is compromised on PTTs that
lack integrated fall arrest guide rails (Fig. 1). The absence
of such safety infrastructure creates substantial challenges for
workers attempting to properly anchor their FPLs to designated
mounting points prior to ascending the structure. Therefore,

the installation of FPLs urgently requires innovative technical
solutions.

Recent years have witnessed the emergence of remotely pi-
loted unmanned aerial vehicles (UAVs) for deploying purpose-
engineered fall protection lanyard (FPL) anchoring devices
to the apex of high-voltage PTTs. The manual approach
inherently has scalability problems due to dependence on
scarce specialists while introducing safety risks when operated
by novices. Meanwhile, the advances in drone-assisted trans-
mission tower inspection [3], [4], [5], [6], [7], [8], [9] have
demonstrated potential for automated FPLs anchoring. To the
best of our knowledge, we are the first to formally propose and
systematically investigate the problem of autonomous UAV-
mounted FPL deployment. While no prior studies have directly
addressed this problem, related research on power line facility
localization and defect detection has predominantly adopted
image-level detector-based methodologies.

However, existing related approaches present three funda-
mental research gaps that hinder practical deployment: 1) The
UAV video imagery are processed in isolation, failing to fully
leverage the synergistic information potential between visual
data and onboard sensor measurements. 2) Second, while
some approaches employ deep learning-based object detection
algorithms (e.g. YOLO series [10]) to identify potential anchor
points in 2D image space, they fail to establish accurate 3D
spatial correspondence, resulting in unreliable detection where
visually suitable regions may not correspond to physically
actionable locations on the tower structure, particularly when
identified points are misaligned with the tower’s front face.
3) Third, supervised deep learning requires extensive data
annotation by power transmission tower inspection experts,
leading to high labeling costs and limited scalability. The
fundamental scientific challenge involves developing stereo-
environment perception that simultaneously incorporates both
the target structure’s geometric characteristics and the drone’s
dynamic operational constraints.

To address these issues, we innovatively proposed an
autonomous localization algorithm for FPL mounting points
based on multi-view geometry. Drone-assisted FPL deploy-
ment involves ascending to operational altitude, horizontal po-
sitioning over the tower, and precise anchor point attachment.
Our contribution is to guide the drone to automatically find
the anchor point during the horizontal positioning stage. In
this paper, the original anchoring task is decomposed into two
sub-problems in our approach: 1) identifies the ridge line of
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the tower’s apex that is feasible to attach FPLs, and 2) selects
the optimal anchoring point on the ridge line against various
requirements. Therefore, we proposed a geometry model to
identifies the ridge line of the tower’s apex, then to screen
the ridge points against specially designed objective functions,
which combines geometric perception with practical opera-
tional constraints to achieve reliable performance in complex
field environments. Experiments revealed that this technical
approach enables autonomous drone-based FPL deployment,
with potential value for both research and field applications.

Fig. 1. The quadcopter drone operates near the power transmission tower
while carrying our specially designed mounting device for fall protection
lanyards.
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Fig. 2. Component pie-graph of personal injury accidents (left) and death
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The main contributions of this paper are as follows:

e A scene line segment distance perception algorithm
specifically designed for power inspection drones.

e A mounting position planning algorithm for inspection
fall protection lanyards.

e  Experimental validation on real-world power infras-
tructure data, demonstrating the effectiveness and ad-
vancement of the proposed method.

The rest of this paper is organized as follows. Section II re-
views related works. Section III describes the geometry model
that links the linear features in images with the their depth in
camera’s view. Section IV explains the FPL anchoring point
localization algorithm. Section V presents the experimental
results. Section VI concludes the paper.

II. RELATED WORKS
A. Vision-Based UAV Power Line Inspection

Unmanned Aerial Vehicles (UAVs) have become vital
for power line inspection [8], [11], offering efficient, high-
precision monitoring across diverse environments. Recent de-
velopments integrate deep learning models—especially Convo-
lutional Neural Networks (CNNs)—to detect anomalies like in-
sulator fractures, vegetation encroachment, and conductor wear
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with improved accuracy [12]. These models benefit from large-
scale annotated datasets and data augmentation techniques
such as color space transformations and edge enhancement,
which improve contrast between power line components and
background clutter [12], [3]. Federated learning also shows
promise for collaborative model training across UAV fleets
while preserving data privacy [12], [5].

Despite these advances, spatial perception and geometric
reconstruction remain key challenges [13]. Monocular SLAM
frameworks like PTI-SLAM enable real-time mapping and
localization, achieving trajectory RMSE of 0.1447 m [4].
However, they struggle with textureless surfaces and rapid
rotations, leading to misalignment between image features and
reconstructed scenes [14], [4], [15], [6]. In contrast, Multi-
View Stereo (MVS) methods like DP-MVS offer higher geo-
metric fidelity, achieving RMSE of 3.698 cm [16]. Yet, their
computational intensity limits real-time deployment, highlight-
ing a critical research gap: the lack of a unified framework
that balances temporal responsiveness with spatial accuracy
in complex structural environments. Addressing this gap is
essential for reliable UAV-based inspections, particularly for
identifying FPL mounting points on transmission towers.

B. Monocular SLAM for Transmission Tower

Monocular SLAM frameworks such as PTI-SLAM of-
fer real-time localization and mapping capabilities for UAV-
based power tower inspections [4], [9]. By combining direct
and feature-based tracking with semantic filtering, PTI-SLAM
achieves trajectory RMSE of 0.1447 m, outperforming GPS
alignment methods [4]. Multi-frame fusion and statistical out-
lier removal further improve point cloud consistency, reducing
noise while preserving structural accuracy [4]. However, these
systems face key limitations in complex 3D environments.

A major challenge is the poor performance on textureless
surfaces—common in metallic tower components—Ileading to
unreliable feature detection and depth estimation errors [15].
Additionally, rapid rotational movements degrade tracking sta-
bility, lowering success rates to 6/10 under such conditions [4].
These issues cause misalignment between 2D image features
and reconstructed 3D geometry, affecting tasks like defect
classification and mounting point identification. Compared to
MVS approaches like DP-MVS, which achieve RMSE of
3.698 cm, monocular SLAM lacks the geometric precision
needed for detailed structural analysis [16]. Although PTI-
SLAM processes frames efficiently at 81 ms per tracking
step [4], its metric accuracy remains insufficient for high-
fidelity inspection tasks. This highlights a key research gap: the
absence of robust multi-view geometric analysis that maintains
both real-time performance and spatial coherence in UAV-
based power tower inspections.

C. Multi-View Stereo for Transmission Inspections

Multi-view stereo (MVS) methods provide significantly
higher geometric accuracy than monocular SLAM, making
them suitable for detailed 3D reconstruction of power tow-
ers [17]. Techniques like DP-MVS employ PatchMatch-based
depth estimation and Delaunay meshing to preserve structural
details, achieving RMSE as low as 3.698 cm [16]. Compared
to traditional tools such as OpenMVS and COLMAP, DP-MVS
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reduces processing time by up to 73%, enhancing efficiency
for large-scale modeling [16]. Learning-based approaches like
GC MVSNet++ further improve performance by embedding
geometric constraints into training, cutting iteration counts by
50% [7], [18].

Despite these gains, MVS methods face challenges in
real-time deployment due to high computational demands.
They are also sensitive to textureless surfaces where feature
correspondence is weak [19]. Progressive Prioritized MVS
addresses efficiency concerns by selecting key viewpoints, re-
ducing runtime by 42% while maintaining 98.7% completeness
in reconstructed scenes [19]. However, integration into UAV
inspection workflows remains limited due to hardware and
synchronization requirements. Variable-baseline stereo setups
using dual UAVs offer flexibility by adjusting stereo geometry
dynamically, improving coverage and reducing occlusion [20].
Yet, they require precise pose estimation [21], which is difficult
in GPS-denied or electromagnetically noisy environments.
These limitations highlight a key research gap: the need
for adaptive MVS frameworks that maintain high geometric
fidelity while supporting real-time operation for critical tasks
such as FPL mounting point detection.

III. SpPACIAL EDGE PERCEPTION MODEL
A. Coordinate system

This study employs a quadrotor UAV system for power
transmission tower (PTT) inspection missions. The camera is
mounted on the ventral side of the drone via a gimbal with
controllable pitch angle. Since we focused on analyzing the
relative spatial relationship between the PTT and the UAV, the
camera coordinate system is selected as the reference frame for
subsequent analysis. To comply with the convention in digital
image processing where the y-axis of images points downward,
this study defines an right-handed camera coordinate system
as illustrated in Fig. 3. The z-axis corresponds to the lateral
direction of the UAYV, the z-axis aligns with the optical axis
toward the observation target. Considering the continuous
motion of the UAV in flight, the captured images exhibit
dynamic variations across different timestamps. Therefore, the
camera coordinate system at time ¢ is adopted as the reference
frame fro multi-view geometry analysis.

Laterqy Axis

Optical
Axis

Fig. 3. Coordinate system of the inspection drone’s vision.

B. Plane Induced Homography Transformation

Although a PTT appears visually complex, its components
primarily consist of planar truss structures. Thus, we first
analyze the image flow induced by spatial points on a plane.
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According to the findings in [22], a moving camera induces a
homography transformation in the camera’s view of points on
a spatial plane. Specifically, let x; € P? and x;,; € P? denote
the homogeneous coordinates of a feature point projected at
time ¢ and ¢ + 1, respectively. They satisfy:

Xt+1 = HXt7 (1)

where H € R3*? represents the homography matrix.
Moreover, we prove that the homography H satisfies the
following proposition:

Proposition II1.1. (Homography): Let the camera coordinate
system at time t be the reference frame. If the camera motion
from t to t + 1 is described by a translation vector ¢ € R3
and a rotation matrix R € SO(3), and the spatial plane is
parameterized by its intercept d and normal vector n (with
the plane equation nTx + d = 0), then the homography
transformation H € R3*3 induced by this plane in the camera
observation can be expressed as:

H=KR (I + Cllch> K, )

where K is the camera’s intrinsic parameter matrix, and
I is the identity matrix.

Proof: See Appendix A.

C. Line Depth Approximation From Motion

The Real-Time Kinematics (RTK) system mounted on
the drone provides onboard sensors to capture the motion
parameters of the camera. Taking the camera frame at time
t as the reference, both the translation vector ¢ € R3 and
the rotation matrix R € SO(3) at time ¢ + 1 can be known.
Additionally, the camera intrinsic matrix K can be acquired
in advance. Thus, in (2), only the plane parameters (i.e. the
intercept d and normal vector n) remain unknown. Since that
the camera consistently points toward the monitoring target
(i.e. transmission towers), it is reasonable to assume that the
target’s surfaces are approximately perpendicular to the optical
axis, i.e. n = (0,0, 1)TA Under this assumption, (2) can be
simplified to H = KRHK ™!, where

- 1
H=I+-
+d

[0,0,c] 3
Under this assumption, d represents both: (i) the distance
from the camera’s optical center to a quasi-planar surface
(approximately parallel to the principal plane), and (ii) the
orthogonal distance from the surface point to the principal
plane. Furthermore, H is a conjugated transformation of RH,
where H is a homology transformation [22]. If the camera’s
motion, i.e. R and c are provided by RTK, it is possible to
obtain the d that supplement the target’s depth in image.

Although (3) provides the foundation for depth analysis, the
visual complexity of PTT scenarios makes point-based analysis
unsuitable.
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Given that structural edges constitute the most salient
features of PTTs (Fig. 6), the depth should be analyzed based
on line segments under a homography transformation.

Specifically, if a line segment at time ¢, denoted as p =
(x1,%2) € P?xP?, is mapped via homography H to a segment
q = (x},x5) € P? x P? at time ¢ + 1, then any point X on
p transformed by H must satisfy the line equation of q. The
line’s coefficients are the cross product of the homogeneous
endpoints, x} x x5.

This approach leverages the duality between points and
lines in parametric space. This geometric constraints enables a
line-based solution of d, leading to the following proposition:

Proposition IIL.2. Let the camera coordinate system at time t
be the reference frame. If a line segment at time t, denoted
as p = (x1,%x2) € P2 x P% is mapped to the segment
q= (xé7 x5) at time t+ 1 via the homography transformation
H € R**3 described in Formula (1), then for any point x € P2
on p, its distance d to the principal plane of the camera
coordinate system is given by:

cTRTKT (x) x x5)

d=- ,
xTK-TRTKT (x] x x5)

where, ¢ € R? and R € SO(3) are the camera translation
vector and rotation matrix from t to t + 1, respectively;, K is
the camera intrinsic matrix; X} X x, denotes the cross product
of the homogeneous coordinates of the endpoints, defining the
line equation of q.

Proof: Given that H = KRHK !, for any point x on
line segment p, its corresponding point at time ¢ + 1, x =
KRHK !x, must lie on the line defined by q = (x},x5),

ie., (x} x x5)TKRHK'x = 0. With RK known, let u’ =
RTKT (x| x x}) and u = K~ 'x, we derive:

wTHu = 0. “4)

Substituting (3), the equation expands to:

o't (I + % [0, 0,c]> u=0. Q)

Solving for d from (5) yields:

o
d= —Uus uTu’ . (6)
Since uz = [0,0,1][z,y,1]T = 1, the final distance

formula is:

cTu CTRTKT (%) x x4
d(p,q) = — 5= = — e (1, 2), ()
u’u xTK-TRTKT (x} x x})
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Fig. 4. Workflow of determining anchor ridge that contains fall arrest
lanyard.

IV. PLANNING SAFETY ROPE ANCHORAGE POINTS
A. Determining Anchor Ridge of Fall Arrest Lanyard

Following the “anchor high, access low” principle for
FPL [23], we define the anchor ridge as the load-bearing
horizontal edge (the intersection of horizontal and vertical
steel structures) at the apex of power transmission towers,
which inherently includes appropriate anchor points. In UAV
vision, the anchor ridge is the nearest ridge structure relative to
the camera. Building upon the spacial line perception model
(Section III-C), this subsection presents the detection of the
anchor ridge, thus reducing the anchor point positioning prob-
lem to screen points along the one-dimensional anchor ridge
(discussed in Section IV-B). The core workflow is outlined in
Fig. 4, which contains key steps as follows:

1) Line segment detection: First, a line detection algorithm
extracts multiple line segments from the current frame at time
t, forming a set denoted as S* = {qi, - ,qu }. For all line
segment q € S, their endpoint q = (x},x5) are in homo-
geneous coordinates, X}, x5 € P2. Similarly, the prior frame’s
detection results at t— 1 are denoted as S*=! = {p1, - , pn},
where Vp € 8! p = (x1,X2) and x;,%2 € P2, Since lines
are salient features in power tower scenes, various line segment
detectors (e.g. Line Segment Detector (LSD) [24], Fast Line
Detector (FLD) [25], Edge Drawing (ED) [26] or ELSED [27])
are applicable.

2) Temporal line segment matching: Given the two sets of
line segments St~ and S*, the corresponding line segments
that associate with the same structure on the transmission tower
are expected to be paired, yielding a collection of matched line
segment tuples.

P= {(p, qpeS Tl q= arg max p(p,d),p(p,q) > 0} :
®)

where, p(p,q) denotes the probability of line segment p
corresponding to segment q. This can be achieved by line seg-
ment’s invariant feature extraction and pairwise comparison.
To ultimately achieve efficient operation on drone platforms,
we adopted the Line Band Descriptor (LBD) [28] to extract
stable features from line segments, followed by rapid line
matching using KNN-Match algorithm [29]. These algorithms
are integrated into the OpenCV library, enabling convenient
and efficient implementation.

3) Depth computation and tuple construction: For each line
segment pair (p,q) € P, its corresponding edge in the three-
dimensional space has a depth d that is the distance from the
edge to the camera’s principal plane at time ¢. Eq. (7) is used
to calculated the depth d, therefore yielding a set of triplets,
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R ={(p,dp) | (P,q) € P,dpq =d(p,q)}. )

The distance d(p,q), computed via the previously estab-
lished spacial edge perception model, reflects the geometric
relationship between segment p and the principal plane.

4) Ridge detection by line segment clustering: Since the an-
chor ridge represents a prominent geometric feature composed
of multiple steel bars, we employ depth-aware agglomerative
hierarchical clustering (AHC) [30] to group segmented lines
R, generating large-scale linear structures 7 = {O1,--- , Ok}
through the aggregation of smaller segments, where O; =
{p, -} fori e {1,---, K} is the i-th cluster of line segments.
The depth-aware is achieved by introducing the depth as the
extra feature. Then the anchor ridge is intrinsically retained
within the clustered results,

T = clustering,yc(Q). (10)

To identify the anchor ridge, we select the clustered results
with both smaller depth values and greater total segment
lengths. Therefore, we have the anchor ridge €2 chosen as

- Il
Q= m E . 11
arg Qea%{ p ( )
(p;dp)eﬂ

The cluster essentially represents the tower’s nearest
ridge to the camera. If the drone is in proper position, the
meaningfulness of {2 if ensured by the geometric stability of
the truss structure.

Upon identifying the anchor ridge, the optimal mounting
point can be determined through a search along this ridge. The
localization algorithm for this process is described in detail in
the following section.

B. Locating the Anchor Point for the Safety Lanyard

According to the analysis in Section IV-A, the optimal
cluster € represents a set of nearest salient edges on the
transmission tower related to the drone (mounting ridge lines).

This subsection presents the anchor point locating algo-
rithm, which aims to select the midpoint of the most suitable
edge p from the cluster 2. To identify the most suitable anchor
edge p € €2, we proposed a multi-objective cost function that
evaluates the effectiveness of potential edges,

p = arg r;leig [(p) + An(p)) + wo(p)] - (12)

where, ¥ (p), n(p)) and ¢(p) are functions that evaluate
different suitableness of the edge p, and A and w are their
weight factors.

Specifically, the cost function comprises the following
components: 1) Ladder proximity: Although multiple suitable
mounting points exist along the anchor ridge, we recommend
prioritizing positions near the climbing ladder among the
available options. Therefore, we model this evaluation using
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the ¢ function. ¥(p) = ||center(p) — Xjader|| quantifies the
horizontal distance between the line segment’s midpoint and
climbing ladder, prioritizing segments closer to the ladder.
Since p = (x1,X2), then center(p) = (|x1] + |x2])/2
with operator |-] representing homogeneous-to-Euclidean co-
ordinate conversion. The Xpg¢er € R2 is calculated by ob-
ject detection methods in advance or manually given by the
operator. 2) Vertical frame avoidance: Considering that the
anchor point needs to avoid interference from adjacent vertical
steel frames, we define function n(p) to quantitatively evaluate
this condition. n(p) = |{q| 9 € R,q ¢ Q,e(p,q) > 0}
counts adjacent interfering diagonal steel-bars, so as to avoid
anchoring in structurally complex areas. A\ is a penalty co-
efficient requiring adjustment. 3) Length Suitability: Since
steel structures suitable for mounting must possess appropriate
lengths (neither too short nor too long), we use the median
length of line segments in €2 as the reference length, and then
evaluate the deviation between the length of the target segment
p and this reference value. Therefore, ¢(p) = (||PI| — lmed)s
where Ipea = median({||qlllq € Q})* is the median length
of line segments in the anchor ridge (). Finally, the optimal
anchor point X is obtained by taking the middle point of p,
namely, X = center(p).

[bt] Imput: Input parameters J;_1, J¢, R, ¢, K
Output: Result p

if S;_1 not exist then
| Si—1 < detect_line(J;_1)

end
St — detect_line(J;) P —

match_line_pairs(S;_1,8;); ; // Eq.8
R <+ calculate_depth(P,R,c,K); ; // Eg.9
T < line_clustering(R); ; // Eqg.10
O« select_cluster(7); ; // Eqg.l1
p select_point(Q); ; // Eq.12
return p

V. EXPERIMENTAL RESULTS
A. Dataset

Since this study involves specialized experiments in power
system applications, our investigation found no relevant pub-
licly available datasets. Therefore, we independently col-
lected experimental data (using devices show in Fig. 5) and
manually annotated the optimal mounting positions for fall
protection lanyard (FPL), constructing the TOWER dataset.
The TOWER dataset originates from real-world power tower
inspection tasks, captured by high-resolution cameras mounted
on unmanned aerial vehicles (UAVs). During data collection,
the UAV’s real-time kinematic (RTK) positioning information
was synchronously recorded to ensure spatial accuracy. The
dataset consists of 2,380 sets of color images, with each
set containing two consecutive frames at a resolution of
3840 x 2160 pixels, providing clear details of the towers
and surrounding environments. The corresponding RTK data
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Fig. 5. The power inspection drone and fall protection lanyard equipment
used to collect experimental data in this experiment.

for each frame is stored in JSON format, facilitating image-
geolocation alignment. The dataset is divided into training and
testing subsets, with the test set containing 620 image pairs and
the remaining 5,400 image pairs allocated for training. A key
focus of the dataset is the optimal mounting positions for safety
ropes. Some images include manual annotations marking the
best attachment points, recording both image coordinates and
ladder orientation. These annotations support the evaluation of
detection algorithms for localization accuracy. Images without
viable FPL mounting points are labeled as empty, serving as
negative samples to enhance model generalization. The design
and annotation methodology of the TOWER dataset provide
robust data support for automated power facility inspection
and maintenance, while also offering valuable practical insights
for computer vision applications in the power industry. Our
experimental dataset is planned for future public release.

TABLE I. DATASET DESCRIPTION

Name Description

Dataset D = {(I?, I}, Ri, t;, Ki)}y | Total N = 2380 items

Image Pair I, I; € {0,---,255}HXWX3  (WH) = (3840, 2160), 8-bits JPG
Rotation Matrix R; € SO(3) float type, Json format
Translation Vector ¢; € R® float type, Json format

Camera Intrinsic K; € R3%3 float type, Json format

B. Hyper-parameter Setting

The experiments were conducted on a PC hardware plat-
form equipped with an i7 processor and 32 GB of RAM
to ensure efficient program execution. The software environ-
ment utilized Python 3.12, with key dependencies including
OpenCV 4.9.0 for line detection algorithms, NumPy 1.26.4 for
numerical computation, and Scikit-learn 1.6.1 for clustering
algorithm implementation. The results obtained under this
configuration effectively reflect the program’s performance
on typical computing systems, ensuring generalizability and
reference value.

The line segment detector in our experiments was the
ELSED [27].
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Fig. 6. Sample images from the proposed TOWER dataset.

The experimental parameters were configured as follows:
Tori = 0.95, Tien = 0.8, Dpos = 80 pixels A = 5.5, w = 0.9.

C. Quantitative Experimental Analysis

The experimental results demonstrate the effectiveness
of our proposed algorithm in accurately identifying anchor
ridges and locating optimal mounting points for fall protection
lanyards (FPLs), as shown in Fig. 7. The original images
are given in Fig. 7a. As illustrated in Fig. 7b, the depth-
aware line segment matching successfully isolates structural
edges on the transmission tower, with line color represents the
depth values, e.g. closer ridges (magenta) clearly distinguished
from background clutter (cyan). This enables precise ridge
extraction, as shown in Fig. 7c, where the algorithm robustly
detects the primary anchor ridges (red lines) and anchor points
(black cross) despite complex steel truss interference.

Quantitative evaluation reveals strong alignment between
our automated detection and manual annotations (ground-
truth red circles). The mean absolute error (MAE) of anchor
point positioning is 10.98 pixels, equivalent to sub-optimal
positions at typical inspection distances, meeting industrial
safety requirements. Our methodology’s advantages primarily
derive from geometric consistency. The plane-induced homog-
raphy (Section III-B) maintains spatial coherence in ridge
identification, minimizing erroneous detections from diagonal
beam structures.

These results validate that our geometry-driven approach
outperforms learning-based methods (Table II) in reliability
and precision, particularly in preserving spatial relationships
critical for FPL deployment safety. The minor deviations from
manual markings primarily occur in incorrect line-pair match,
highlighting opportunities for future refinement through robust
line segment processing.

D. Positioning Accuracy and Efficiency Analysis

We compared the proposed algorithm with supervised
learning-based neural network object detection algorithms.
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(b) Matched line segments with their depth, which is visualized by colormap that cyan indicates far and magenta represents near.
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(c) Result of ridge detection (red) and anchoring point localization (cross). The red circle is ground-truth.

Fig. 7. Quantitative analysis of proposed method on various scenarios.

The experimental results are shown in Table I. Vision-based  multimodal large model (e.g. DeepSeek V3) was directly
neural models were fine-tuned using our dataset, while the  invoked through prompt engineering. The analysis of the
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experimental results indicates that ResNet30+RE and Our
method achieve the best overall performance. Our method
demonstrates the strongest robustness with the lowest MAE
(10.98) and MedAE (11.02), while also achieving the highest
R? (0.9725), indicating superior prediction accuracy and model
fitting. ResNet30+RE follows closely, with slightly better MSE
(265.57) and MAE (11.06) compared to ResNetl18+RE, and
its R2 (0.9638) is close to that of Our method, demonstrating
strong stability. In contrast, YOLOVS5 and DeepSeekV3 exhibit
higher MSE (288.72, 420.31), making them more sensitive to
outliers, while Template Match is clearly unsuitable due to its
excessively large error (MSE=7867.52).

Overall, while ResNet30+RE remains a supervised learning
model, our method is unsupervised, eliminating the need for
labeled data. This avoids the high costs and potential biases
associated with data annotation in supervised learning, making
it more advantageous when handling complex or unlabeled
datasets.

TABLE II. PERFORMANCE COMPARISON OF DIFFERENT METHODS

Method MSE MAE R? MedAE
Template Match ~ 7867.52  86.47  0.6554 90.43
Yolov5 28872 1645  0.9107 18.74
ResNet18+RE 276.54 1212 0.9535 13.16
ResNet30+RE 26557  11.06  0.9638 12.93
DeepSeekV3 42031  17.88  0.8989 19.22
Our 268.03 1098  0.9725 11.02

E. Algorithm Efficiency Experiments

Due to the unique operational environment of UAVs, their
environmental perception requires high dynamic responsive-
ness, making the computational efficiency of UAV algorithms
critical. Therefore, we conducted experiments on time effi-
ciency, with comparative results shown in Fig. 8.

The figure illustrates the performance of the proposed
algorithm in processing varying numbers of line segments. The
z-axis represents different levels of line segment quantities,
including the most reliable top 100, 200, and 400 lines (top100,
top200, and top400), while the y-axis displays the processing
time in milliseconds. Performance at each level is measured
using both the mean and standard deviation. As observed, the
average processing time increases gradually with the number
of line segments. Specifically, the mean processing time for
topl100 segments is approximately 80 ms, with a small stan-
dard deviation, indicating stable performance. These results
demonstrate that the proposed algorithm can achieve real-time
or near-real-time video processing by controlling the number
of line segments to be processed, thereby meeting industrial
requirements.

F. Limitations

Through our numerical experiments, we identified several
limitations in the current system:

1) Line segment extraction and matching robustness issues:
The performance of line detection and temporal matching
remains sensitive to environmental variations, such as changes
in lighting conditions and complex backgrounds. In extreme
cases, this can lead to complete failure in segment extraction
or incorrect matching, compromising the system’s reliability.

Vol. 16, No. 9, 2025
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Fig. 8. Performance of the proposed algorithm in processing varying
numbers of line segments.

2) Depth estimation accuracy limitations: While the pro-
posed plane-induced homography provides relative depth com-
parisons between line segments (useful for ridge selection),
the absolute depth values exhibit noticeable inaccuracies. This
restricts applications requiring precise metric measurements,
though it remains effective for ranking structural proximity.

3) Performance degradation under cluttered backgrounds:
When inspecting towers with dense interfering line features
(e.g. overlapping vegetation or secondary structures), compu-
tational latency spiked up to 420% beyond average processing
times. This stems from the combinatorial complexity in AHC
clustering (Section IV-A) and outlier filtering steps.

These limitations highlight key challenges for real-world
deployment, particularly in adverse weather or visually con-
gested environments. Future work should integrate deep learn-
ing to stabilize depth estimation and adopt attention mecha-
nisms for robust line feature selection. Addressing these issues
will be critical for industrial-grade reliability.

VI. CONCLUSION

This study addresses the safety protection requirements
for high-altitude operations on power transmission towers by
innovatively proposing an automated fall protection lanyard
mounting method based on drone vision, providing an intelli-
gent solution to replace traditional high-risk manual operations.
Through multi-view geometric analysis, the system achieves
3D spatial localization of tower edges and optimal mounting
point selection, overcoming the limitations of deep learning
models in spatial mapping for complex scenarios. The method
innovatively integrates multi-dimensional evaluation metrics,
including proximity to climbing ladders, avoidance of diagonal
steel obstructions, and temporal stability, ensuring that the
selected mounting points comply with the “high-hook, low-
use” safety principle while maintaining operational conve-
nience. Experimental validation demonstrates that compared
to conventional methods, the proposed solution significantly
improves positioning accuracy and system intelligence, show-
ing promising potential for pilot applications.

Future research can be deepened in three dimensions:
First, expanding algorithm adaptability by optimizing detection
models for special structures such as non-standard towers
and angled steel members. Second, integrating mechanical
verification modules to enable real-time assessment of load-
bearing capacity at mounting points. Third, establishing open
datasets and standardized testing environments to promote
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collaborative technological advancement in the industry. With
policy support from State Grid Corporation of China for drone-
assisted operations, this technology is expected to become
a standard configuration for high-altitude power operations,
providing robust safety assurance for smart grid construction.
Subsequent research should focus on the integration of drone
swarm coordination and digital twin technology to further
enhance operational reliability in complex environments.
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APPENDIX
A. Proof of (2)

Proof: Let xy € R3 be an arbitrary point on the a plane
(n,d) in the world frame. Then the xw satisfy,

n’xy+d=0 (13)

By projecting the xw onto the image planes of camera at
t and t + 1, it satisfy that

(14a)
(14b)

x = Pxw
x' = PR (xw — ¢)

The (13) can be rewritten as —énTxW = 1 and substituted

into (14b) to obtain,

1 1
x' = PR (xw + dchxw) =PR (I + dch) xw (195)

Similarly, based on (14a), the xw can be rewrite as xw =
P~ !x. By putting this into (15), we have
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1
x' = PR (I + dch> P 'x (16)
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