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Abstract—The rapid advancement of autonomous vehicles
has led to the widespread integration of advanced driver as-
sistance systems, significantly improving vehicle control, safety,
and compliance with traffic regulations. A crucial aspect of
these systems is the reliable detection and recognition of traffic
signs, which play a key role in managing urban traffic flow and
ensuring road safety. However, traffic sign recognition remains
a challenging task due to varying lighting conditions, occlusions,
and diverse sign appearances. This paper presents a novel hybrid
approach for efficient traffic sign recognition tailored to the
needs of autonomous driving. The proposed method combines
the Discrete Wavelet Transform for robust feature extraction
with the powerful classification capabilities of Convolutional
Neural Networks within a Deep Learning framework. The DWT
effectively captures essential image characteristics while reducing
noise and irrelevant details, providing a compact yet informative
feature set for the CNN classifier. Extensive experiments were
conducted to evaluate the performance of the system in real-
world conditions. The proposed approach achieved an impres-
sive recognition precision of 98%, demonstrating its ability to
interpret and respond to traffic signs with high reliability. The
results confirm the method’s robustness, real-time efficiency, and
suitability for deployment in intelligent transportation systems
and autonomous vehicles. Overall, this study highlights the
complementary strengths of DWT and CNN within the broader
context of Deep Learning, offering a significant improvement over
conventional traffic sign recognition techniques. The proposed
system represents a promising step toward enhancing the per-
ception capabilities of autonomous vehicles, contributing to safer
and more reliable navigation in complex traffic environments.
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I. INTRODUCTION

Scene understanding is a fundamental challenge in com-
puter vision, encompassing critical tasks such as object detec-
tion, classification, and semantic segmentation across diverse
environments [1]. Recent advances in deep learning have
significantly improved performance in these areas, enabling
breakthroughs in autonomous driving and robotic vision [2].
Among these tasks, Traffic Sign Recognition (TSR) has at-
tracted particular attention because of its direct impact on road
safety and navigation efficiency. Accurate and real-time TSR
is essential for both human drivers and autonomous systems,
especially in unfamiliar or complex driving scenarios [3].
Reliable TSR ensures that vehicles can interpret and respond
appropriately to traffic regulations, which is a cornerstone for
the safe deployment of intelligent transportation systems.

Despite considerable progress, TSR remains a challenging
problem due to both environmental and technical factors. En-
vironmental conditions such as varying illumination, adverse
weather (e.g. rain, fog, or low-light scenarios), and occlusions
often reduce detection reliability. Furthermore, traffic signs ex-
hibit significant variability in appearance, including differences
in scale, shape, and color across countries, which complicates
the recognition task. On the technical side, many existing
approaches suffer from limitations in computational efficiency
or fail to generalize well to real-world conditions. Although
intelligent vision-based systems have attempted to address
these issues using advanced image processing techniques and
multi-sensor fusion [4], scalability and real-time performance
continue to be open challenges. These limitations highlight the
need for hybrid methods that combine robustness, efficiency,
and adaptability.

To address these challenges, this study proposes a novel
hybrid model that integrates the Discrete Wavelet Transform
(DWT) with a Convolutional Neural Network (CNN) for traffic
sign recognition. DWT is used as a preprocessing step to
decompose traffic sign images into multiple frequency bands,
thereby preserving critical structural features while suppressing
noise. CNNs, on the other hand, excel at hierarchical feature
learning and robust classification. By combining these two
techniques, the proposed approach leverages their complemen-
tary strengths: DWT enhances the quality of input features,
while the CNN ensures accurate and efficient classification.
This synergy enables improved recognition performance, par-
ticularly under adverse conditions, while maintaining real-time
processing capability.

The contributions of this work are as follows: First, a DWT-
based preprocessing framework is proposed to extract relevant
features by capturing both low and high-frequency informa-
tion, which enhances contour and detail representation while
effectively reducing noise, thereby improving robustness under
adverse conditions such as rain or low-light environments;
second, an optimized CNN architecture is designed specifi-
cally for traffic sign recognition, striking a balance between
accuracy and computational efficiency; finally, comprehensive
evaluations demonstrate that the proposed approach outper-
forms state-of-the-art methods, particularly in challenging and
adverse environments.

The remainder of this paper is structured as follows: Sec-
tion II reviews related work and key challenges in TSR; Sec-
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tion III details the proposed DWT-CNN methodology; Section
IV presents the experimental setup, results, and comparisons;
and Section V concludes with a discussion of limitations and
future research directions.

II. RELATED WORK

Recent advances in Traffic Sign Recognition (TSR) have
focused on improving detection accuracy, robustness under ad-
verse conditions, and computational efficiency. Deep learning-
based approaches, particularly those leveraging convolutional
neural networks (CNNs) and attention mechanisms, have dom-
inated the field, while hybrid methods integrating traditional
image processing techniques have gained traction for enhanced
feature extraction. Despite these advances, most methods still
face challenges in balancing accuracy, robustness, and real-
time performance, especially under adverse visual conditions
or on embedded platforms.

A. Deep Learning: Based Approaches

CNN-based architectures remain the cornerstone of modern
TSR systems due to their hierarchical feature learning ca-
pabilities. Early successes such as Faster R-CNN and SSD
laid the groundwork for robust object detection pipelines.
Modified Faster R-CNN models incorporating Feature Pyramid
Networks (FPN) improve small and distant sign detection
[5], but they remain computationally intensive, limiting their
use in real-time embedded systems. SSD variants offer real-
time detection with reasonable accuracy, yet they can struggle
with very small or occluded signs. YOLO models, including
Sign-YOLO (attention-based YOLOv7) [6] and YOLOvVS8 [7],
achieve an excellent speed-accuracy trade-off, yet attention-
based variants often increase model complexity and may
require additional tuning for low-light or motion-blurred sce-
narios.

Transformers, such as Vision Transformers (ViTs) [8] and
Swin Transformers [9], capture long-range dependencies and
complex scene context effectively, improving recognition in
crowded or cluttered scenes. However, their high computa-
tional cost and large memory footprint hinder deployment on
low-power devices, motivating lightweight or hybrid variants.

Overall, deep learning approaches are powerful but often
trade-off robustness, speed, and hardware efficiency, motivat-
ing research into methods like DWT-CNN that aim to preserve
structural features while remaining efficient.

B. Hybrid and Preprocessing-Enhanced Methods

To mitigate issues such as illumination variations, noise,
and motion blur, hybrid methods combining deep learning
with traditional image processing have been explored. Discrete
Wavelet Transform (DWT) preprocessing enhances feature
robustness by decomposing images into multi-resolution sub-
bands [10], preserving structural details while filtering noise.
Studies [11] show that wavelet-based denoising improves
detection in low-visibility conditions, though the additional
preprocessing step may slightly increase inference time.

Multi-scale methods like SADANet [12] improve detection
across varying sign sizes but can add network complexity.
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Multi-sensor fusion approaches, combining LiDAR and cam-
era data [13], [14], reduce false positives in adverse weather,
yet introduce high computational requirements and challenges
in real-time deployment.

In comparison, the proposed DWT-CNN integrates wavelet
preprocessing directly into the CNN pipeline, achieving ro-
bustness under adverse conditions while maintaining real-
time performance. This positions the proposed approach as
a balanced solution that addresses key limitations of both
pure deep learning and hybrid methods, providing a strong
foundation for real-world traffic sign recognition systems.

III. PROPOSED METHOD

In this work, this study proposes a novel hybrid architecture
that integrates DWT with a CNN for robust and efficient Traffic
Sign Recognition (TSR). The core idea is to leverage the
multi-resolution analysis capability of DWT to enhance feature
robustness under challenging conditions such as noise, motion
blur, and lighting variations, while preserving a lightweight
design suitable for real-time applications.

The proposed traffic sign recognition method is based on a
hybrid architecture that combines the strengths of the Discrete
Wavelet Transform (DWT) and Convolutional Neural Net-
works (CNNs) to ensure both robustness and efficiency in real-
world scenarios. The overall pipeline is designed to enhance
feature extraction under challenging conditions such as noise,
motion blur, and varying illumination, while maintaining the
low computational cost required for real-time deployment. The
system begins by preparing and preprocessing a diverse set
of traffic sign images to ensure uniform input and reduce
variability, where input images are standardized to 128x128
pixels, and converted to grayscale to optimize computational
efficiency. Next, the images are passed through a DWT-based
transformation to extract multi-resolution frequency compo-
nents, allowing the model to focus on structural details and
suppress irrelevant noise. These enhanced representations are
then fed into a lightweight CNN specifically designed for
traffic sign classification. The model is trained with optimized
strategies to prevent overfitting and maximize generalization.
Finally, extensive evaluations are conducted to assess the
system’s accuracy, speed, and robustness under various envi-
ronmental conditions. A comprehensive overview of the model
is visually presented in Fig. 1 and the following subsections
describe each phase of the proposed method in detail.

1) Preprocessing pipeline: Traffic signs suffer two main
degradation types: natural and human-induced. Natural degra-
dation is typically caused by long-term exposure to ultraviolet
(UV) radiation and the use of retro-reflective materials, which
may alter the sign’s color and reduce its visibility. On the
other hand, human-related degradation can take many forms,
affecting the shape, color, components, or even the entire
structure of the sign. To ensure accurate recognition of such
signs despite potential deterioration, robust image preprocess-
ing is essential. In the initial stage, the input images are
standardized to improve compatibility with the Convolutional
Neural Network (CNN). This includes resizing all images to
a fixed dimension (640x640 pixels), then converting them to
grayscale to reduce computational complexity while retaining
edge and structural information.
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Fig. 1. Proposed TSR system based on wavelet transform and CNN: (a) Preprocessing, (b) Daubechies DWT: Decomposition Sub-bands, (c) Feature Fusion,
and (d) CNN model.

2) DWT-Based feature enhancement: The DWT addresses
key challenges in traffic sign recognition such as noise ro-
bustness and multi-scale feature extraction by decomposing
images into frequency sub-bands. Unlike traditional methods,
it preserves spatial and frequency information simultaneously,
making it ideal for analyzing degraded signs [15].

There are two main types of wavelet transforms: the Con-
tinuous Wavelet Transform (CWT), designed for continuous
signal decomposition, and the Discrete Wavelet Transform
(DWT), commonly used in practical applications for analyzing
both signals and images. The DWT decomposes input data
into frequency sub-bands and is favored for its computational
efficiency and simplicity.

Mathematically, the DWT is defined by Eq. 1, where z(k)
is a discrete-time signal with k samples and ) is the discrete
mother wavelet used for decomposition level :

DWTy = w(k)iix(t) (1)

Here, 1; j, are scaled and translated versions of the mother
wavelet ¢(x):

Yip(z) = 27227 x — k) )

where ¢ and k represent the dilation and translation param-
eters, respectively.

Various mother wavelets can be employed, such as Haar,
Daubechies, Meyer, and Mexican Hat, depending on the char-
acteristics of the application [16]. In this study, the Daubechies
wavelet is employed due to its orthogonality and compact
support, making it particularly effective for discrete signal
processing.

To compute the DWT, the signal is passed through a low-
pass filter g[n] and a high-pass filter h[n], as shown in Eq. 3:

oo

> alklgln — K] 3)

k=—o0

yln] = (x*g)n] =

The Daubechies wavelet is adopted in this study due to its
compact support and orthogonality, which efficiently capture
localized signal features. The one-level decomposition (Fig. 2)
partitions the image into:

e LL: Low-frequency components (approximation)
e LH/HL: (horizontal/vertical edges)
e HH: High-frequency components (diagonal details)

This decomposition process is illustrated in Fig. 2. The
maximum decomposition level depends on the number of
samples and the sampling frequency f. The frequency ranges
for approximation and detail sub-bands at level i are given by:

- {o, 2{,}1] | @
fo ko
D, = [W 7 ,21] . )

The 1-level decomposition was chosen to balance compu-
tational cost and feature granularity, as higher levels showed
diminishing returns in preliminary experiments.

Instead of feeding raw images into the CNN, the decom-
posed sub-bands (LL, LH, HL, HH) are used as inputs, as
illustrated in Fig. 3. This allows the network to learn more
robust and localized features, particularly edges and shape
patterns, which are crucial for accurate traffic sign recognition.

Using only the LL sub-band as input to a CNN may result
in the loss of crucial information present in other sub-bands
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Fig. 2. Wavelet decomposition coefficients for the first level.

(LH, HL, and HH), which contain important details. By includ-
ing all sub-bands as input, the model can manipulate details
at various frequencies, ensuring a comprehensive representa-
tion of the image. The LH sub-band captures intermediate-
frequency details, such as textures and edges, the HL sub-band
contains high-frequency information, such as small details and
color variations, and the HH sub-band contains very high-
frequency information, such as very fine details and color vari-
ations. This approach enhances the model’s ability to capture
important image features, leading to improved performance
and accuracy.

Fig. 3 presents the results obtained from each of the four
sub-bands: LL, LH, HL, and HH.

Input Image Gray Iu]lgf'

Wavelet Daubechies

To CNN Model «

Fig. 3. Wavelet sub-band decomposition and concatenation (LL, LH, HL,
HH).

In this work, a one-level 2D DWT decomposition is applied
to each input image prior to classification to enhance the
CNN’s performance and improve feature representation.

3) CNN architecture: In this study, a DWT-based Traf-
fic Sign Recognition System is introduced to enhance the
feature extraction capability, improve detection performance,
and reduce memory consumption and overall model size.

Vol. 16, No. 9, 2025

As illustrated in Fig. 4, the system leverages the sub-bands
generated by the Discrete Wavelet Transform (DWT). The
main objective of this DWT-based approach is to extract robust
and discriminative features from the DWT outputs and the
backbone network, thereby improving detection accuracy un-
der various conditions. Additionally, this mechanism guides the
network’s attention toward the most informative spatial regions
particularly useful when traffic signs appear in cluttered or
complex scenes.

Pooling  Fully Connected

®
i G
) ] ::1‘:;i L)

Fig. 4. Overall architecture of the proposed framework for TSR.

Input Image For CNN

The convolutional layer [17] is a fundamental building
block in CNNs and typically consists of three sequential
components: convolution, activation, and pooling. In image
processing tasks, the input is treated as a two-dimensional
array, and the convolution operation applies a filter of size
S x T over the input of size M x N, producing an output of
the same dimensions. The operation is defined as:

S—1T-1

Urrpm = Z Z hgt_l ! Ofn——i-ls,n—&-t + efnn (6)

s=0 t=0

Here, U2 denotes the pre-activation value at location
(m,n) in layer p, K% ' is the (s,t)-th weight of the filter,
Oﬁ;rlsm +t is the porresponding input from the previous layer,
and 6% is the bias term.

Subsequently, an activation function is applied. For in-
stance, using the ReLU activation, the post-activation output
becomes:

Opp = ReLU(UY,,) @)

In the activation function layer, where no parameters are
trained, the derivative for error backpropagation is calculated
as follows:

OE oE  oup,
d0b Z Z} b 08,

OE  9ReLU(O%,))

pu— 8

UL, d0b ®
_Jaurs (O5>0)
0 (Orh<0)

When a pooling layer follows a convolutional layer, it
aggregates spatial information within localized regions of
the feature map to reduce dimensionality and retain salient
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features. The general form of the pooling operation at position
(m,n) in the p-th layer is defined as:

Q=

Uk, = % > ooty ©)

5
X ) D

In this equation, ij*l denotes the output of the unit at
position (¢,7) in the (p — 1)-th layer, and D,,, represents
the pooling window of size S x T centered around (m,n).
The parameters S and T are typically chosen to match the
dimensions of the convolutional filter. The parameter g controls
the type of pooling: setting g = 1 yields average pooling, while
g — 0o approximates max pooling.

For example, setting g = 1 results in the average pooling
operation, where the output is the arithmetic mean of the values
within the pooling region:

1
U’I;’”:SXT Z

(4,5)EDmn

ort (10)

The averaging operation in the pooling layer reduces the
spatial dimensions of the input while preserving essential
features, thereby improving computational efficiency. When
the pooling parameter g tends toward infinity, the operation
becomes equivalent to max pooling, where the output at
position (m,n) in the p-th layer is determined by selecting
the maximum value within the pooling window D,,,,,. In this
case, the pooling operation simplifies to:

Uh, = max {Of 1 (11)

mn
(4,5) €D

Pooling layers, whether average or max, perform spatial
downsampling to reduce feature map resolution while retaining
discriminative information. Max pooling preserves the most
dominant activations, while average pooling computes the
mean of local regions. Since pooling layers do not involve
trainable parameters, backpropagation in these layers is limited
to the propagation of gradients from the current layer p to the
previous layer p — 1.

For average pooling, the gradient of the loss function
E with respect to the output OP; 1 of the previous layer
is computed by equally distributing the gradient across the
pooling window. The corresponding gradient expression is
given by:

OE oE  OUPR,
A0k, A= = URn OO,
M—1N-1 OE 1 305—1
= D 1
m=0 n=0 8Unm’ SxT (4,7)EDmn 80%”
(12)

In contrast, backpropagation through max pooling involves
identifying the location of the maximum value within each
pooling region. The gradient is passed only to the unit that
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contributed the maximum activation. This can be formulated
as:

8U£m

M—-1N-1 8
- Z Z T 5o (@,%M{O })
(13)

In addition to pooling, normalization layers are often
employed to stabilize and accelerate the training process. A
common form of normalization is defined as:

Ur = Ofrm Hmn (14)

mn
2
Vet orn
where UP

P . is the normalized output at position (m,n),
OP—1 is the input value from the previous layer, ji,,, and 02,
are the local mean and variance computed over the pooling
window D,,,,, and c is a small constant added for numerical
stability. These statistical quantities are computed as:

1 _
Hmn = SxT Z ij ! (15)
(4,5)€EDmn
1 _
Ur2nn = S < T Z (OZ ! - Nmn)2 (16)
('L.vj)eDmn

These normalization steps help maintain consistent acti-
vation distributions across layers, which contributes to faster
convergence and improved generalization during training.

4) System workflow overview: Fig. 4 illustrates the overall
architecture of the proposed CNN, highlighting the sequence
of convolution, activation, pooling, and normalization layers.

The pseudocode in Algorithm 1 describes the core stages
of the proposed DWT-based traffic sign recognition system.
It begins by converting the input image to grayscale and
initializing all key components of the model, including a
DWT layer, a convolutional backbone network, a neck module,
and a detection head. During training, the image undergoes
preprocessing and is passed through the DWT layer to extract
frequency-based features. These features are then processed by
the convolutional backbone, which comprises several layers of
convolution, batch normalization, ReLU activations, dropout,
and max pooling. The refined feature maps are passed through
the neck and then to the detection head, which predicts both
class probabilities and bounding box coordinates. The training
loop optimizes the model using a combination of classification
and localization losses. During inference, the input image
follows the same processing pipeline, leading to the final
prediction of bounding box coordinates and the corresponding
class label.

A key originality of the proposed architecture lies in the
explicit integration of the DWT as the first processing stage
of the network. Unlike conventional CNN-based TSR systems
that rely solely on spatial-domain features, the model leverages
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Algorithm 1: Pseudocode of DWT-Based Traffic
Sign Recognition System

Input: input_image
Output: bounding_box, class
1 Convert input_image to grayscale;
2 Initialize model components:;
3 Define DWT layer (discrete wavelet transform);
4 Define CNN backbone with convolutional,
batchnorm, ReLU, dropout, max-pooling layers;
Define Neck: convolutional layer with ReL.U;
Define Head: fully-connected layers for
classification and bounding box regression;
7 Define data augmentation pipeline;
8 Load training dataset from CSV and image directory;
9 Initialize optimizer and loss functions (CrossEntropy
and MSE);
10 while training not converged do

QA W

11 Read batch of images, labels, and bounding boxes;

12 Move data to device (GPU or CPU);

13 Zero gradients;

14 Forward pass:;

15 Apply DWT to input images;

16 Pass through CNN backbone:;

17 - Conv + BatchNorm + ReLU + Dropout
(64 filters);

18 - Conv + BatchNorm + ReLU + Dropout
(128 filters);

19 - MaxPooling;

20 - Conv + BatchNorm + ReLU + Dropout
(256 filters);

21 - MaxPooling;

22 Pass through Neck (Conv + ReLU);

23 Pass through Detection Head (FC for class

and bbox);

24 Compute classification and bounding box loss;

25 Total loss = classification loss + bbox loss;

26 Backpropagate loss and update model weights;

27 Log average loss per epoch;

28 Save trained model weights to file;
29 Plot loss curve over epochs;
30 while zesting do

31 Read input image;

32 Convert image to grayscale;

33 Forward pass:;

34 Apply DWT to input image;

35 Pass through CNN backbone;

36 Pass through Neck and Detection Head;

37 Apply non-maximum suppression to filter
redundant detections;

frequency-domain information to enhance robustness against
noise, illumination changes, and motion blur. This design
allows the backbone to operate on enriched multi-resolution
representations, reducing the loss of fine structural details
typically discarded in early convolutional layers. Moreover, by
embedding the wavelet decomposition directly into the training
pipeline rather than using it as a separate preprocessing step,
the system jointly optimizes spatial and frequency features,
ensuring better generalization under adverse conditions. This
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tight coupling of DWT with CNN layers distinguishes the pro-
posed approach from existing hybrid methods and constitutes
the main source of its improved performance and resilience.

IV. RESULTS AND EVALUATION

This section demonstrates the effectiveness of the proposed
DWT-CNN framework. First, the datasets used for training
and evaluation are presented. Next, the implementation setup
and evaluation protocol are detailed. Finally, a comparative
analysis between the proposed method and other state-of-the-
art approaches is provided.

1) Traffic signs dataset: The German Traffic Sign Recogni-
tion Benchmark (GTSRB) is a popular dataset for traffic sign
recognition research [18] due to its large size (over 50,000
images of 43 different classes of traffic signs), diverse classes
shown in Fig. 5 (including speed limits, priority, prohibitory,
and warning signs), high-quality annotations, and wide use as
a benchmark. Additionally, the dataset is publicly available
and free to use, making it easily accessible for researchers.
These factors have contributed to GTSRB’s popularity as a
benchmark for evaluating traffic sign recognition algorithms
in recent years.

2) Implementation details: The proposed DWT-CNN
model was implemented and evaluated using the German
Traffic Sign Recognition Benchmark (GTSRB). For this study,
a selected subset of GTSRB subclasses particularly relevant to
real-world traffic scenarios was used. Each input image was
resized to a resolution of 640 x 640 pixels for both the training
and testing phases.

The experiments were conducted on a high-performance
machine equipped with an Intel 13th Gen Core(TM) i7-
13650HX CPU clocked at 2.60 GHz, 32 GB of RAM, and
an NVIDIA GeForce RTX 4060 GPU with 8 GB of memory.
The implementation was developed with CUDA version 12.7
and cuDNN version 9.1.0 for GPU acceleration.

This hardware configuration ensured efficient training and
inference, especially for high-resolution input images and
large-scale datasets.

The model was implemented using Python and PyTorch.
The training process incorporated standard data augmentation
techniques, including random rotation, horizontal flipping, and
color jittering, to enhance generalization. Optimization was
carried out using the Adam optimizer with an empirically
tuned learning rate. The loss function combined cross-entropy
for classification with mean squared error for bounding box
regression.

3) Evaluation metrics: To evaluate the accuracy of the
proposed method, this study employs standard metrics widely
used in object detection and classification, including precision,
recall, accuracy, and mean average precision (mAP). These
metrics provide comprehensive insights into the method’s
performance in terms of correctness, completeness, and ef-
fectiveness, and also allow for fair comparisons with existing
approaches in the literature.

Precision measures the proportion of correctly predicted
positive samples out of all positive predictions, reflecting the
model’s accuracy in identifying relevant objects. Formally, it
is defined as follows [19]:
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Fig. 5. Summary of the dataset classes.
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where:

e TP (True Positive): Correctly predicted object,
e FP (False Positive): Incorrectly predicted object.

Recall, also known as sensitivity or true positive rate, mea-
sures the ability of the model to detect all relevant instances
of a class. It is computed as [20]:

TP
Recall = — — 18
= P IEN (8)

where FN (False Negative) refers to instances where the
model failed to detect existing objects.

Accuracy assesses the overall correctness of the model’s
predictions, considering both positive and negative classifica-
tions:

Accuracy = TP+ TN (19)
Y= TP+ TN + FP + FN

where TN (True Negative) represents the correct prediction
of the absence of objects.

Finally, mean average precision (mAP) is a key perfor-
mance indicator in object detection tasks. It is computed
by averaging the average precision (AveP) across all object
classes:

1 n
AP = — AveP 20
m n; veP;. (20)

where AvePy, is the average precision for class k, and n is
the total number of classes.

In summary, relying on these validation metrics is funda-
mental to rigorously assessing the reliability of the proposed
method. They ensure that the evaluation is not biased toward a
single criterion but instead provides a holistic view of detection
performance, which is essential for benchmarking against other
state-of-the-art models.

4) Result and Analysis: As evidenced by the confusion ma-
trix in Fig. 6, the model achieves high classification accuracy
across diverse sign categories, with minimal misclassifications
even for visually similar classes. The synergy of DWT’s noise
resilience and the CNN’s learning capability ensures reliable
performance under real-world challenges such as occlusions
and weather distortions.

Confusion Matrix

1109876542210

716151413121
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3020282
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Fig. 6. Confusion matrix showing the performance of the proposed
classification model.

Rigorous validation is essential in traffic sign recognition,
where errors can directly affect road safety. Metrics such as
precision, recall, F1-score, and mean average precision (mAP)
not only quantify accuracy but also reveal the robustness of the
model under varying conditions. High precision reduces false
positives, which is critical to avoid incorrect driving actions,
while high recall minimizes false negatives, ensuring that no
critical sign is overlooked. These complementary measures
together validate both the correctness and completeness of the
proposed DWT-CNN model.

To assess the efficacy of the DWT-CNN model, this study
conducts experiments on the GTSRB dataset, which comprises
43 subclasses grouped into four superclasses: prohibitory,
mandatory, danger, and other. As shown in Table I, the model
achieves strong performance across these categories, with par-
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ticularly high accuracy for critical prohibitory and mandatory
signs (e.g. stop: Fl-score 0.96, speed_limit_20: 0.98). The re-
sults demonstrate the effectiveness of combining DWT’s noise-
robust feature extraction with CNN’s discriminative learning,
particularly in challenging real-world conditions.

TABLE I. VALIDATION OF THE PROPOSED METHOD ON SUB-CLASSES OF

THE GTSRB

Class Precision | Recall | F1-Score
0: speed_limit_20 0.98 0.97 0.98
1: speed_limit_30 0.86 0.90 0.88
2: speed_limit_50 0.78 0.97 0.86
3: speed_limit_60 0.97 0.97 0.97
4: speed_limit_70 0.98 0.96 0.97
5: speed_limit_80 0.93 0.87 0.90
6: restriction_ends_80 0.95 0.93 0.94
7: speed_limit_100 0.89 0.81 0.85
8: speed_limit_120 0.96 0.76 0.85
9: no_overtaking 0.91 0.78 0.84
10: no_overtaking_trucks 0.83 0.85 0.84
11: priority_at_next 0.83 0.72 0.77
12: priority_road 0.95 0.84 0.89
13: give_way 091 0.91 0.91
14: stop 1.00 0.92 0.96
15: no_traffic_both_ways 0.97 091 0.94
16: no_trucks 0.97 0.90 0.93
17: no_entry 0.96 0.79 0.87
18: danger 0.83 0.72 0.77
19: bend_left 0.98 0.93 0.95
20: bend_right 0.98 0.81 0.89
21: bend_double 0.95 0.94 0.95
22: bumpy road 0.97 0.96 0.97
23: slippery 0.97 0.90 0.93
24: road_narrows 0.88 0.84 0.86
25: construction 0.87 0.74 0.80
26: traffic_signal 1.00 0.99 0.99
27: pedestrian_crossing 1.00 0.92 0.96
28: children_crossing 0.96 0.86 0.91
29: bicycles 0.98 0.97 0.98
30: snow 0.99 0.98 0.99
31: animals 0.97 0.96 0.96
32: restriction_ends 0.97 0.87 0.92
33: go_right 0.95 0.98 0.96
34: go_left 0.99 0.97 0.98
35: go_straight 0.97 0.88 0.92
36: go_straight_right 0.98 0.97 0.98
37: go_straight_left 1.00 0.93 0.96
38: keep_right 0.97 0.94 0.96
39: keep_left 0.97 0.88 0.92
40: roundabout 1.00 0.92 0.96
41: restriction_ends_overtaking 0.98 0.96 0.97
42: restriction_ends_overtaking_trucks 0.96 091 0.93

Table II compares the proposed DWT-CNN model to state-
of-the-art detectors based on key performance metrics: mean
Average Precision (mAP), inference speed (FPS), memory us-
age (MB), and model size (number of parameters in millions).
The DWT-CNN achieves a mAP of 0.97, outperforming all
baseline models, including Faster R-CNN variants (ranging
from 0.9062 to 0.9508) and YOLOv7/YOLOVS (0.92-0.93),
while maintaining real-time performance with 88.83 FPS. This
is significantly faster than two-stage detectors such as Faster
R-CNN (8.11-17.08 FPS) and even lightweight models like
SSD MobileNet (66.03 FPS). Furthermore, the model accom-
plishes this with only 3.6 million parameters—substantially
fewer than YOLOV7 (70.31M) and ResNet-based architectures
(12.89-62.38M). Although the memory footprint (4493.43
MB) is higher than that of SSD MobileNet (94.70 MB), the
trade-off is justified by a substantial gain in accuracy (+35.36%
mAP) and speed (+22.8 FPS). These results highlight DWT-
CNN’s strong balance between accuracy and efficiency, mak-
ing it well-suited for real-time traffic sign recognition tasks
where high precision is essential.
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Visual results in Fig. 7 illustrate the model’s ability to
accurately detect and classify traffic signs under challenging
conditions from the GTSRB dataset. The test images include
difficult scenarios such as low resolution, motion blur, oc-
clusion, and poor lighting. Despite these adverse conditions,
the proposed DWT-CNN model maintains high prediction
accuracy, demonstrating both its robustness and strong gen-
eralization capabilities.

Table III presents a comparative analysis of the average
precision and recall obtained by the proposed DWT-CNN
model and several state-of-the-art traffic sign detection (TSD)
approaches. The method achieves a precision of 0.98 and a
recall of 0.97, matching YOLOVS in precision while outper-
forming it by 3 percentage points in recall (0.94 — 0.97).
The DWT-CNN also surpasses two-stage detectors such as
Faster R-CNN by 8% in precision and 10% in recall, and
SADANet by 16% on both metrics. Compared to other single-
stage models like YOLOv7 and YOLOVS, the model maintains
highly competitive precision (e.g. YOLOv7: 0.97) and offers
a substantial improvement in recall (YOLOvVS: +14%). These
results demonstrate the effectiveness of integrating Discrete
Wavelet Transform (DWT) for noise-robust feature extraction
with CNN-based classification, leading to a significant reduc-
tion in false negatives,a critical factor for traffic sign detection
in safety-critical applications such as autonomous driving.

V. CONCLUSION

In this work, this study proposed a novel DWT-CNN archi-
tecture for traffic sign recognition, combining the robustness of
Discrete Wavelet Transform-based feature extraction with the
discriminative power of convolutional neural networks. Exten-
sive experiments on the GTSRB dataset demonstrated that the
model outperforms several state-of-the-art detectors, achieving
high precision (98%) and recall (97%) while maintaining
real-time inference speeds (88 FPS). The DWT-CNN showed
strong resilience under adverse visual conditions such as blur,
occlusion, and low lighting, confirming its robustness and
generalization capability. These results highlight the model’s
suitability for real-world applications, particularly in safety-
critical environments like autonomous driving systems. Future
work will focus on deploying the model on embedded plat-
forms and improving its performance in scenarios involving
high-speed moving targets. Beyond these perspectives, several
open challenges remain. For instance, how the DWT-CNN
would perform when integrated into large-scale multimodal
perception systems, or how it could adapt to unseen traffic sign
classes across different countries, are questions that deserve
further investigation. Addressing such issues could inspire new
research directions and strengthen the impact of wavelet-based
deep learning in intelligent transportation systems.
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TABLE II. PERFORMANCE COMPARISON OF THE PROPOSED DWT-CNN MODEL WITH STATE-OF-THE-ART OBJECT DETECTORS ACROSS KEY
EVALUATION METRICS

Model mAP (% FPS Memory (MB) Parameters (10°)

Faster R-CNN ResNet 101 [21] 95.08 8.11 6134.71 62.38

Faster R-CNN ResNet 50 [21] 91.52 9.61 5226.45 43.34

Faster R-CNN Inception V2 [21] 90.62 17.08 2175.21 12.89

SSD MobileNet [21] 61.64 66.03 94.70 94.70
Zang et al. [22] 93.36 62 — —

YOLOvV7 [23] 93.00 35 321.67 70.31
YOLOV8 [24] 92.00 50 321.67 60
DWT-CNN (Ours) 0.97 88.83 4493.43 3,6

Predicted class: Yield (100.0%) Predicted class: Priority road (89.2%)
: - B = =

Predicted class: Road work (92.0%) Predicted class: Traffic signals (100.0%)

Predicted class: Road work (99.4%)

Predicted class: Speed limit (30km/h) (88.2%) Predicted class: Bumpy road (95.6%)

Predicted class: Speed limit (30km/h) (41.1%)

Predicted class: Children crossing (70.0%)

Predicted class: Children crossing (72.9%) Predicted class: Yield (95.6%)

Fig. 7. Predicted class and confidence score for each image under various conditions using the proposed DWT-CNN model.

TABLE III. COMPARISON OF AVERAGE PRECISION AND RECALL OF THE

(1]

(2]

[3]

(4]

PROPOSED METHOD WITH OTHER TSD APPROACHES

Model Precision | Recall
SADANet [25] 0.82 0.81
Faster R-CNN [26] 0.90 0.87
YOLOvV7 [23] 0.97 0.96
YOLOvS [24] 0.98 0.94
Yolov5 [27] 0.85 0.83
DWT-CNN (Ours) 0.98 0.97
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