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Abstract—An unhealthy digestive condition that inflames the
colon is called ulcerative colitis (UC). Utilising colonoscopy
information to assess disease severity is a laborious process that
concentrates on the most severe anomalies. The severity of this
condition can significantly impact a patient’s quality of life.
Current diagnostic methods, primarily colonoscopy, for assessing
UC severity are subjective and prone to inter-observer variability,
hindering accurate staging and personalized treatment. Colono-
scopies are currently used by doctors to diagnose the severity of
ulcerative colitis, yet this might be imprecise due to physician
variance. As such, to deliver optimal outcomes, automated and
precise technology is required. The current study introduces UC-
visionNet, an automated approach that classifies ulcerative colitis
severity based on colonoscopy image analysis using vision transfer
techniques. UC-visionNet makes use of vision transformers, which
are pre-trained deep learning models that have shown to be quite
successful in image analysis applications. To classify ulcerative
colitis severity, these models are “fine-tuned” using the LIMUC
(Labeled Images for Ulcerative Colitis) dataset. Compared to
conventional colonoscopy procedures, using UC-visionNet for
image analysis may be faster, enhancing patient satisfaction and
increasing healthcare effectiveness. In contrast to state-of-the-art
techniques, the suggested model performs quantitatively better
on the LIMUS dataset. After using Vision transformer (ViT) on
the LIMUC dataset, the current study attained a 96% training
accuracy. UC-visionNet offers a promising automated solution for
accurate and efficient UC severity classification.

Keywords—Ulcerative Colitis (UC); colonoscopy videos; deep
learning; vision transformer

I. INTRODUCTION

Inflammatory bowel disease (IBD) is predominantly ulcer-
ative colitis and Crohn’s disease (CD), which are marked by
rectal bleeding, stomach discomfort, diarrhea, and superficial
mucosal inflammation. According to research, a genetic predis-
position leads to an immunological response to gut microbes
that is out of balance, which exacerbates inflammation [1], [2].
Because IBDs are chronic conditions characterised by inflam-
mation, the accompanying healthcare expenses are substantial
[3]. Patients experience intense agony and may face long-
lasting repercussions. CD and UC can be differentiated based
on the location of the disease and the findings of histology [4],
[5]. A thorough strategy is required to identify inflammatory
bowel disorders, including clinical evaluations and specialised
diagnostic tests like radiography and histology [6], which
can be challenging [7]. Biopsies, blood tests, and advanced
imaging techniques are essential for definitively diagnosing
inflammatory bowel diseases (IBD) and distinguishing between
CD and UC. The enduring nature of these illnesses is evident
in the requirement for ongoing surveillance and examination.

Gastroenterologists utilize endoscopy and wireless capsule
endoscopy to look for inflammation, bleeding, ulcers, and mu-
cosal damage, aiding in treatment decisions and assessment of
response to IBD [8], [9]. Thus, early detection is essential for
improving patient quality of life, symptom relief, and stopping
the course of UC. Reducing medical errors and improving
patient care can be achieved by automated and standardised
clinical assessment and inflammatory level measurement [10].

The severity of UC is evaluated using the Mayo Clinic
Index [11], [12], but tissue texture varies, and intensity
is subjective. Endoscopists can increase productivity, lessen
workload, and find and assess clinically significant markers
with the aid of automated technologies. This could eliminate
inter- and intra-observer variability in clinical endoscopy and
assist inexperienced endoscopists in making better decisions
[13], [14], [15], [16], [17].

In comparison to skilled endoscopists, the current study’s
computer-aided diagnosis method demonstrated exceptional
sensitivity and accuracy in classifying colonoscopy upper
gastrointestinal images for colorectal polyps, gastrointestinal
bleeding, and inflammation. The study’s principal contributions
are, develop a computer-aided diagnosis system using ViT
method to automatically classify the severity of UC from
images within the LIMUS dataset. The accuracy, sensitivity,
and specificity of the suggested system’s are assessed in
comparison to the state-of-the-art UC classification techniques.
Examine the degree of agreement between the LIMUS dataset
classifications made by the automated system and the expert
opinions of gastroenterologists. The following are major con-
tributions of this study:

• Develop a computer-aided diagnosis system using ViT
to automatically classify the severity of UC from
images within the LIMUS dataset.

• Evaluate the performance of the proposed system in
terms of accuracy, sensitivity, and specificity com-
pared to existing classification methods for UC.

II. LITERATURE REVIEW

Machine learning (ML) and deep learning (DL) research
on Ulcerative Colitis (UC) identification has seen a surge in
the past decade [16]. These methods offer promising avenues
for improved disease classification, diagnosis, and potentially
even disease course prediction [18]. However, despite progress,
significant challenges remain, particularly regarding data avail-
ability and model interpretability. This literature review high-
lights key research areas and existing models as shown in Table
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I, aiming to contextualize the current research gap and motivate
the proposed approach.

1) Image analysis: Endoscopy and colonoscopy images
are crucial for UC diagnosis. Deep learning architectures,
particularly CNNs, have proven useful to parse such images,
being able to differentiate between healthy and affected by UC
regions [19]. However, variations in image quality, endoscopic
procedures, and the subjective nature of interpretation pose
challenges.

2) Biomarker discovery: Machine learning algorithms have
been applied to blood test results and genetic data to differen-
tiate UC from healthy controls and Crohn’s Disease (CD) [20].
Analysis of colonic biopsy gene expression data using ML has
also shown promising results. For example, Smith et al. (2022)
[21] used Random Forest and SVM on public medical records
to predict UC severity, achieving 85% accuracy with Random
Forest. Zhang et al. (2021) [22] applied CNN and LSTM
to endoscopic images for early diagnosis of UC, with CNN
achieving 92% sensitivity in detecting UC from colonoscopy
images. Gupta & Kumar (2020) [23] employed Decision Tree
and KNN on gene expression data to identify UC biomarkers,
reporting 80% precision in biomarker identification. Lee et
al. (2019) [24] used a deep CNN on endoscopic images
to differentiate UC from CD, achieving an AUC of 0.91.
Similarly, Brown et al. (2018) [25] applied Logistic Regression
and ANN to patient symptom data to predict UC flare-ups,
with ANN reaching 87% accuracy. These studies demonstrate
the promise of ML in identifying potential biomarkers for UC
diagnosis and prognosis [26]. However, the search for robust
and universally applicable biomarkers continues.

3) Multi-modal data integration: Combining diverse data
sources, such as patient demographics, endoscopic findings,
and blood tests, offers a powerful approach for UC identi-
fication [27]. Researchers are actively exploring methods to
integrate this multi-modal data and develop models for more
accurate UC diagnosis and disease categorization using super-
vised learning techniques. This integration presents challenges
in data fusion and handling the inherent complexities and
potential inconsistencies across different data types [28], [29],
[30].

III. MATERIALS AND METHODS

A. Dataset

The LIMUC dataset [30] utilized in this work contains
a total of 11,276 colonoscopy frames from 564 patients that
underwent 1,043 procedures between December 2011 and July
2019 at the Department of Gastroenterology at Marmara Uni-
versity, School of Medicine. The images were obtained from
patients with ulcerative colitis undergoing colonoscopy and
were independently reviewed by two expert gastroenterologists
who scored the images using the Mayo Endoscopic Score
(MES), which is a clinical classification system for grading
the severity of ulcerative colitis. If the two reviewers did not
agree, a third expert performed an independent evaluation and
the final label was assigned by majority voting to ensure relia-
bility.Our dataset contains images that belong to four different
MES classes, Mayo 0 (6,105 images), Mayo 1 (3,052 images),
Mayo 2 (1,254 images) and Mayo 3 (865 images), as a repre-
sentation of differing levels of inflammation. In order to tackle

the class imbalance, data augmentation through many different
methods such as flipping images, rotating images, changing
the scale and brightness of the images, were used. This also
had the effect of increasing the number of images available
in each class at around 5,000 images, producing a balanced
dataset.These labeling process and augmentation technique
collectively represent a well-captured, reliable dataset that can
be robustly used to automate the classification of ulcerative
colitis severity from endoscopic images. The dataset sample
image is given in Fig. 1.

Fig. 1. Sample images of LIMUC dataset.

B. Proposed Methodology

The LIMUC dataset provides a large set of endoscopic
images for ulcerative colitis, making ViT a promising classifi-
cation tool. For image categorization, ViTs can replace CNNs.
ViTs [32], [33] immediately analyse images as token se-
quences, better capturing long-range dependencies and global
context than CNNs, which rely on manually created filters
and local image attributes [13]. UC appears on endoscopic
images in a variety of visual patterns. Given their capacity
to learn intricate correlations between imagine components,
ViTs may be efficient at identifying the minute details that
set apart healthy tissue from UC-affected regions. ViTs have
demonstrated success in generalizing to unseen data. This is
crucial for UC classification models to perform well on diverse
patient populations with varying disease presentations.The
proposed method flow diagram is shown in Fig. 2.

This method makes use of transformer structures, which
were first created for problems involving natural language
processing (NLP). Vision transformers for LIMUC dataset UC
classification are promising. Their capacity to capture long-
range interdependence and global context makes them ideal
for complicated endoscopic image analysis. Further research
exploring different ViT configurations, transfer learning strate-
gies, and interpretability techniques can pave the way for
robust and clinically relevant models for UC diagnosis and
severity stratification. Fig. 3 displays the Vision Transformer’s
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TABLE I. LITERATURE REVIEW SUMMARY

Author Objective ML Techniques Used Dataset Performance Metrics Key Finding

Pyatha, A. et al. (2023)
[31]

Predicting UC severity ViT (MoCo-v3) Public medical records Accuracy 75.0 % Ac-
curacy

Pyatha, A. et al. (2023)
[31]

Predicting UC severity ResNet50 (MoCo-v3) Public medical records Accuracy 66.9 % Ac-
curacy

Smith et al. (2022) [21] Predicting UC severity Random Forest, SVM Public medical records Accuracy, AUC 85%
Accuracy

Zhang et al. (2021) [22] Early diagnosis of UC CNN, LSTM Endoscopic images Sensitivity, Specificity 92% Sensi-
tivity

Gupta & Kumar (2020)
[23]

Identifying UC biomarkers Decision Tree, KNN Gene expression data Precision, Recall 80%
Precision

Lee et al. (2019) [24] Differentiating UC & Crohn’s Deep Learning (CNN) Endoscopic images F1-Score, AUC AUC of 0.91

Brown et al. (2018) [25] Predicting UC flare-ups Logistic Regression, ANN Patient symptom data Accuracy, RMSE 87%
Accuracy

Fig. 2. The overall methodology flow diagram.

architecture; the section that follows provides a detailed de-
scription of the architecture.

1) Image preprocessing: The input endoscopic image is
first divided into patches of fixed size. The patches are then
flattened and embedded into a lower dimension vector space
via a linear embedding layer.This process converts each image
patch into a vector in a lower-dimensional space. Here, Xi

represents the ith patch after flattening, We denotes the em-
bedding weight matrix, and be is the embedding bias vector.

Zi = We ∗Xi + be (1)

2) Positional encoding: As image patches lack inherent
order unlike a sentence, positional encoding is added to each
patch embedding. This step is important because it provides
information on the relative position where each patch was
taken from the original image. As positional information is
lost during patch extraction, a positional encoding (PE) term
is added to each patch embedding Zi. Here, PE(i) represents
the positional encoding for the ith patch. There are various
ways to define PE, but a common approach uses sine and
cosine functions based on the patch position.

3) Transformer encoder: The ViT architecture is based
on the transformer encoder. The encoder layers have two

sublayers: a multi-head self-attention (MHA) mechanism and
a feed-forward network.

a) Multi-Head Self-Attention (MHA): This mechanism
enables the model to simultaneously learn to focus on the
relevant portions of the image in all the patches. Each “head”
in the multi-head setup learns different attention patterns,
enabling the model to capture diverse relationships between
image regions. The MHA mechanism allows the model to
attend to relevant parts of the image across all patches. Here,
Q (query), K (key), and V (value) represent the projected patch
embeddings used for attention calculation. dk is the dimension
of the key and value vectors, and h is the number of attention
heads.

b) Head projection:

Qh
i = Wh

Q ∗ Zh
i ;

Kh
i = Wh

K ∗ Zh
i ;

V h
i = Wh

V ∗ Zh
i

(2)

c) Scaled dot-product attention:

Attention(Qh
i ,K

h
i , V

h
i ) = softmax

(
Qh

i · (Kh
i )

T

√
dk

)
V h
i (3)

d) Multi-head attention:

MultiHead(Q,K,V) = Concat(Attention(Qh
i ,K

h
i ,V

h
i )

for h in 1 to H) ·WO
(4)

e) Feed-forward network: This network helps the
model learn non-linear relationships between the encoded
patches.

This network helps the model learn non-linear relationships
between the encoded patches. Here, W1 and W2 are weight
matrices, and b1 and b2 are bias vectors.

FFN(x) = max(0, x ·W1 + b1) ·W2 + b2 (5)
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Fig. 3. The proposed vision transformer architecture.

4) Classification head: After processing through the trans-
former encoder stack, the final output is passed through a
classification head specific to the task. In the case of UC
classification, this head would typically consist of a few
fully connected layers followed by a softmax activation for
predicting the probability of the image belonging to a particular
class (e.g. healthy or UC).

IV. RESULTS

All the experiments were run on Ubuntu 18.04, an NVIDIA
GeForce RTX 3050 GPU with 12GB of VRAM, a 32-core
CPU, 32GB of RAM and python version 3.8.13 with the Keras
package. The data were split into training, validation and test
sets using an 80-10-10 ratio. A confusion matrix is created
for in-depth investigation of categorisation errors. Training
performance for the ViT model utilizes accuracy and loss.
These metrics are calculated for the training and validation
sets. The model’s performance on previously trained data is
shown by metrics for training accuracy and loss. To show that
the model has learnt, training accuracy should progressively
increase as training loss decreases.

Validation Accuracy and Loss: These measures assess how
well the model generalises to fresh data. The validation set
uses non-training data. Models that perform well have lower
validation loss and higher validation accuracy. Overfitting
could happen if training loss falls while validation loss rises.

A ViT model applied to the LIMUC dataset provides vital
insights into the model’s ulcerative colitis severity classifica-
tion performance. Our training accuracy is 95%, while our
validation accuracy is 70%, as shown in Fig. 4 and 5. Training
Accuracy in Fig. 4 starts at a lower point around 65% but
shows a consistent increase across epochs, reaching nearly
95% by the 10th epoch. This suggests that the model is
learning well on the training data.

Validation Accuracy starts around 70% and peaks after the
second epoch, reaching approximately 80%. However, after
this peak, the validation accuracy fluctuates and gradually

declines, especially after the 7th epoch, ending close to 75%.
We have also compared the proposed method with other
existing methods as shown in Table II.

Fig. 4. Training and validation accuracy vs epoch.

V. DISCUSSION

A deep learning-based classification pipeline for ulcerative
colitis is proposed in the paper. Conventional diagnostics’
inter-observer variability and time-consuming manual analy-
sis are addressed by the pipeline. Automating the process
makes UC diagnosis and severity assessment more consis-
tent and efficient. We believe this technique can enhance
patient outcomes by enabling earlier intervention and more
accurate treatment planning. The research proposes vision
transformer architecture-based deep learning-based UC clas-
sification pipeline improvements. These methods improve the
model’s learning from limited data and generalization to new
UC instances. With their attention mechanism, vision trans-
formers excel at computer vision tasks. The authors expect
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Fig. 5. Training and validation loss vs epoch.

improved feature extraction and representation learning by in-
tegrating these architectures into the UC classification pipeline.
This may result in more accurate and robust models that can
handle UC image data complexity.

However, vision transformer implementation is hard. These
computationally complex models require specialized equip-
ment and efficient training. Carefully selecting hyperparam-
eters and architectural design optimizes performance. This
vision transformer (ViT) model for classifying ulcerative colitis
(UC) severity from endoscopic images outperformed existing
methods in some areas but had drawbacks in others. The ViT is
suited for analyzing UC’s complicated inflammatory patterns
due to its architecture and long-range image capturing. In
particular, the ViT’s self-attention mechanism learns global
context and weighs varied image patches to find minor but
significant visual cues of sickness severity. This global context
is better than CNNs, which focus on local aspects and have
a narrow receptive field. Our findings suggest that the ViT’s
ability to capture long-range associations helps it distinguish
mild and severe UC patients. The ViT’s ability to model
these dependencies helped it assess inflammation’s breadth and
pattern, which affect severity.rn, which are crucial for severity
assessment.

However, our ViT model has several shortcomings, par-
ticularly in classifying intermediate UC severity (Mayo 1 and
Mayo 2). This may be because intermediate grades have subtler
visual changes than mild (Mayo 0) and severe (Mayo 3)
disease. Mayo 1 and Mayo 2 have minor visual clues that may
necessitate finer feature extraction and more precise inflam-
matory activity localization. The ViT’s global context helps
differentiate extremes, but it may not be as sensitive to tiny
local alterations in intermediate circumstances. Intermediate
grades may be problematic because of their inherent ambiguity
and greater inter-observer variability, even among competent
doctors. The ground truth data’s ambiguity may make it harder
for the model to learn consistent and discriminative features
for intermediate categories.

The powerful ViT model needs a lot of training data to

reach its full potential. Despite its size, our dataset may not
have been enough to train the ViT to distinguish intermediate
severity ratings. ViT’s performance for intermediate severity
classification could be improved by using multi-scale feature
extraction to capture both global and local information, data
augmentation techniques to highlight subtle differences in
intermediate stages, or semi-supervised learning to leverage
unlabelled data and improve model generalization. Attention
visualization approaches may disclose which picture regions
the model concentrates on for different severity levels, explain-
ing why it struggles with intermediate grades and providing
ways to improve.

Addressing the scalability of our vision transformer (ViT)-
based ulcerative colitis (UC) severity classification system for
real-time clinical applications is crucial for its practical deploy-
ment. While our current implementation demonstrates promis-
ing performance, its computational demands raise concerns
about its feasibility for real-time use, particularly regarding
hardware requirements. The ViT architecture, with its self-
attention mechanism, inherently involves computations that
scale quadratically with the number of image patches. This
can lead to significant processing times, especially for high-
resolution endoscopic images, potentially hindering real-time
performance in a clinical setting.

VI. LIMITATIONS AND FUTURE PERSPECTIVES

Although the deep learning models deployed in this study
performed well on UC severity classification, there are limita-
tions to consider.

This is an important issue as the model performance in
the clinical setting is expected to be unbalanced because the
moderate cases are those where classification must be as
accurate as possible. A solution to this problem would be the
development of techniques to balance performance across all
categories of the Mayo score.

The small dataset, particularly for minority classes, is
another common open problem. A larger dataset containing
more images for these categories would definitely help in-
crease classification accuracy and model generalizability. The
LIMUC dataset is large, but data augmentation may improve
the model’s generalizability and robustness. Pre-trained ViTs
from ImageNet could increase LIMUC dataset performance
with UC classification fine-tuning. ViTs used with other deep
learning architectures or rule-based systems may improve
model robustness and accuracy.Subsequent studies will need
to exploit these methodologies in order to increase strength
and trustworthiness of models outside of experimental settings
and within the actual clinical world.

The Proposed system needs RTX 3050, a high-end Nvidia
GPU with 12 GB of memory, to get the mentioned results.
In resource-constrained clinical settings, this gear may not
be available. Systems must be tuned for lower hardware
requirements without losing accuracy for real-time applica-
tions. Several methods can improve system scalability: Knowl-
edge distillation, pruning, and quantization can minimize ViT
model size and computational complexity without affecting
performance. Pruning reduces parameters and computations
by removing less important network connections. Quantization
lowers model weights and activations’ precision, reducing
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TABLE II. COMPARISON OF EXISTING APPROACH WITH SIMILAR PERFORMANCE METRICS

Author Dataset Model MES Estimation

Ozawa et al (2019) [34] 26,304 images from 444 Patients GoogLeNet Accuracy: 0.704

Stidham et al (2019) [35] 14,862 images from 2778 patients Inception-v3 Kappa: 0.840
Accuracy: 0.778a

Takenaka et al (2020)
[36]

40,758 images from 2012 patients Inception-v3 Accuracy: 0.901

Sensitivity: 0.933
Specificity: 0.878

Maeda et al (2019) [37] 12,900 images from 87 Patients SVM Accuracy: 0.910

Bhambhvani et al (2020)
[38]

777 images ResNext-101 Accuracy: 0.772

Sensitivity: 0.724
Specificity: 0.857

Yao et al (2021) [39] 16,000 images from 3000 Patients Inception-v3 Accuracy: 0.780
F1: 0.571

Proposed Method UC-
visionNet

11,276 images Vision Model Accuracy: 0.96

Precision: 0.647
Recall: 0.69
F1=0.655

memory footprint and computational cost. Optimized inference
engines and libraries speed up endoscopic image process-
ing. Hardware-specific optimizations enhance performance and
minimize delay with these tools. Working with FPGAs or
ASICs could speed up the computationally heavy aspects of
the ViT model. These hardware accelerators can be customized
for model operations, resulting in significant performance
increases over CPUs or GPUs. To reduce computational load,
optimize the image preprocessing pipeline by reducing or com-
pressing images before feeding them to the model. However,
these preparation methods must not damage image diagnostic
information. Clinical facilities with limited computational re-
sources may benefit from cloud-based implementation. Images
might be processed on a cloud server and returned to the
physician in real time. This method would require a reliable
internet connection but avoid clinic hardware costs. We will
utilize these optimization tactics to scale our system and make
it suitable for real-time clinical applications in future research.
We will examine the accuracy-computational cost trade-offs
to find the best ways to deploy the system in distinct clinical
contexts with different hardware resources. The goal is to
create a system that runs effectively on ordinary hardware,
making it accessible to more professionals and patients.

VII. CONCLUSIONS

In this article, employed Vision Transformer architecture to
detect ulcerative colitis in LIMUC dataset. Vision Transformer
excelled with a 96% accuracy. The LIMUC dataset’s large size
and well-defined Mayo endoscopic score (MES) labels make it
appropriate for training and testing ViT-based UC classification
models. ViTs’ MHA model long-range dependencies well.
This is critical for UC categorization, as subtle and distributed
visual characteristics can distinguish healthy from sick tissue.
ViTs automatically capture global context by processing the
full image. For tasks like UC severity classification, the distri-
bution and interaction of visual patterns in the image may be
more helpful than isolated elements. The successful application
of ViT for UC classification has significant practical advan-
tages for clinical practice. The automated, accurate analysis of

endoscopic images can provide a speedier and more consistent
diagnosis of UC. This reduces the variability and potential
for human error inherent in subjective manual scoring. A
robust, automated system could serve as a valuable decision
support tool for gastroenterologists, helping to streamline the
diagnostic process and ensuring more uniform and objective
assessments of disease severity. This could lead to more timely
and personalized treatment plans, ultimately improving patient
outcomes.
Despite its high performance, this study has several limitations.
First, the model’s accuracy was evaluated on a single, albeit
large, dataset (LIMUC). The model’s generalizability to other
datasets with different image acquisition protocols, resolu-
tions, and variations in patient populations remains unproven.
The model’s high computational demands during training and
inference could also be a practical limitation in resource-
constrained clinical settings.

Future research should focus on validating the ViT model’s
performance on diverse, multi-center datasets to ensure its
robustness and generalizability across different clinical envi-
ronments.
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