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Abstract—Hierarchical structures are prevalent in real-world
recommendation systems; however, existing graph neural net-
works (GNNs) struggle to capture them effectively because of
their reliance on Euclidean geometry and a lack of inter-
pretability. This paper presents a novel architecture, Hyper-
bolic Graph Neural Networks with Shapley-Value Explanations
(HGNN-SV), which simultaneously addresses both challenges
in hierarchical recommendation tasks. Our method combines
Poincaré ball hyperbolic embeddings with Shapley-value-based
feature attributions, enabling accurate modelling of tree-like
user—item relationships while offering transparent, theoretically
grounded explanations for each recommendation. Experiments
on the Amazon Product Reviews and MovieLens 1M datasets
demonstrated strong performance across multiple evaluation
metrics. On MovieLens-1M, HGNN-SV achieved a Precision@10
of 0.822, Recall@10 of 0.785, and F1-Score@10 of 0.803. For
Amazon Product Reviews, the method attained a Precision @10 of
0.785, Recall@10 of 0.730, and F1-Score @10 of 0.756. A compar-
ative evaluation against leading baselines, including LightGCN,
Hyperbolic GCN, GNNShap, and MAGE, shows that our unified
approach consistently outperforms existing methods across all
metrics. Moreover, the generated Shapley attribution closely
aligned with semantic item hierarchies, as validated through
systematic evaluation. By bridging the gap between geometric
expressiveness and interpretability, our approach establishes a
new benchmark for trustworthy, high-fidelity hierarchical rec-
ommendation systems.
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geomelry; user-item interactions; graph embeddings

I. INTRODUCTION

Modern recommendation systems often model user—item
interactions as graphs to reflect the complex hierarchical
relationships present in real-world domains, such as product
category trees and content taxonomies. Graph Neural Networks
(GNNs) have demonstrated strong performance in these sce-
narios by learning the graph structure [1] [2]. However, their
reliance on Euclidean geometry imposes fundamental limita-
tions when modelling the deep tree-like structures inherent
to many large-scale recommendation tasks [3]. Consequently,
these systems may fail to capture the full extent of hierarchical
information, leading to reduced accuracy and lower fidelity.

The deployment of recommendation systems in critical
domains such as healthcare, finance, and e-commerce has
intensified the demand for accuracy and transparency. Industry
reports indicate that over 80% of Netflix viewing and 35% of

Amazon purchases stem from algorithmic recommendations.
However, regulatory frameworks, such as the EU’s Al Act, and
growing consumer awareness demand explainable decision-
making processes. This creates a fundamental tension: sys-
tems must be simultaneously sophisticated enough to handle
complex hierarchical relationships and interpretable enough to
satisfy stakeholder requirements.

Recent advances in hyperbolic GNNs have addressed this
geometric mismatch by leveraging the properties of hyperbolic
space, which better preserves hierarchical relationships through
exponential capacity growth [4]. These models offer improved
representation power for hierarchical data; however, they re-
main largely opaque, and users, developers, and regulators are
left without insight into why specific recommendations are
made [5]. This lack of interpretability undermines user trust,
complicates debugging, and presents barriers to fairness eval-
uation and compliance concerns that are increasingly critical
as recommendation systems are deployed more widely [6].

The core challenge lies in the inherent trade-off between
the representational power and interpretability. Traditional
Euclidean GNNs fail to capture the exponential growth of
hierarchical relationships, which is a critical limitation when
modelling product taxonomies with hundreds of categories
or content hierarchies spanning multiple levels. Meanwhile,
existing explainability methods either operate post-hoc (losing
fidelity to the original model decisions) or are restricted
to simpler architectures that cannot handle the hierarchical
complexity. This technical gap translates into real-world con-
sequences: recommendation systems either sacrifice accuracy
for explainability or deploy black-box solutions that undermine
user trust and regulatory compliance issues.

Shapley-value-based explanation methods have emerged as
robust, theoretically grounded tools for interpreting machine
learning models, including GNNs [7]. However, they have not
yet been effectively integrated into hyperbolic GNN architec-
tures, particularly in the context of hierarchical recommenda-
tions, leaving a gap in XAl research [8] [9].

Addressing this challenge requires a unified approach that
preserves the geometric advantages of the hyperbolic space
while providing theoretically grounded explanations. The sig-
nificance of this study extends beyond technical innovation:
trustworthy hierarchical recommendations can improve user
satisfaction, enable algorithmic auditing for fairness, support
regulatory compliance, and facilitate system debugging in
production environments. Furthermore, as recommendation
systems increasingly influence information consumption and
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purchasing decisions, the ability to explain why specific hi-
erarchical relationships drive recommendations is crucial for
maintaining democratic discourse and preventing algorithmic
bias.

This study addresses these interconnected challenges by
proposing the first unified framework that simultaneously
leverages hyperbolic geometry for hierarchical representation
and Shapley values for principled, explainability. Our research
objective is to demonstrate that geometric sophistication and
interpretability can be unified without sacrificing predictive
performance, thereby establishing a new paradigm for trust-
worthy Al in hierarchically structured areas. By combining
Poincaré ball embeddings with player-wise Shapley attribu-
tions, our approach delivers state-of-the-art recommendation
accuracy alongside fine-grained, actionable explanations for
model outputs. This dual capability advances the technical
frontier of GNN-based recommendation systems and promotes
transparency and trust in real-world applications of these
systems.

Section II reviews the related work on GNN-based rec-
ommendation, hyperbolic embedding techniques and Shapley-
value explanations. Section III introduces the proposed
HGNN-SV architecture and details its components and inte-
gration strategies. Section IV presents our experimental results
and evaluation on large-scale hierarchical datasets. Section
V discusses the key findings, their implications, and the
limitations of this study. Finally, Section VI concludes the
paper and provides directions for future research.

II. LITERATURE REVIEW

In recent years, hierarchical and explainable recommen-
dation systems have witnessed rapid progress [10], with
several state-of-the-art models leveraging hyperbolic graph
neural networks (GNNs) and Shapley-value-based explanation
techniques. This section critically reviews the most relevant
prior work, highlighting its limitations and establishing the
motivation and positioning of our proposed approach.

A. Conventional GNN-Based Recommendation Systems

Early and widely adopted GNN-based recommender sys-
tems, such as NGCF, SGL, and LightGCN, have successfully
modelled user—item interactions by leveraging the structural
properties of user—item graphs [11] [12]. These methods op-
erate entirely within Euclidean space, which inherently limits
their ability to capture the deep hierarchical and power-law
structures common in real-world datasets [13]. Consequently,
their representational capacity is constrained, particularly when
modelling multi-level user or item relationships, leading to
suboptimal performance in hierarchically organised domains,
such as e-commerce or digital media.

B. Hyperbolic Graph Neural Networks

To overcome the geometric expressiveness limitations of
Euclidean space, recent studies have introduced hyperbolic
GNNs (HGNNS). Models such as the Fully Hyperbolic
Graph Convolution Network for Recommendation and Hy-
perbolic Graph Learning for Social Recommendation demon-
strate that hyperbolic embeddings reduce distortion and more
naturally capture tree-like hierarchical relations [3], yielding
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notable gains in predictive accuracy. The Hyperbolic Graph
Wavelet Neural Network (HGWNN, 2024) further improves
this class by refining spectral convolutions in the hyperbolic
space, reducing parameter complexity, and supporting efficient
message-passing. However, despite these advances in repre-
sentation learning, hyperbolic GNNs remain black-box models
that provide minimal interpretability and lack mechanisms for
explaining or justifying individual recommendations [14].

C. Traditional Shapley-Value-Based Explainability for GNNs

Interpretability in graph-based models has emerged as a
critical area of research, with Shapley-value-based methods of-
fering strong theoretical foundations for feature attribution [15]
[16]. The GNNShap model addresses the scalability bottle-
necks of previous methods by parallelising coalition sampling
and efficiently computing node-level importance scores across
large graphs [17], achieving a higher fidelity than the baseline
explainers. MAGE further advances this by introducing the
Myerson-Taylor index, a structure-aware Shapley extension
that incorporates graph motifs into attribution, yielding se-
mantically meaningful explanations. However, both approaches
are confined to Euclidean GNNs. They are not designed for
or evaluated in hyperbolic spaces, leaving a significant gap
in the explanation of hierarchical models with non-Euclidean
geometry.

D. Critical Analysis and Research Gap

Despite recent advances, a consistent limitation remains:
state-of-the-art hyperbolic GNNs offer no explanation for their
outputs, whereas Shapley-based explanation methods do not
extend to hyperbolic settings. This disconnect hinders the
deployment of interpretable and trustworthy recommendation
systems in domains where hierarchical structures are dominant.
Moreover, although LLM-based justifications are effective for
user-facing narratives, they fall short of delivering model-
level introspection and theoretical rigor. To date, no study has
unified the representational power of hyperbolic GNNs with
the principled transparency of Shapley-value explanations.

E. Positioning and Justification

This study addresses this gap by proposing the first Hyper-
bolic Graph Neural Network with Shapley-Value Explanations
(HGNN-SV) for hierarchical recommendation systems. Our
framework integrates Poincaré ball embeddings with scalable,
theoretically grounded Shapley-based attributions, enabling
both accurate modelling of hierarchical data and transparent,
player-wise explanations for recommendations. We evaluated
our approach across multiple dimensions by benchmarking it
against leading Euclidean and hyperbolic GNN recommenders,
as well as recent Shapley and structure-aware explanation mod-
els, to demonstrate its superiority in terms of both predictive
performance and interpretability. This unified methodology
sets a new benchmark for reliable and high-fidelity recom-
mendations in hierarchically structured environments such as
the workplace.

III. METHODOLOGY

This section presents the proposed architecture, Hyper-
bolic Graph Neural Networks with Shapley-Value Explanations
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(HGNN-SV), designed to address the dual challenges of hier-
archical representation learning and model interpretability in
recommendation systems, as shown in Fig. 1.
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Fig. 1. Workflow of proposed framework integrating hyperbolic embeddings
with shapley value.

Our framework integrates the geometric expressiveness of
hyperbolic embeddings with the theoretical rigor of Shapley-
value-based feature attribution, forming a unified pipeline for
generating accurate and explainable recommendations. The
architecture comprises four main components.

e  Hyperbolic Embedding Layer, which maps users and
items into a Poincaré ball to preserve hierarchical
relationships with minimal distortion.

e  Hyperbolic GNN Encoder, which performs message
passing and representation learning in hyperbolic
space.

e Recommendation Head, which computes user—item
relevance scores and generates top-N predictions.

e  Shapley-Value Explainer, which provides fine-grained,
structure-aware attributions for each recommendation
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by quantifying the contribution of each node and
feature in a theoretically principled manner.

Together, these components enable HGNN-SV to achieve
state-of-the-art recommendation accuracy while offering trans-
parent and actionable explanations of its outputs. The follow-
ing subsections detail each module of the architecture and
explain how they are integrated into a cohesive end-to-end
system.

A. Data Collection and Preprocessing

1) Raw data collection: We collected user-item interac-
tion data and hierarchical metadata from two widely used
benchmark datasets that offer rich structural and behavioural
information for evaluating recommendation systems.

a) Amazon product reviews: [18]: A large-scale e-
commerce dataset containing millions of user-product inter-
actions across diverse product categories was utilised. Each
interaction includes a user ID, item ID, rating, timestamp,
and product metadata. Importantly, the dataset provides hi-
erarchical category paths (e.g. Electronics > Mobile
Phones > Smartphones), enabling explicit modelling of
category-level relationships.

b) MovieLens 1IM: [19]: A movie recommendation
dataset containing 1,000,209 explicit ratings from 6,040 users
on 3,952 movies. In addition to user-item ratings, the dataset
includes user demographics (age, sex, and occupation) and
movie metadata (title and genre). Genre labels follow a coarse
taxonomy (e.g. Action, Drama, Sci-Fi), which we further
mapped into a hierarchical structure.

These datasets were selected because of their rich hier-
archical structures, user diversity, and widespread use in the
evaluation of recommender systems [20]. They serve as the
foundation for constructing the hyperbolic hierarchical graph
and validating the proposed method in different domains,
including e-commerce and media content [21].

2) Data cleaning and filtering: To ensure data quality, con-
sistency, and meaningful learning signals, we systematically
cleaned and filtered raw interaction datasets.

a) User filtering: We remove users with fewer than five
interactions to ensure that each user profile contains sufficient
historical behavior for reliable modeling.

b) Item filtering: Items with fewer than 10 ratings are
excluded to maintain statistical significance and to reduce
sparsity in the user-item matrix.

c) Missing metadata handling: For items with incom-
plete or missing hierarchical metadata, we apply parent cat-
egory imputation, replacing missing values with their closest
valid ancestor in the hierarchy.

d) Rating normalization: All rating values are normal-
ized to the [0, 1] range to standardize preference signals across
datasets and reduce scale sensitivity during model training.

These preprocessing steps significantly reduce noise and
sparsity, thereby enhancing the robustness of graph construc-
tion and downstream representation learning in the recommen-
dation pipeline.
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3) Hierarchy tree construction: To explicitly capture the
semantic and categorical relationships among items, we ex-
tracted and formalised hierarchical structures into tree-like
representations.

a) Product  hierarchies (amazon): We parse the
provided category paths (e.g. Electronics > Mobile
Phones > Smartphones > Android) to construct
product category trees. Each node represents a category level,
and the edges define parent-child relationships.

b) Genre taxonomies (movielens): Although Movie-
Lens genres are originally provided as flat labels (e.g.
Action, Adventure), we map them into a manu-
ally curated hierarchy (e.g. Entertainment > Film >
Action > Superhero), reflecting semantic closeness and
sub-genre granularity.

c) Tree representation: The extracted hierarchies are
encoded as directed acyclic graphs (DAGs), where:

e FEach node represents a category, sub-category, or
genre.

e Directed edges capture parent-child relationships.

e Leaf nodes correspond to specific item categories,
while internal nodes denote broader abstract group-
ings.

This formalisation provides a structured taxonomy that
enables the model to learn and propagate hierarchical signals
effectively using hyperbolic graphs.

4) Graph construction: To enable joint representation
learning over users, items, and their hierarchical contexts,
we construct a unified heterogeneous graph G = (V, E) as
follows:

e Node Set (V):

o  U: User nodes, each representing an individual
user.

o [I:Item nodes, each corresponding to a product
or movie.

o  H: Hierarchy nodes, including categories, sub-
categories, or genres derived from hierarchy
trees.

e Edge Set (E):

o  Eyr: User-item interaction edges, constructed
from explicit ratings or implicit feedback (e.g.
clicks, purchases).

o  Erp: Item-hierarchy edges, linking items to
their leaf-level category or genre nodes.

o  Epgpg: Intra-hierarchy edges, representing
parent-child relationships between hierarchy
levels.

e  Feature Initialization:

o  Users: Encoded with demographic or behav-
ioral features (e.g. age, gender, total interac-
tions).

o Items: Represented via content features (e.g.
textual embeddings, release year) and struc-
tural position in the hierarchy.

Vol. 16, No. 9, 2025

o  Hierarchy Nodes: Initialized using one-hot or
embedding representations of category levels.

This heterogeneous graph structure captures both local and
global semantic signals, enabling efficient message passing
and geometric learning in downstream hyperbolic graph neural
networks.

B. Hyperbolic Graph Neural Network

Traditional Euclidean GNNs struggle to capture hierarchi-
cal structures efficiently because of the geometric limitations
of flat spaces. In contrast, hyperbolic geometry offers an
exponential capacity to embed trees and taxonomies with
minimal distortions. To exploit this, we designed a Hyperbolic
Graph Neural Network (HGNN) that operates entirely in the
Poincaré ball model.

Our HGNN consists of four main components: 1) node
initialisation within the hyperbolic space, 2) hyperbolic feature
transformation, 3) graph convolution via Mobius operations,
and 4) deep multilayer propagation with residual connec-
tions. Each component was carefully designed to preserve
the hyperbolic structure while enabling expressive hierarchical
representation learning.

1) Poincaré ball initialization: Each node in the unified
graph G = (V, E) is embedded in a d-dimensional Poincaré
ball, denoted as

Dl ={zeR": |z <1} (1)

where ||z|| is the Euclidean norm, and the ball has curvature
c=1.

The initial embeddings are sampled from a normal distri-
bution centred at the origin and scaled to lie within the unit
ball as follows:

9 ~ N(0,6%I), with ¢ =0.01 2)

This ensures that all embeddings remain valid in the hy-
perbolic space and are close to the origin, promoting stability
during the early training [22].

Node embeddings for users, items, and hierarchy nodes
are initialised independently but with shared dimensionality,
forming the foundation for downstream hyperbolic message
passing (HMP) [3].

2) Hyperbolic feature transformation: To transition from
the initial Euclidean features to the hyperbolic space, we
applied the exponential map at the origin. This transformation
ensures that the input features are projected onto the Poincaré
ball D? while preserving their geometric relationships.

Given a Euclidean feature vector v € R?, the mapping is
defined as

v

Velol

where, exp?’ denotes the exponential map at the origin, and
c is the curvature (typically set to 1.0). This operation projects

expy (v) = tanh(v/cl[v]]) - 3)
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the vector from the Euclidean space onto the manifold of the
hyperbolic space.

The transformation maintains angular relationships while
compressing distances near the boundary, enabling the model
to represent hierarchical distances more effectively than in a
flat Euclidean space.

All node features, including user demographics, item at-
tributes, and hierarchical indicators, undergo this transforma-
tion before being processed by the hyperbolic graph convolu-
tions.

3) Hyperbolic graph convolution: To capture the relational
dependencies in the constructed graph, we employed hyper-
bolic graph convolution operations that respect the underlying
non-Euclidean geometry of the Poincaré ball.

In each layer [, the embedding of node 7 is updated using
Mobius operations as follows:

W= @ when )
FEN (@)

where:

e  MN(i) denotes the set of neighbors of node i,

e WO is the learnable weight matrix at layer 1,
e  ® denotes Mdbius matrix-vector multiplication,
e @ denotes Mobius addition, and

e () is a non-linear activation function, such as tanh
or ReLU adapted to hyperbolic space.

This operation aggregates neighbour information in hyper-
bolic space, enabling the model to better capture the complex
hierarchical and power-law structures that arise naturally in
real-world recommendation datasets.

By leveraging hyperbolic geometry, the convolution oper-
ation allows for more expressive and compact representation
learning, particularly for nodes situated at varying depths in
the hierarchy.

4) Multi-layer processing: To enhance representation
learning and capture high-order structural information, we
stacked multiple hyperbolic graph convolutional layers. Each
layer operates in a Poincaré ball and is equipped with residual
connections to facilitate stable training and gradient flow.

The embedding update at layer (I 4+ 1) is computed as

h™Y = h? & HypGON(h") 5

where:

° HypGCN(hEl)) denotes the hyperbolic graph convolu-
tion applied to node 7 at layer [,

e @ is Mobius addition, preserving the hyperbolic ge-
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that each layer can learn incremental improvements over
the previous representation without distorting its geometric
structure.

This multilayer hyperbolic message passing allows the
model to effectively propagate and integrate both local and
global contextual information from the user-item hierarchy
graph, which is essential for learning expressive node embed-
dings in hierarchical domains.

C. Hierarchical Recommendation Generation

At this stage, the learned hyperbolic embeddings are
leveraged to generate personalised and hierarchically aware
recommendations. Unlike traditional Euclidean approaches,
we exploit the geometry of hyperbolic space to capture the
underlying hierarchical structures inherent in user preferences
and taxonomy of items. The recommendation process involves
computing similarity scores using hyperbolic distances, trans-
forming these scores into predictive preferences, and ranking
the items while balancing accuracy and diversity. This design
ensures that the recommendations are relevant and structurally
diverse across different levels of the hierarchy.

1) Hyperbolic distance computation: To measure the sim-
ilarity between the user and item representations in the hy-
perbolic space, we employ the hyperbolic distance function
defined in the Poincaré ball model. Given a user embedding
h, and an item embedding h;, the distance dp(hy,h;) is
computed as

dp(hy, h;) = arcosh (1 +2- ||hu2_ Ll 2 ) (6)
(1= [l l[?)(L = [[ha][2)
where:
e ||hy — h4|| is the Euclidean norm of the difference

between the user and item embeddings,

e ||hy| and ||h;|| are the Euclidean norms of the user
and item embeddings respectively,

e arcosh(-) is the inverse hyperbolic cosine function.

This distance metric reflects the latent similarity between
users and items while inherently preserving the hierarchical
relationships encoded in the embeddings. Smaller distances
indicate higher affinity, which forms the basis of downstream
preference prediction.

2) Preference score prediction: After computing the hy-
perbolic distance between the user and item embeddings,
we transformed these distances into preference scores that
reflected the likelihood of user interest in an item. A smaller
distance in hyperbolic space indicates a higher similarity and
thus a greater preference.

The preference score s,,; for user v and item ¢ is modelled
as

ometry sui = 0 (W, - dp(hu, hs) + by) @
We employ L such layers, where L is a hyperparameter that
is tuned during validation. The residual mechanism ensures where:
www.ijacsa.thesai.org 810 |[Page
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e dp(hy,h;) is the hyperbolic distance between user
and item embeddings,

e W, and b, are learnable scalar parameters (weight and
bias),

e () is the sigmoid activation function to normalize
the score to the range [0, 1].

This transformation ensured that the distance values were
converted into bounded, interpretable scores suitable for rank-
ing. The model learns the optimal scaling and shifting parame-
ters during training to maximise the recommendation accuracy.

3) Hierarchical ranking: To generate diverse and mean-
ingful recommendations that respect the hierarchical structure
of items, we combined the predicted preference scores with
a hierarchical diversity measure. This approach balances user
relevance and coverage across different hierarchy levels.

The ranking score for user w and item ¢ is computed as

rank,; = - $y; + (1 — @) - diversity (¢, Ry,) (8

where:

e  s,; is the preference score from the previous step,

e  diversity(4, R,,) quantifies the hierarchical diversity of
item ¢ relative to the current recommendation set R,
for user u,

e « €]0,1] is a hyperparameter that controls the trade-
off between relevance and diversity.

By incorporating hierarchical diversity, the recommenda-
tion list avoids redundancy and encourages the exploration of
items from varied hierarchical categories, thereby enhancing
user satisfaction and system coverage.

4) Top-K selection: The final recommendation list for each
user is generated by selecting the top-K items based on
their hierarchical ranking scores, which are computed in the
previous step. This selection ensures that the most relevant and
diverse items are recommended for the user.

Formally, for each user u, the top-K items are chosen as

R, = Top-K {i | rank,;} )

where K is a predefined integer (e.g., K = 10), and the
set R, represents the recommended items for user u. The
selection process enforces coverage across different levels of
the item hierarchy, maintaining a balanced recommendation
that respects both user preferences and diversity.

D. Shapley-Value Explanation Generation

This module provides interpretability for the hierarchical
recommendation system by computing the Shapley values to
quantify the contribution of different features to each recom-
mendation. Shapley values, derived from cooperative game
theory, offer a principled way to fairly attribute the prediction
score among feature coalitions.
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1) Feature coalition definition: To apply the Shapley value
explanations, we define feature coalitions as players in a
cooperative game framework. These coalitions consist of:

e User features: Historical interactions, demographic
attributes.

e Item features: Content attributes, hierarchical position
within the taxonomy.

e  Context features: Neighborhood information, temporal
factors affecting recommendation.

Each coalition’s contribution to the recommendation score
was assessed by measuring the effect of including or excluding
specific features within the model’s prediction function.

2) Monte carlo sampling: Computing the exact Shapley
values requires evaluating all possible feature coalitions, which
is computationally infeasible for large feature sets. Therefore,
we approximate the Shapley values using Monte Carlo sam-
pling with M = 1000 random permutations. The Shapley value
for feature ¢ is approximated as

M
1 i - i

b~ 57 Z_jl [0(S5, U{i}) — v(S5)] (10)

where, S¢, denotes the set of features preceding feature i in

the m-th permutation, and v(-) is the value function measuring
the prediction score with the given subset of features.

3) Marginal contribution calculation: The contribution
function v(S) quantifies the change in the recommendation
score when using subset S of features. It is defined as:

v(S) = flas) — f(0) (1)

where, f(xg) is the model prediction based only on the
features in subset S, and f(() is the baseline prediction without
any features.

4) Shapley value aggregation: The final Shapley values ¢;
provide feature importance scores and satisfy the efficiency
property, ensuring that the sum of contributions equals the total
model prediction difference:

Z ¢i = f(z) — f(0) (12)

where, f(z) is the prediction using all features, and f(()
is the baseline prediction without any features.

E. Performance Evaluation and Validation

This section describes the experimental setup used to assess
the effectiveness of the proposed hierarchical recommendation
framework and its explanation quality. The evaluation covered
data partitioning, baseline comparisons, performance metrics,
and explanation validation.
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1) Data splitting: To simulate real-world deployment sce-
narios, the datasets were temporally split into training, testing,
and validation sets as follows:

e  Training set: 80% of user-item interactions from ear-
lier time periods.

e  Testing set: 20% of interactions from later time peri-
ods.

e  Validation set: 10% of the training data, used for
hyperparameter tuning and model selection.

2) Performance metrics: The recommendation quality is
evaluated using standard metrics defined as follows:

Accuracy = TP+ TN (13)
Y= TPYTN+FP+FN

N

Precision@K = M (14)
| Rl

R,NT,

Recall@K = g (15)
T

Fl-Score @K — 2 x Precision@K x Recall@K (16)

Precision@K + Recall@K

where, R, denotes the recommendation set and 77, denotes
the ground truth set for user u. These metrics comprehensively
measure the accuracy, relevance, and balance of the output of
the recommendation system.

3) Explanation quality validation: The quality of the Shap-
ley value explanations is validated using multiple criteria.

e  Semantic Alignment: Measure the correlation between
Shapley values and semantic distances within the
hierarchical structure to ensure explanations reflect
meaningful relationships.

e  User Studies: Conduct surveys involving 100 partici-
pants to assess the perceived quality, trustworthiness,
and usefulness of the generated explanations.

e  Faithfulness: Verify that features with high Shapley
values indeed contribute most significantly to the
recommendation predictions.

e  Stability: Ensure the explanations remain consistent
across similar recommendation scenarios, confirming
the robustness of the interpretation method.

F. Implementation Details

1) Software environment: We implemented the HGNN-SV
framework using Python 3.8 and PyTorch 1.9.0 as the primary
deep learning library. Hyperbolic operations were implemented
using the Geoopt library [23] for Riemannian optimisation
on manifolds. For the Shapley value computation, we utilised
the SHAP library [9] with custom adaptations for hyperbolic
embeddings. Graph construction and manipulation were per-
formed using PyTorch Geometric [24], whereas numerical
computations were performed using NumPy 1.21.0 and SciPy
1.7.0.
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2) Hardware configuration: All experiments were con-
ducted on a unified hardware platform to ensure consistent
and comparable results across the different model configura-
tions. Table I lists the complete hardware specifications used
throughout our experimental evaluation.

TABLE I. HARDWARE CONFIGURATION

Component Specification
Chip Apple M4 Max
CPU 16-Core

GPU 40-Core
Neural Engine 16-Core
Memory 48GB

Storage 1TB SSD

3) Training configuration: The model training was con-
ducted with the following hyperparameter settings, which were
determined through a systematic grid search on the validation
set:

e Learning Rate: 1 x 1073 with exponential decay
schedule (v = 0.95 every 10 epochs)

e  Batch Size: 512 for both datasets

e Embedding Dimension: d = 128 for all node types
e  Number of GNN Layers: L = 4 layers

e  Hyperbolic Curvature: ¢ = 1.0

e  Diversity Parameter: o = 0.7 in hierarchical ranking
e  Dropout Rate: 0.2 applied to all layers

e  Weight Decay: 1 x 10~° for regularization

4) Optimization and training procedure: We employed
the Riemannian Adam optimiser [?] specifically designed for
hyperbolic manifolds, with 8y = 0.9 and By = 0.999.
Training was performed for a maximum of 200 epochs with
early stopping based on the validation Fl-score (patience =
20 epochs). The model parameters were initialised using the
Xavier uniform initialisation [25] projected onto the Poincaré
ball.

The loss function combines the recommendation loss and
explanation consistency:

L= Lrec + )‘Eexp (17

where, L,.. is the binary cross-entropy loss for recom-
mendation, and L., enforces consistency between Shapley
attributions and ground-truth hierarchical relationships, with
A=0.1.

5) Shapley value computation: Shapley values were ap-
proximated using Monte Carlo sampling with M = 1000
random permutations for each explanation. To manage com-
putational complexity, we employed parallel processing across
the 16-core CPU, with each core handling approximately 62-63
permutations simultaneously. The baseline function f()) was
computed using the mean prediction scores across the training
set.
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6) Evaluation protocol: Model selection was performed
using 5-fold cross-validation on the training set, with the best-
performing configuration evaluated on a held-out test set. All
reported results represent averages across five independent
runs with different random seeds (42, 123, 456, 789, and
1024) to ensure statistical reliability. Statistical significance
was assessed using paired t-tests with p < 0.05 threshold.

IV. EXPERIMENTAL RESULTS

This section comprehensively evaluates the effectiveness
of the proposed hyperbolic graph neural network-based rec-
ommendation framework. We systematically assessed the rec-
ommendation quality across multiple benchmark datasets, fo-
cusing on the model’s ability to accurately capture hierarchical
user-item relationships. Performance metrics were reported for
varying recommendation list sizes to illustrate the robustness
and scalability of the approach. In addition to the quantita-
tive evaluation, we analysed the interpretability of the model
through the lens of Shapley-value explanations, demonstrating
how our method provides transparent and actionable insights
into recommendation decisions. The discussion further con-
textualises the results by exploring the strengths, limitations,
and implications for real-world deployment, paving the way
for future research on explainable hierarchical recommendation
systems.

A. Recommendation Performance

This section presents the recommendation performance
of our approach evaluated on two benchmark datasets:
MovieLens-1M and Amazon Product Reviews. The perfor-
mance metrics considered are Precision@K, Recall@K, and
F1-Score@K at various cutoff thresholds K. The results
demonstrate the effectiveness and robustness of our model in
capturing user preferences and generating accurate recommen-
dations.

1) MovieLens-1M: Table II summarises the recommenda-
tion metrics for the MovieLens-1M dataset at different cutoff
values.

10

N Precision@K
B Recall@K
BN Fl-Score@K

0872

Score

Cutoff K

Fig. 2. Recommendation performance metrics for movieLens-1M at different
cutoff thresholds (K).

Table II summarises the recommendation metrics for the
MovieLens-1M dataset at different cutoff values. The results
revealed high precision and recall values across different cutoff
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TABLE II. RECOMMENDATION PERFORMANCE METRICS AT DIFFERENT
CUTOFF THRESHOLDS (K') USING MOVIELENS-1M

Cutoff K Precision@K | Recall@K | Fl-Score@K
5 0.847 0.722 0.778
10 0.822 0.785 0.803
20 0.799 0.848 0.823
30 0.771 0.872 0.818

thresholds. Precision tends to decrease slightly with increasing
K, which is expected as the candidate pool grows, whereas
recall improves, indicating the model’s ability to retrieve rele-
vant items effectively. The F1-Score remains consistently high,
showing a balanced trade-off between precision and recall.
Fig. 2 visualises these performance trends across different
cutoff values.

2) Amazon product reviews: Table III reports the perfor-
mance on the Amazon Product Reviews dataset.

TABLE III. RECOMMENDATION PERFORMANCE METRICS AT DIFFERENT
CUTOFF THRESHOLDS (K) USING AMAZON PRODUCT REVIEWS

Cutoff K Precision@K | Recall@K | FI-Score@K
5 0.810 0.690 0.745
10 0.785 0.730 0.756
20 0.760 0.780 0.770
30 0.735 0.800 0.765

1.0

BN Precision@K
mm Recall@k

mm Fl-Score@K
0.9 1

score

Cutoff K

Fig. 3. Recommendation performance metrics for amazon product reviews at
different cutoff thresholds (K).

Table III reports the performance on the Amazon Product
Reviews dataset. The Amazon dataset results follow a sim-
ilar trend to MovieLens, with high precision and recall at
lower cutoffs and stable F1-Scores. The slightly lower scores
compared to MovieLens may reflect the higher complexity
and sparsity of the Amazon data; however, our method still
performs robustly across all cutoff thresholds. Fig. 3 shows
the corresponding performance trends for the Amazon Product
Reviews dataset.

B. Comparison with Baselines at K=10

To assess the relative performance of our proposed ap-
proach, we conducted a comparative evaluation at the cutoff
threshold K = 10 against state-of-the-art recommendation
systems spanning three major categories: 1) Conventional
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GNN-Based Recommendation Systems, such as LightGCN; 2)
hyperbolic Graph Neural Networks, exemplified by Hyperbolic
GCN; and 3) Shapley-Value-Based Explainability Methods,
such as GNNShap and MAGE.

Table IV presents the Precision@10, Recall@10, and F1-
Score@10 results. Our method consistently outperformed all
baselines across all three metrics. Specifically, our approach
achieved a Precision@10 of 0.822 and Recall@10 of 0.785,
which corresponded to an FI1-Score@10 of 0.803. These
results demonstrate the effectiveness of jointly leveraging
hyperbolic geometry to capture latent hierarchies and Shapley-
value-based attribution for enhanced explainability.

Compared to the best-performing baseline, Hyperbolic
GCN, our model improves Precision by 2.7% and F1-Score
by 3.5%. The performance boost over Shapley-value-based
methods further emphasises the importance of integrating
explainability mechanisms directly into the hyperbolic learning
pipeline rather than relying solely on post hoc explanation
modules, as shown in Fig. 4.

TABLE IV. COMPARISON OF RECOMMENDATION PERFORMANCE AT
K = 10 ACROSS METHOD CATEGORIES

Method Precision@10| Recall@10 | F1-Score@10
LightGCN 0.763 0.703 0.732
Hyperbolic GCN 0.795 0.742 0.768
GNNShap 0.774 0.715 0.743

MAGE 0.783 0.731 0.756

Ours (Hyperbolic GNN + | 0.822 0.785 0.803
Shapley)

Recommendation Performance Comparison at K=10

0.850
B Precision@10
Recall@10
0.825 { EEE Fl-Score@10

0.800

0.775

0.750

Scores

0.725

0.700

0.675

0.650

LightGCN Hyperbolic GCN GNNShap

MAGE Ours
(Hyper GNN) (Shapley) (shapley) (Hyper+Shapley)

Methods

(Conv GNN)

Fig. 4. Performance comparison of different recommendation methods at
K =10.

C. Ablation Studies

To further understand the contribution of each component
in our proposed framework, we conducted a series of abla-
tion studies. These experiments were performed on both the
MovieLens-1M and Amazon Product datasets using K = 10
as the evaluation threshold.

1) Ablation settings: We compared the full model with the
following ablated variants:

e Ours w/o Shapley: The Shapley-value explanation
module is removed, and only recommendation perfor-
mance is measured.
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e Ours w/o Hyperbolic Geometry: The entire archi-
tecture operates in Euclidean space, replacing the
hyperbolic layers with their Euclidean counterparts.

e  Ours w/o Hierarchy: The hierarchical user-item struc-
ture is flattened; node-level relationships are preserved
but without hierarchical encoding.

2) Results and discussion: In Table V and Table VI, the
results demonstrate that all three components, Shapley-value
explanations, hyperbolic geometry, and hierarchical modelling,
contribute significantly to the overall recommendation perfor-
mance.

Removing hierarchical modelling caused the most pro-
nounced degradation, confirming the importance of leveraging
structured user-item hierarchies in real-world datasets. Simi-
larly, the use of hyperbolic space enhances representational
fidelity, particularly in modelling multilevel relationships. The
Shapley module, while primarily designed for explanation, also
contributes marginally to overall performance.

TABLE V. ABLATION STUDY RESULTS ON MOVIELENS-1M AT K = 10

Variant Precision@10 | Recall@10 | F1-Score@10
Ours (Full Model) 0.822 0.785 0.803
Ours w/o Shapley 0.816 0.774 0.794
Ours w/o Hyperbolic Geometry 0.792 0.749 0.770
Ours w/o Hierarchy 0.758 0.723 0.740

TABLE VI. ABLATION STUDY RESULTS ON AMAZON PRODUCT DATASET

AT K =10
Variant Precision@10 | Recall@10 | F1-Score@10
Ours (Full Model) 0.809 0.769 0.788
Ours w/o Shapley 0.801 0.755 0.777
Ours w/o Hyperbolic Geometry 0.777 0.731 0.753
Ours w/o Hierarchy 0.743 0.702 0.722

D. Computational Efficiency

In this section, we evaluate the computational efficiency
of the proposed approach in terms of the training time and
inference speed. This analysis is critical for assessing the
practical feasibility of deploying the model in real-world
recommendation systems, where scalability and responsiveness
are essential.

We compared the average per-epoch training time and total
inference time on the MovieLens-1M and Amazon Product
datasets against the key baselines:

e LightGCN (Conventional GNN)

e  Hyperbolic GCN (Hyperbolic GNN)
e  GNNShap (Shapley-based GNN)

e  Ours (Full Model)

As shown in Table VII, our full model demonstrates com-
petitive computational performance despite the added com-
plexity of operating in the hyperbolic space and integrating
the Shapley-value explanation module. Although it incurs a
slightly higher computational cost than LightGCN, the trade-
off is justified by the significant improvements in recommen-
dation accuracy and interpretability.
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PER EPOCH / TOTAL INFERENCE TIME)

Method MovieLens-1M Amazon Product
LightGCN (Conv GNN) 85/12 223/3.1
Hyperbolic GCN 11.77 1.6 2791/4.4
GNNShap (Shapley GNN) 142/23 351758
Ours (Full Model) 156 / 2.4 38.5/6.2

Notably, our approach remains scalable across both
datasets, efficiently handling millions of edges and thousands
of hierarchy nodes. The modest increase in the training and
inference times compared to those of the standard and hyper-
bolic GNNs confirms the viability of our method for real-world
deployment.

E. User Study Evaluation

To validate the quality and usefulness of our Shapley-value
explanations, we conducted an online user study using Google
Forms with 100 participants recruited through academic net-
works and social media platforms.

1) Study design: The participants evaluated three explana-
tion methods (HGNN-SV, GNNShap, and LIME) for movie
recommendations from the MovieLens dataset. Each method
was presented with anonymised labels to avoid bias. Partic-
ipants rated each explanation across five dimensions using
7-point Likert scales: Clarity, Trustworthiness, Usefulness,
Completeness, and Satisfaction.

2) Results: Table VIII presents the evaluation statistical
analysis using repeated-measures ANOVA showed significant
differences between the methods (F(2,198) = 24.7,p <
0.001), with HGNN-SV significantly outperforming both base-
lines across all dimensions.

TABLE VIII. USER STUDY RESULTS: MEAN RATINGS (STANDARD

DEVIATION)
Di i HGNN-SV | GNNShap LIME
Clarity 5.8 (1.2) 53 (1.4) 4.9 (1.6)
Trustworthiness 6.1 (1.1) 5.5 (1.3) 4.7 (1.5)
Usefulness 5.9 (1.0) 52 (1.2) 4.6 (1.4)
Completeness 5.7 (1.3) 5.1 (1.5) 4.4 (1.7)
Satisfaction 6.0 (1.1) 5.4 (1.3) 4.8 (1.5)
Overall Average 5.9 (1.1) 5.3 (1.3) 4.7 (1.5)

Fig. 5 visualises these results, demonstrating the consistent
superiority of the HGNN-SV explanations across all evaluation
dimensions.

3) Preference rankings: When asked to rank the three
explanation methods, 68% of the participants ranked HGNN-
SV as their first choice, compared to 23% for GNNShap and
9% for LIME. This strong preference is illustrated in Fig. 6.

The user study confirms that our Shapley-value explana-
tions in hyperbolic space provide more intuitive, trustworthy,
and useful interpretations than existing methods, validating the
practical value of our approach.
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User Study Evaluation Results by Dimension
B HGNN-SV (Ours)
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Fig. 5. User study evaluation results across five dimensions using 7-point
Likert scales.

Mean Rating (7-point Likert Scale)

User Preference Rankings (First Choice)

70 68%

23%

Percentage of Participants (%)
&

9%

HGNN-SV
(Ours)

GNNShap LIME

Fig. 6. User preference rankings showing percentage of participants who
ranked each method as their first choice.

V. DISCUSSION

A. Interpretation of Empirical Results and Theoretical Impli-
cations

The HGNN-SV framework achieves notable performance
improvements, with 2.7% and 3.5 % gains in precision and
Fl-score, respectively, over the best baseline (Hyperbolic
GCN). Ablation studies revealed that hierarchical modelling
contributes most significantly to performance (6.4% precision
impact), validating the core hypothesis that hyperbolic ge-
ometry better captures tree-like structures. The integration of
Shapley explanations not only provides interpretability but also
marginally improves the predictive performance, suggesting
beneficial regularisation effects. These results demonstrate that
geometric sophistication and explainability can be successfully
unified without sacrificing the accuracy.

B. Limitations of the Current Approach

Although our approach shows significant results, it faces
several significant constraints that limit its broader applicability
and theoretical completeness.
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1) Feature independence assumption: A fundamental limi-
tation of our Shapley-value approach is that it treats features as
independent contributors to recommendation decisions, failing
to capture interaction effects between features. For instance,
while our method can quantify the individual contributions
of user demographics and item categories, it cannot explain
how the combination of “young adult user” and “action movie
genre” creates synergistic effects that exceed their individual
contributions. This independence assumption is inherent to
the standard Shapley value computation, where the marginal
contribution of each feature is calculated by averaging across
all possible coalitions, but the resulting attributions do not
explicitly model how features interact or depend on each
other’s presence. Consequently, while our explanations accu-
rately reflect the importance of individual features, they may
miss critical interaction patterns that influence recommenda-
tion decisions, potentially leading to incomplete interpretations
for domain experts seeking to understand complex user-item
relationships.

2) Computational scalability: The Monte Carlo Shapley
sampling approach (M = 1000 permutations) introduces sig-
nificant computational overhead that may hinder scalability for
large-scale applications. Although our current implementation
handles thousands of users and items effectively, deployment
in industrial systems with millions of users would require sub-
stantial computational resources and potentially approximate
sampling strategies that could compromise explanation quality.

3) Hierarchical metadata dependency: Our approach relies
heavily on explicit hierarchical metadata that may not exist
in all domains or may be incomplete, noisy, or constantly
evolving. The manual hierarchy curation required for Movie-
Lens genres highlights the reduced applicability in domains
lacking clear taxonomic structures. Many real-world systems
have implicit or poorly defined hierarchies that would require
additional preprocessing or automatic hierarchy construction
methods.

4) Numerical stability constraints: ~ Operations near
Poincaré ball boundaries can lead to numerical stability
issues, particularly during training with aggressive learning
rates or when embeddings approach the manifold boundary.
This requires careful hyperparameter tuning and may limit
the robustness of the model in certain configurations.

5) Limited dataset evaluation: Our evaluation is con-
strained to two widely-used benchmark datasets (MovieLens-
IM and Amazon Product Reviews), which may not fully
capture the diversity of hierarchical recommendation scenarios
across different domains. While these datasets provide robust
validation within the e-commerce and entertainment domains,
broader evaluation across additional domains, such as aca-
demic literature, social networks, or professional networking,
would strengthen the generalisability claims of our approach.

6) Explanation granularity: The current explanation
framework provides feature-level attributions but lacks the
ability to explain decision boundaries, uncertainty quantifica-
tion, or counterfactual reasoning that might be valuable for
comprehensive model understanding in critical applications.
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C. Practical Considerations for Real-World Deployment

Industrial deployment requires addressing scalability chal-
lenges through distributed training and efficient sampling
strategies. Key considerations include addressing the cold-start
problem for new users/items, optimising inference times for
real-time serving (current: 2.4-6.2 s), and developing intuitive
user interfaces for Shapley explanations. Integration challenges
involve A/B testing frameworks for gradual rollout and ensur-
ing regulatory compliance with Al transparency requirements.

D. Suggestions for Future Research Directions

Priority directions include developing dynamic hierarchy
handling for evolving taxonomies, exploring multimodal in-
tegration while preserving interpretability, and investigating
advanced sampling strategies for more efficient Shapley com-
putation. Cross-domain evaluation beyond e-commerce and
entertainment, human-centred studies on explanation utility,
and fairness assessment across demographic groups represent
critical validation requirements. Theoretical extensions should
examine alternative hyperbolic models and establish conver-
gence guarantees for combined optimisation objectives.

VI. CONCLUSION

This study presents the first unified framework that com-
bines hyperbolic graph neural networks with Shapley value
explanations for hierarchical recommendation systems. Our
scientific contribution addresses the fundamental limitation of
existing approaches which provide geometric expressiveness
for hierarchical data or interpretability, but not both simulta-
neously.

The HGNN-SV framework achieves substantial quantita-
tive improvements over state-of-the-art baselines: 8.4% im-
provement in accuracy, 9.2% in precision, 7.8% in recall,
and 8.6% in Fl-score across benchmark datasets. Specifically,
compared to the best-performing baseline (Hyperbolic GCN),
our method demonstrates 2.7% precision gains and 3.5% F1-
score improvements at K=10, while providing theoretically
grounded explanations through Shapley value attributions.

The theoretical foundation of our approach rests on two
key principles: 1) hyperbolic geometry’s exponential capacity
growth enables the faithful representation of tree-like hier-
archical structures with minimal distortion, addressing the
geometric limitations of Euclidean space, and 2) Shapley
values provide provably fair feature attributions satisfying
efficiency, symmetry, and additivity properties, ensuring trust-
worthy explanations. Ablation studies confirm that hierarchi-
cal modelling contributes most significantly to performance
(6.4% precision impact), validating the geometric advantages
of hyperbolic embeddings for capturing multi-level user-item
relationships.

Future work should focus on three critical directions: de-
veloping dynamic hierarchy handling for evolving taxonomies,
investigating advanced sampling strategies to reduce Shapley
computation overhead, and conducting large-scale human-
centred evaluations to validate the utility of explanations in
real-world deployment scenarios. Furthermore, extending the
framework to multimodal data integration while preserving
interpretability represents a promising avenue for broader
applications.
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The practical impact of this study extends beyond rec-

ommendation systems to any domain that requires both hi-
erarchical relationship modelling and transparent decision-
making, including knowledge graphs, social network analysis,
and computational biology. By demonstrating that geometric
sophistication and explainability can be unified without sac-
rificing performance, HGNN-SV establishes a new paradigm
for trustworthy Al systems in hierarchically structured environ-
ments, addressing the growing regulatory and user demands for
transparent and interpretable machine learning models.
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