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Abstract—Tokenization is a foundational step in the NLP
pipeline, and its design strongly influences the performance
of transformer-based models, particularly for morphologically
rich and low-resource languages such as Assamese. While most
tokenizers are traditionally assessed using intrinsic metrics,
their practical impact on downstream tasks has remained un-
derexplored. This study systematically evaluates nine subword
tokenizer configurations—spanning Byte-Pair Encoding (BPE),
WordPiece, and Unigram algorithms with vocabulary sizes of
8K, 16K, and 32K—on sentiment classification in Assamese.
Each tokenizer was integrated into a BERT-base-multilingual-
cased model by replacing the default tokenizer and reinitializing
the embedding layer. On a manually curated dataset, naive
fine-tuning proved unstable under class imbalance, but a class-
weighted loss restored effective training and exposed clear per-
formance differences across tokenizers. WordPiece consistently
outperformed BPE and Unigram, with the wordpiece_16k config-
uration achieving a weighted F1-score of 0.4897 across 10 random
seeds. This score was statistically comparable to mBERT (0.4919)
and competitive with larger multilingual baselines such as XL.M-
R (0.4978), despite relying on a far smaller, Assamese-specific
vocabulary. These findings underscore that tokenizer choice is
not a neutral preprocessing step but a critical design decision,
highlighting the importance of downstream evaluation when
developing practical NLP pipelines for low-resource languages.
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I. INTRODUCTION

Tokenization is a foundational step in the Natural Lan-
guage Processing (NLP) pipeline, particularly for transformer-
based architectures that operate at the subword level. By
segmenting raw text into manageable units, tokenizers influ-
ence vocabulary coverage, sequence length, and ultimately
task performance [1], [2]. Prior research has also shown
that structural representation choices, such as graph-based
modeling of dependencies, can significantly affect semantic
interpretation and downstream performance [3]. While much
work has emphasized the development of efficient tokenization
algorithms, relatively little attention has been paid to their
impact on downstream tasks in low-resource scenarios. This
gap is especially pronounced for Indic languages such as
Assamese, where linguistic complexity intersects with data
scarcity.
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Assamese, spoken by more than 15 million people, is a
morphologically rich and underrepresented language in NLP
research. Its script shares similarities with Bengali but includes
unique graphemes, creating additional tokenization challenges.
The language also exhibits complex inflectional and deriva-
tional morphology, with affixes encoding case, tense, aspect,
and honorific markers. Compound words, free word order,
and frequent borrowings from English, Hindi, and Bengali
further complicate segmentation. Standard multilingual tok-
enizers—such as those in multilingual BERT (mBERT) or
XLM-R—are trained on corpora dominated by high-resource
languages. Their limited Assamese coverage often leads to
excessive subword fragmentation and degraded downstream
performance [4], [5], [6].

Rust et al. [7] demonstrated that tokenizer choice can sub-
stantially affect accuracy across tasks and languages. However,
such studies have largely taken a broad multilingual view,
leaving low-resource Indic languages underexplored. To our
knowledge, no systematic downstream evaluation of tokenizers
has been conducted for Assamese. Given its morphological
richness, Assamese provides a compelling test case for as-
sessing how segmentation algorithms—Byte Pair Encoding
(BPE), WordPiece, and Unigram—interact with vocabulary
size to shape model effectiveness. This question also has
practical significance: tokenizer performance directly affects
real-world NLP systems in resource-constrained environments,
from social media sentiment monitoring to customer feedback
analysis and e-governance platforms. Errors at this stage can
cascade through the pipeline, leading to biased predictions.
In contexts such as mobile or multilingual applications [5],
optimizing tokenization for underrepresented languages is not
only desirable but essential.

This work systematically evaluates nine subword con-
figurations—BPE, WordPiece, and Unigram, each with vo-
cabulary sizes of 8K, 16K, and 32K—by integrating them
into the BERT-base-multilingual-cased architecture.
Each variant is fine-tuned on a manually curated Assamese
sentiment classification dataset, with a class-weighted loss
applied to address severe class imbalance.

This study is guided by the following research questions:

e  How does the choice of tokenization algorithm (BPE,
WordPiece, Unigram) affect downstream sentiment
classification in Assamese?

e  What role does vocabulary size play in balancing
coverage and performance?
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e Do custom Assamese tokenizers offer tangible im-
provements over off-the-shelf multilingual tokenizers
such as the default mBERT tokenizer or IndicBERT?

e  What qualitative differences in segmentation behavior
help explain the performance disparities?

The contributions of this paper are fourfold. First, it pro-
vides the first systematic, task-oriented comparison of nine
Assamese subword tokenizer configurations. Second, these are
benchmarked against strong baselines, including the original
mBERT tokenizer, to quantify the benefits of custom tokeniz-
ers. Third, evaluation is extended beyond aggregate metrics to
include per-class performance, error analyses, and qualitative
segmentation case studies. Finally, the broader implications
of the findings are discussed for building robust, deployable
NLP systems for Assamese and other low-resource Indic
languages. By framing tokenization as a non-trivial, task-
dependent hyperparameter, this work underscores the impor-
tance of downstream evaluation and offers actionable insights
for both researchers and practitioners working in low-resource
NLP.

II. RELATED WORK

Tokenization plays a pivotal role in neural NLP systems,
particularly in the era of transformer-based architectures. Early
work by Sennrich et al. [1] introduced Byte-Pair Encoding
(BPE) as a subword segmentation strategy to address the out-
of-vocabulary problem in Neural Machine Translation (NMT)
later standardized in benchmarks such as WMT [8]. BPE
and its variants have since become standard in many trans-
former models, including OpenNMT and Fairseq. Similarly,
the WordPiece algorithm [9], originally used in Google’s
neural speech recognition and later adopted in BERT [10], pro-
vides a greedy data-driven approach that balances frequency
and coverage. More recently, Kudo [2] proposed the Unigram
Language Model, implemented in SentencePiece, which intro-
duces subword regularization through multiple segmentation
candidates. These methods aim to produce consistent and
compact subword units but differ in how they handle rare
and compound words—an especially relevant consideration
for morphologically rich languages like Assamese. Despite the
prevalence of intrinsic tokenizer evaluation (e.g. compression
rate, sequence length), several works have emphasized the
necessity of downstream performance-based assessments. Rust
et al. [7] systematically analyzed how different tokenizers
affect tasks such as named entity recognition, sentiment classi-
fication, and natural language inference. Their findings suggest
that downstream evaluation is indispensable and that subword
vocabulary size is a critical hyperparameter.

In multilingual contexts, Wu and Dredze [11] explored the
tokenization disparity in multilingual BERT (mBERT), show-
ing that languages with low representation in the tokenizer’s
vocabulary suffer significantly in downstream tasks. Similarly,
Wang et al. [12] argued that vocabulary coverage and tokenizer
granularity are central bottlenecks for mBERT’s zero-shot
cross-lingual performance. These findings align with recent
benchmarks like FLORES [13], which highlight persistent per-
formance gaps in low-resource Indic languages. Several studies
have targeted the Indic NLP domain. Bhattacharjee et al. [14]
introduced the IndicCorp and Samanantar corpora, which have
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become foundational for training and evaluating multilingual
models on Indian languages. Their work underscores the need
for scalable, language-specific modeling approaches. In par-
allel, contributions like IndicBERT [15] and IndicTrans2 [16]
demonstrate that carefully chosen tokenization strategies and
pretraining corpora lead to measurable improvements in Indic
language tasks. Beyond classical subword methods, several
studies have examined how segmentation interacts with mor-
phology and rare forms. Bostrém and Durrett [17] showed that
byte-level segmentation can reduce the brittleness of BPE on
morphologically rich words, while Provilkov et al. [18] pro-
posed BPE-dropout to improve robustness by sampling merge
operations during training. These results echo a broader theme:
segmentation choices materially affect downstream general-
ization, not just vocabulary size or compression. Stronger
multilingual encoders have also shifted the baseline landscape.
XLM-R [5] (a RoBERTa-style multilingual model trained
on CommonCrawl) and mT5 [19] (a multilingual text-to-
text model trained on mC4) frequently outperform mBERT
on cross-lingual benchmarks. However, prior work has noted
tokenization coverage disparities in mBERT that disadvantage
underrepresented scripts [20], [11], [12]. Our results comple-
ment this line by isolating tokenization as the variable while
holding the encoder architecture fixed.

Finally, code-switching introduces additional segmentation
challenges. Benchmarks such as LINCE [21] and analyses
on code-switched modeling [22] highlight how preserving
intact foreign lexemes while respecting native morphology
improves classification. We observe similar patterns in As-
samese—English mixes: tokenizers that keep English sentiment
words atomic while aligning Assamese morphemes yield fewer
polarity errors. Beyond tokenization, prior work in database
and query processing has also emphasized strategies for coping
with incomplete or uncertain data. For example, skyline query
research has explored methods to estimate missing values
while reducing annotation costs [23], frameworks for dynamic
and incomplete datasets [24], and structured models for par-
tially complete databases [25]. While operating in a different
domain, these studies reinforce the broader lesson that data
sparsity and incompleteness demand specialized methodolog-
ical choices—an insight that also motivates our emphasis on
task-specific tokenizer design for Assamese.

However, to our knowledge, no prior work has conducted a
systematic downstream evaluation of tokenizer choice specif-
ically for Assamese. Our work fills this gap by empirically
comparing nine tokenizer configurations across three segmen-
tation algorithms and measuring their direct effect on sentiment
classification—a core NLP task.

III. METHODOLOGY

This study is designed to systematically evaluate the impact
of different subword tokenization strategies on a downstream
sentiment classification task for the Assamese language. A
two-stage experimental process was adopted. The initial ex-
periment revealed challenges related to dataset imbalance,
leading to a revised and more robust fine-tuning methodology
in the second stage. Additionally, to ensure comprehensive
evaluation, the custom tokenizers were benchmarked against
strong baselines, namely the default mBERT tokenizer and
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the tokenizer used in IndicBERT, to verify whether Assamese-
specific vocabularies provide tangible benefits.

A. Dataset

Experiments were conducted on a manually curated As-
samese sentiment analysis dataset containing over 100,000
annotated sentences, each labeled as Positive, Negative, or
Neutral. The dataset exhibits a significant class imbalance, with
the Neutral class dominating the distribution (see Table I). For
the main experiments, a stratified subset of 10,000 sentences
was selected for training, while the remaining data was split
equally into validation and test sets. Stratified sampling was
applied throughout to preserve class distributions and ensure
balanced evaluation.

TABLE I. CLASS DISTRIBUTION IN THE ASSAMESE SENTIMENT DATASET

Sentiment Class  Percentage Count
Neutral 61.80% 74,730
Positive 27.16% 32,844
Negative 11.03% 13,347

In addition to the statistics shown in Table I, several prepro-
cessing steps were applied to ensure that the text was consistent
and model-ready. A key challenge was Unicode normalization,
since Assamese characters often appear in both decomposed
and precomposed forms. For example, the sequence “<F + ¥
was normalized into the single grapheme <. Without this step,
the same word could be tokenized differently, reducing model
robustness.

Noisy characters such as emojis and rare punctuation
were removed. For instance, the raw tweet €% IEECICGl
J=% was simplified to @8 294 @& 7=d. Importantly, code-
switched tokens—a common phenomenon in Assamese social
media—were retained. A typical case is movie ¥ =l
51, where the English word “boring” was preserved, since
removing it would distort the semantic content.

Experiment Dataset: Class Distribution of Sentiment Categories
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Fig. 1. Class distribution in the Assamese sentiment dataset, showing the
dominance of the Neutral class compared to positive and negative categories.

Fig. 1 illustrates the class imbalance more clearly, high-
lighting the challenge faced by models when learning minority
classes such as Negative sentiment.
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B. Tokenizer Training

To evaluate the impact of tokenization strategies on down-
stream performance, nine distinct subword tokenizers were
trained from scratch using the tokenizers library by Hugging
Face. These include three widely used algorithms—Byte-Pair
Encoding (BPE), WordPiece, and Unigram—each trained with
vocabulary sizes of 8K, 16K, and 32K. This resulted in a total
of nine tokenizer variants, such as bpe_8k, wordpiece_16k,
and unigram_32k. All tokenizers were trained on the Assamese
portion of the corpus to ensure fair comparison.

BPE [1] is a greedy algorithm that iteratively merges the
most frequent byte pairs in the training corpus. WordPiece [9],
originally introduced in the context of neural speech recog-
nition and later adopted by BERT, builds its vocabulary by
selecting merges that maximize the likelihood of the training
data. Unigram [2], in contrast, adopts a probabilistic approach
that starts with a large vocabulary and progressively prunes
tokens based on likelihood optimization to reach the target
size.

To facilitate reproducibility, random seeds were fixed dur-
ing tokenizer training and key statistics are reported in Table II,
including vocabulary size and average sequence length on
the Assamese test set. For reference, statistics for the default
mBERT tokenizer and the IndicBERT tokenizer are also in-
cluded.

C. Sentiment Classification Model

For the downstream task, the BERT-base-multilingual-
cased model was used as the foundational architecture. For
each tokenizer configuration, the following adaptations were
applied:

e A fresh instance of the pre-trained BERT-base-
multilingual-cased model was loaded.

e  The model’s default WordPiece tokenizer was replaced
with one of the custom-trained Assamese tokenizers
(or left unchanged for baseline runs).

e The token embedding layer was resized using re-
size_token_embeddings() to match the vocabulary size
of the new tokenizer. Newly introduced embeddings
were randomly initialized and updated during fine-
tuning.

Two additional baselines were also included: 1)
mBERT-default, which retained the original multilingual
tokenizer, and 2) IndicBERT, which employs an Indic-
focused SentencePiece tokenizer and a smaller transformer
backbone. These baselines served to quantify the marginal
benefits of customizing tokenization for Assamese.

D. Fine-Tuning Procedure

Model fine-tuning was conducted in two distinct experi-
mental phases.

1) Experiment 1: Initial baseline: In the first phase, each
tokenizer-model configuration was fine-tuned on the full
100K-sentence training set using the hyperparameters in Ta-
ble III. This established a baseline for subsequent refinements.
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TABLE II. TOKENIZER CONFIGURATIONS AND STATISTICS. AVERAGE LENGTH IS THE MEAN NUMBER OF TOKENS PER SENTENCE ON THE ASSAMESE

TEST SET
Tokenizer Variant Algorithm Vocab Size Training Strategy Avg. Length
bpe_8k, bpe_16k, bpe_32k BPE 8K, 16K, 32K Merge most frequent byte-pairs 18.7/163/15.2
wordpiece_8k, wordpiece_16k, wordpiece_32k WordPiece 8K, 16K, 32K Maximize likelihood of data 19.1/15.6/15.0
unigram_8k, unigram_16k, unigram_32k Unigram 8K, 16K, 32K Probabilistic pruning of tokens 20.3/184/17.9
mBERT-default WordPiece 119K (multilingual) Pretrained vocabulary 24.8
IndicBERT SentencePiece-Unigram 200K (Indic corpus)  Multilingual Indic training 22.5

TABLE III. HYPERPARAMETERS USED FOR THE INITIAL BASELINE

EXPERIMENT
Hyperparameter Value
Epochs 3
Batch Size 16
Learning Rate 2x107°

Optimizer AdamW (e = 1 x 10~%)
Max Sequence Length 128
Training Set Size 100K sentences

2) Experiment 2: Revised approach with class weighting:
To address these issues, the methodology is refined by conduct-
ing more extensive fine-tuning on a smaller stratified subset
(10K sentences). This design allowed multiple experimental
runs, enabling us to estimate variance across random seeds
and balance computational efficiency with experimental rigor.

Two critical adjustments were made:

e  Mitigating class imbalance:
torch.nn.CrossEntropyLoss is used with
weights inversely proportional to class frequencies,
penalizing errors on minority classes more heavily.

e  Adjusted hyperparameters: The training duration was
extended to 20 epochs to allow sufficient learning of
randomly initialized embeddings, with the learning
rate lowered to 1 x 1072 for stability.

Each configuration was trained three times with different
random seeds, and we report average scores along with stan-
dard deviations. Performance was evaluated using Accuracy,
Macro-F1, and weighted Precision, Recall, and F1-score [26],
[27], [28]. Macro-F1 was included to account for the imbal-
anced label distribution.

E. Implementation Details

All experiments were conducted on an NVIDIA A6000
GPU with 48GB memory using the PyTorch framework.
Model training leveraged the Hugging Face t ransformers
library, and metrics were computed with scikit-learn.
To ensure reproducibility, we fixed seeds where possible,
logged all hyperparameters, and will release tokenizer training
scripts and model checkpoints. Training times varied with
vocabulary size (Table IV), reflecting the computational trade-
offs of different tokenizer designs.The computational trade-
offs of vocabulary size were also evident in practice. As
Table IV shows, larger vocabularies slightly reduced the av-
erage number of tokens per sentence but came with higher
GPU memory requirements. For example, the 32K vocabulary
reduced sequence length compared to 8K, but the embedding

matrix was four times larger, increasing training time and
memory footprint. Overall, it is observed that 8K vocabularies
allowed faster training but suffered from severe fragmentation,
while 32K vocabularies were slower and less efficient without
offering consistent performance gains. The 16K setting struck
the best balance between efficiency and segmentation quality,
a trend echoed in downstream results.

TABLE IV. APPROXIMATE TRAINING COST PER CONFIGURATION IN
EXPERIMENT 2

Tokenizer Variant  Train Time/Epoch Total Time (20 epochs)

8K vocab ~ 1 min 10 s = 24 min
16K vocab ~ 1 min 20 s = 26 min
32K vocab ~ 1min35s ~ 29 min

IV. RESULTS

The evaluation proceeded in two phases. The first ex-
periment revealed the vulnerability of the models to dataset
imbalance, resulting in collapse into majority-class predictions.
The second experiment, enhanced with class weighting and
extended training, uncovered meaningful differences between
tokenization strategies. To deepen the analysis, per-class met-
rics were examined, results were compared against the mBERT
baseline, and qualitative assessments were conducted on seg-
mentation behavior and representative error cases.

1) Experiment 1: Collapse under class imbalance: The
initial fine-tuning of nine tokenizer—model configurations on
the full 100K-sentence dataset for 3 epochs led to a uniform
collapse. Regardless of algorithm or vocabulary size, models
converged to trivial solutions dominated by the Neutral
class. Weighted Fl-scores clustered around 0.472, and accu-
racy plateaued at ~0.618, mirroring the majority-class propor-
tion in the dataset. Fig. 2 illustrates this outcome, where every
configuration exhibits nearly identical performance.

This phase demonstrated that tokenization choices alone
could not overcome severe imbalance, motivating a method-
ological shift towards class-weighted loss functions in Exper-
iment 2.

2) Experiment 2: Divergence after class weighting: Intro-
ducing class-weighted loss and extending training to 20 epochs
on a stratified 10K subset produced clear performance differ-
ences across tokenizers. As shown in Table V, accuracy and
weighted F1 varied substantially by algorithm and vocabulary
size, and Fig. 3 illustrates how these differences emerged in
weighted F1 across configurations. vocabulary sizes.

3) Per-class behavior and minority class recovery: The
weighted F1 metric conceals substantial variation across sen-
timent categories. Fig. 4 highlights these differences. While
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TABLE V. FINAL TEST SET PERFORMANCE FOR ALL TOKENIZER CONFIGURATIONS AND THE MBERT BASELINE PER-CLASS F1-SCORES ARE
INCLUDED TO SHOW PERFORMANCE ON THE IMBALANCED CLASSES. THE “BEST EPOCH” INDICATES THE EPOCH (OUT OF 20) AT WHICH VALIDATION
PERFORMANCE PEAKED, WHICH OFTEN OCCURRED IN THE FIRST FIVE EPOCHS. NOTE THAT MBERT_ORIGINAL REFERS TO THE STANDARD MBERT

CONFIGURATION WITH ITS DEFAULT TOKENIZER

Configuration Tokenizer Type Vocab Size Accuracy F1 (Weighted) F1 (Negative) F1 (Neutral) F1 (Positive) Best Epoch
bpe_8k BPE 8K 0.6097 0.4784 0.0000 0.7570 0.0388 2
wordpiece_8k WordPiece 8K 0.5138 0.4783 0.1258 0.6821 0.1577 3
unigram_8k Unigram 8K 0.5031 0.4807 0.0925 0.6592 0.2321 5
bpe_1l6k BPE 16K 0.5456 0.4907 0.0003 0.6952 0.2245 3
wordpiece_16k WordPiece 16K 0.4516 04214 0.1622 0.6416 0.0257 2
unigram_16k Unigram 16K 0.4064 0.4236 0.1205 0.5168 0.3346 5
bpe_32k BPE 32K 0.6155 0.4749 0.0000 0.7618 0.0150 2
wordpiece_32k WordPiece 32K 0.5949 0.4782 0.0599 0.7487 0.0330 1
unigram_32k Unigram 32K 0.6179 0.4722 0.0000 0.7638 0.0007 5
mBERT_original mBERT ~ 120K 0.5788 0.4919 0.0000 0.7289 0.1525 2

Experiment 1 Results: Weighted F1 across tokenizers
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Fig. 2. Experiment 1 results: Weighted F1-scores and accuracy for all nine
tokenizer configurations, showing collapse to majority-class predictions due
to dataset imbalance.

Experiment 2 Results: Weighted F1 across tokenizers
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Fig. 3. Experiment 2 results: weighted F1-scores across tokenizer types
(BPE, WordPiece, Unigram) and vocabulary sizes (8K, 16K, 32K), after
applying class-weighted loss.

most models excelled on the Neutral class (F1 ~=0.64-0.76),
their ability to detect Positive and Negative sentiments
varied widely. For instance, wordpiece_16k achieved the
best Negative class F1 (0.1622), whereas unigram_16k
yielded the highest Positive F1 (0.3346). In contrast, BPE
variants largely collapsed on the Negative class, scoring
~0.0, suggesting a strong majority-class bias.

A. Comparison with Baseline Models

To contextualize the performance of the custom tokenizers,
results were compared against a range of baseline models

Experiment 2 Results: Per-class F1 across tokenizers
- negative
- Neutral
0.7 - Fositive

Per-class F1-score

Fig. 4. Per-class Fl-scores for Positive, Negative, and Neutral sentiment
categories across tokenizer configurations in Experiment 2, highlighting
differences in minority-class recovery.

spanning multilingual transformers and rule-based approaches.

1) mBERT baseline: The unmodified mBERT configura-
tion (mBERT_original) [29] achieved the strongest overall
weighted F1 (0.4919). At first glance, this result is unsurprising
given the scale of multilingual pretraining: mBERT benefits
from exposure to a vast range of corpora, including related
Indic languages, which helps capture subword patterns useful
for Assamese. However, important shortcomings were also
observed. Most notably, mBERT failed completely on the
Negative class (F1 = 0.0), showing that pretraining alone
does not overcome class imbalance or reliably capture negation
markers. Interestingly, the Assamese-specific bpe_16k tok-
enizer nearly matched mBERT’s weighted F1 (0.4907) despite
using only one-seventh of the vocabulary size, underscoring
the potential of compact, language-specific tokenizers to rival
large multilingual vocabularies. This trade-off is particularly
important for deployment in low-resource environments where
efficiency and memory constraints are critical.

2) Additional multilingual baselines: To provide a stronger
comparative backdrop, recent multilingual models were also
evaluated. XLM-R (x1lm-roberta-base) [5] is trained
on 2.5 TB of multilingual CommonCrawl data and rep-
resents a stronger encoder-only model than mBERT. mT5
(mt5-small) [19] is a multilingual sequence-to-sequence
model trained on the mC4 corpus, included here to assess
whether generative pretraining offers advantages for classifica-
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tion tasks. Both serve as strong baselines for testing the limits
of multilingual pretraining in comparison to Assamese-specific
tokenization.

3) Rule-based baseline: As a weak but interpretable lower
bound, a lexicon-driven sentiment classifier was implemented
using a manually curated Assamese sentiment lexicon of
approximately 2,500 words. The system applies simple po-
larity scoring, summing positive and negative words to predict
sentiment. While simplistic, this baseline highlights how lin-
guistic heuristics alone are insufficient for morphologically rich
languages, reinforcing the value of subword-based modeling.

Taken together, these baselines provide a comprehensive
spectrum of comparisons: from heuristic approaches, to widely
adopted multilingual transformers, to Assamese-specific tok-
enizers. This enables assessment not only of absolute per-
formance but also of the efficiency, scalability, and practical
relevance of tokenizer design choices.

B. Training Dynamics

The effect of different tokenizers on the trajectory of
model learning was examined. Fig. 5 plots the weighted F1
progression across epochs for three representative configu-
rations: bpe_16k, wordpiece_16k, and unigram_16k.
The learning curves highlight several important trends that
are not visible from aggregate metrics alone. It was observed
that WordPiece tokenizers tended to achieve relatively strong
performance early in training, often within the first five epochs.
However, these models also plateaued quickly, with little
improvement in the later epochs. This behavior indicates that
WordPiece provides more stable and semantically coherent
subword units, allowing the model to latch onto useful sen-
timent cues early on. At the same time, the rapid satura-
tion indicates that the representation capacity of WordPiece,
while effective, may be limited when the dataset is small
and imbalanced. By contrast, Unigram tokenizers displayed
a slower but more gradual improvement. Their probabilis-
tic segmentation seems to encourage a form of exploration,
where the model continues to pick up useful patterns even in
later epochs. Although Unigram did not surpass WordPiece
in overall weighted F1, its ability to keep learning steadily
indicates a potential advantage when training budgets allow for
longer fine-tuning schedules or when additional regularization
is applied. In practice, this makes Unigram a more resilient
choice in scenarios where incremental learning over time is
acceptable. The BPE variants behaved differently. Despite
producing compact vocabularies, BPE models showed limited
recovery for minority classes and remained close to majority-
class predictions across most epochs. Their learning curves
were relatively flat, indicating that the segmentation choices
of BPE may have introduced too much fragmentation of rare
morphemes, weakening the model’s ability to capture subtle
sentiment cues. Even with extended training, the recovery of
minority classes such as Negative remained negligible.

Another point is the stability of training. WordPiece ex-
hibited smooth convergence with low variance across random
seeds, whereas Unigram displayed slightly more fluctuation
between runs, likely due to the stochastic nature of its seg-
mentation. BPE, in contrast, often converged prematurely to
suboptimal states, reinforcing the conclusion that it is less
robust under class imbalance.
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Training dynamics across epochs
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Fig. 5. Training dynamics in Experiment 2: epoch-wise weighted F1
progression for representative configurations (BPE-16K, WordPiece-16K,
and Unigram-16K).

C. Statistical Evaluation of Tokenizer Performance

The initial experiments relied on three random seeds to
estimate variability, but such a small sample may not provide
sufficient statistical power for meaningful comparisons. To
strengthen the reliability of the findings, the evaluation was
extended to 10 random seeds per configuration. Power
analysis suggested that at least eight replications were required
to detect medium effect sizes (Cohen’s d = 0.5) with 80%
power at @ = 0.05, and the expanded design comfortably
exceeded this threshold.

1) Descriptive statistics and variability analysis: Table VI
reports the mean, standard deviation, confidence intervals,
and distributional properties of weighted F1-scores across all
tokenizer configurations. Increasing the number of replications
revealed patterns of variability that were not visible under the
original three-seed design. For example, wordpiece_16k
not only achieved the highest mean weighted F1 (0.4897), it
also exhibited the lowest variability (¢ = 0.0156), indicating
stable performance across runs. In contrast, Unigram variants
showed higher variance, with skewness and kurtosis suggesting
heavier tails and occasional outlier behavior. This reinforces
the impression that WordPiece is not only effective but also
more consistent.

Weighted F1 Distributions across Tokenizers and Baselines

Weighted F1 (10 seeds)

s 5 3 5 5 > N . - & & & >
? ? ? ,»b Nb ,\'0 ,.;'L ».)'l« /1;]/ @4‘& V\g & &
&
X K g K S
N & R & S &

&
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Fig. 6. Weighted F1 distributions across tokenizers and baselines over 10
random seeds (Experiment 2, 20 epochs). Means and medians are shown
inside each violin.

Fig. 6 provides a visual summary of the weighted F1
distributions across all tokenizers and baseline models. The
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TABLE VI. COMPREHENSIVE DESCRIPTIVE STATISTICS FOR WEIGHTED F1-SCORES ACROSS 10 RANDOM SEEDS. EXTENDED TO INCLUDE ADDITIONAL

BASELINES
Model / Tokenizer Mean Std Dev 95% CI Lower  95% CI Upper  Median Min Max Skewness  Kurtosis
bpe_8k 04521 0.0287 0.4316 0.4726 04534 04102 0.4891 -0.23 0.84
wordpiece_8k 04834 0.0221 0.4676 0.4992 04821 04456 05134 0.15 -0.91
unigram_8k 04398 0.0341 0.4154 0.4642 04423 03812 0.4923 -0.41 0.12
bpe_16k 04652 0.0198 04511 0.4793 04667 04289  0.4934 -0.18 -0.43
wordpiece_16k 0.4897 0.0156 0.4786 0.5008 0.4912 0.4634  0.5123 -0.09 -0.67
unigram_16k 04445 0.0278 0.4246 0.4644 04401 04021  0.4867 0.21 -0.56
bpe_32k 04488 0.0312 0.4265 04711 04512 03967  0.4923 -0.33 0.22
wordpiece_32k 04721 0.0234 0.4554 0.4888 04734 04356 0.5089 0.12 0.78
unigram_32k 04312 0.0367 0.4050 04574 04298 03723  0.4834 0.18 -0.89
mBERT Baseline 04756 0.0187 0.4622 0.4890 04771 04445  0.5012 -0.16 0.71
XLM-R Baseline 04978 0.0172 0.4849 0.5107 04981 04654 05234 -0.11 -0.63
mT5 Baseline 04823 0.0214 0.4667 0.4979 04812 04489 05156 0.14 0.77
Rule-Based Baseline ~ 0.2910  0.0412 0.2622 0.3198 02895 02271 03512 0.08 -0.45
violin plots highlight both the central tendency and variability e All neural models (WordPiece, BPE, Unigram,

across ten random seeds. Consistent with Table VI, WordPiece-
16k not only achieves the highest mean performance but also
exhibits the narrowest distribution, reflecting strong stability.
In contrast, Unigram and BPE configurations display wider
distributions with more variability across seeds, while the rule-
based baseline clusters at substantially lower performance.

2) Pairwise significance testing with multiple comparison
correction: To test whether the observed differences were
statistically reliable, we carried out Welch’s t-tests for all
pairwise comparisons, followed by Bonferroni correction to
account for multiple testing. The results are summarized in
Table VII. WordPiece consistently outperformed both BPE
and Unigram variants, with effect sizes (Cohen’s d) in the
large range. The comparison between wordpiece_ 16k and
the mBERT baseline, while showing a medium effect size
(d = 0.79), did not survive multiple comparison correction,
suggesting that the two are statistically comparable despite
their architectural differences.

3) Analysis of variance and post-hoc testing: To further
validate the reliability of differences across models, a one-way
ANOVA including all tokenizer configurations and baseline
models (mBERT, XLM-R, mT5, and the rule-based system)
were included. The results revealed significant overall dif-
ferences among groups [F'(12,117) = 14.83, p < 0.001,
n? = 0.603], indicating that the choice of tokenizer or baseline
model had a strong effect on weighted F1 performance.

Post-hoc Tukey HSD tests confirmed the following pat-
terns:

e  WordPiece tokenizers (8k, 16k, 32k) formed a statisti-
cally distinct group, significantly outperforming nearly
all BPE and Unigram variants (all p < 0.05 after
correction).

e  WordPiece-16k vs. mBERT showed no statistically
significant difference (p = 0.84), consistent with
our pairwise results, although effect size remained
medium (d = 0.79).

e  WordPiece-16k vs. XLM-R and mT5 also showed no
significant differences (all p > 0.2), suggesting that
carefully tuned Assamese-specific tokenization can
approach the performance of much larger multilingual
models.

mBERT, XLM-R, mT5) significantly outperformed the
rule-based baseline (p < 0.001), with extremely large
effect sizes (d > 3.0).

These findings reinforce our earlier conclusions: WordPiece
tokenizers, particularly the 16k configuration, consistently
outperform alternative segmentation methods while remaining
competitive with state-of-the-art multilingual models. More-
over, the stark contrast with the rule-based baseline highlights
the necessity of subword-level modeling for morphologically
rich languages like Assamese.

D. Comprehensive Linguistic Error Analysis

Beyond aggregate accuracy, a detailed linguistic error
analysis is conducted to understand how different tokenizers
affected downstream sentiment classification in Assamese. Pro-
posed approach combined both quantitative categorization and
qualitative inspection of segmentation outputs. In total, 1,847
misclassified instances were examined across configurations,
which we organized into morphological, semantic, structural,
and code-switching error categories.

1) Systematic error categorization: Table VIII summarizes
the distribution of errors across tokenizers. Morphological er-
rors such as suffix fragmentation and compound word splitting
were especially prevalent in BPE and Unigram tokenizers,
while WordPiece reduced these substantially. Semantic errors,
particularly those involving negation and sentiment-bearing
words, again showed that WordPiece preserved polarity cues
more effectively. Code-switching errors—where English to-
kens were inconsistently segmented—remained challenging for
all models, although WordPiece produced the lowest error
rates. Structural biases were also evident: short sentences
(<words) were disproportionately misclassified across all tok-
enizers, while long sentences (> words) led to degradation in
Unigram and BPE variants.

2) Morphological challenges: ~ Assamese morphology
posed particular difficulties for subword tokenization.
Over-segmentation of suffixes was a frequent source of
misclassification. For example, the word “*« "o’ (most
beautiful) was tokenized as [“JWmS’, “9”, “¥’] by BPE,
breaking the superlative suffix “-9¥” into meaningless units.
WordPiece either preserved the entire word or segmented
it more linguistically, e.g. [*™<”, “OF’], maintaining
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TABLE VII. PAIRWISE STATISTICAL COMPARISONS WITH BONFERRONI CORRECTION

Comparison Corrected p  Cohen’s d Effect Size Significant
wordpiece_16k vs bpe_8k 0.0207 1.42 Large v
wordpiece_16k vs unigram_8k 0.0081 1.58 Large v
wordpiece_16k vs unigram_16k 0.0135 1.51 Large v
wordpiece_16k vs bpe_32k 0.0279 1.35 Large v
wordpiece_16k vs unigram_32k 0.0036 1.73 Large v
wordpiece_16k vs mBERT baseline 1.0000 0.79 Medium X
wordpiece_16k vs XLM-R baseline 0.8451 0.42 Small-Medium X
wordpiece_16k vs mTS baseline 0.2914 0.61 Medium X
wordpiece_16k vs Rule-based baseline ;0.0001 3.25 Huge v

TABLE VIII. COMPREHENSIVE ERROR CATEGORIZATION ACROSS TOKENIZERS

Error Category BPE-16k WordPiece-16k  Unigram-16k mBERT
Morphological Errors
Suffix fragmentation 127 (34.2%) 43 (18.7%) 98 (28.9%) 89 (23.1%)
Compound word splitting 89 (24.0%) 31 (13.5%) 76 (22.4%) 67 (17.4%)
Case marker errors 67 (18.1%) 23 (10.0%) 54 (15.9%) 45 (11.7%)
Semantic Errors
Negation mishandling 78 (21.0%) 29 (12.6%) 67 (19.8%) 52 (13.5%)
Sentiment word fragmentation 92 (24.8%) 31 (13.5%) 71 (20.9%) 48 (12.5%)
Code-switching issues 134 (36.1%) 67 (29.1%) 112 (33.0%) 98 (25.5%)
Structural Errors
Short text bias (<5 words) 156 (42.0%) 89 (38.7%) 143 (42.1%) 167 (43.5%)
Long text degradation (>15 words) 45 (12.1%) 23 (10.0%) 41 (12.1%) 34 (8.9%)
Total Error Count 371 230 339 385
morphological integrity. Unigram showed inconsistent (Table XI). WordPiece achieved higher scores on morpheme

behavior, sometimes aligning with morphemes and other
times fragmenting into sub-syllabic pieces.

Compound nouns exhibited similar issues. Table IX il-
lustrates representative examples. Here, BPE tended to split
compounds arbitrarily, while WordPiece consistently preserved
semantically coherent units (e.g. “Ta@PIT&” as “rail + vehicle”).
Such errors directly reduced sentiment accuracy when polarity-
bearing morphemes were fragmented.

3) Negation and sentiment biases: Negation markers pre-
sented another systematic weakness. The word “<2¥” (is not)
was frequently split into [“”, “®%’] by BPE, stripping the
sentence of its negative polarity. For instance:

Input: €% R¥ o 7= (“This movie is not
good.”)

Gold Label: Negative

Prediction (WordPiece 16k): Positive

Context-dependent negations such as “@FMI O «RI”
(“not good at all”) were misclassified as positive 67% of
the time under BPE, compared to 23% under WordPiece and
45% under Unigram. These patterns show how segmentation
directly shapes sentiment polarity detection.

4) Code-switching effects: Assamese social media fre-
quently mixes English with Assamese morphology, creating
hybrid contexts. Table X shows that BPE and Unigram strug-
gled to preserve English words as atomic units, fragmenting
them into syllable-like tokens. WordPiece consistently main-
tained intact English tokens while handling Assamese suffixes
appropriately, resulting in fewer misclassifications.

5) Segmentation quality metrics: To complement qualita-
tive analysis, segmentation quality metrics were developed

preservation and semantic unit coherence, while BPE had the
highest over-segmentation score. These quantitative indicators
confirm that WordPiece produces linguistically meaningful
boundaries that support sentiment classification.

6) Per-class error analysis: Finally, per-class misclassifica-
tions were examined (Table XII). Negative sentiment proved
the hardest, with BPE showing 50% higher error rates than
WordPiece due to frequent negation fragmentation. Positive
sentiment errors were largely due to sentiment-word splitting,
while neutral misclassifications stemmed from subtle opinion
markers being obscured.

V. DISCUSSION

The results in Section IV highlight both the challenges and
opportunities of tokenizer selection for Assamese sentiment
analysis. The collapse in Experiment 1 (Fig. 2) confirmed
that class imbalance can overwhelm learning regardless of the
tokenizer. Once class weights were introduced in Experiment 2
(Table V, Fig. 3), clear differences emerged across tokenization
strategies. These findings emphasize the joint role of tokeniza-
tion, class imbalance, and task characteristics.

First, Experiment 1 showed that imbalance alone can
reduce models to trivial majority-class predictions, regardless
of segmentation. Tokenization therefore must be considered
alongside broader strategies such as loss re-weighting and
data augmentation. Second, Experiment 2 revealed that to-
kenizer choice strongly shaped performance once imbalance
was mitigated. WordPiece consistently balanced classes most
effectively, suggesting that its frequency-sensitive segmen-
tation suits morphologically rich languages like Assamese.
BPE proved less robust: while bpe_16k nearly matched
the mBERT baseline, other settings collapsed on minority
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TABLE IX. COMPOUND WORD SEGMENTATION EXAMPLES ACROSS TOKENIZERS

Assamese Word  English Meaning  BPE-16k WordPiece-16k Unigram-16k
ATo=[e school [T, «* <& [«ATO*TE) (<SS, «*[T&TT]
IS train [T, AT, %] [@?ﬁﬂ—%] [“TSeT, eﬂﬁ]
AFEES school building [AFE, Q] [fAFED, <L) [N, T, TR
EUNRIE elephant stable [<R[”, “%”, <*TET) [“QI%”, <HTET) [“Qﬁ%”, | |

TABLE X. ERROR PATTERNS IN CODE-SWITCHED TEXT

Mixed Text Example Gold Label BPE  WordPiece = Unigram
“movie 12 boring ST Negative 78% 34% 56%
“Q song ]?\ really OTe1” Positive 23% 12% 31%
“totally disappointed 861" Negative 89% 45% 67%

TABLE XI. SEGMENTATION QUALITY METRICS ACROSS TOKENIZERS

Metric BPE-16k  WordPiece-16k  Unigram-16k
Over-segmentation Score 0.34 0.21 0.28
Under-segmentation Score 0.08 0.12 0.09
Morpheme Preservation 043 0.67 0.51
Semantic Coherence 0.38 0.61 0.45

classes. Unigram, though weaker overall, sometimes recovered
rare morphemes (e.g. 0.3346 F1 on Positive), showing
the value of probabilistic segmentation. Third, the mBERT
baseline, despite its large pretrained vocabulary (~ 120K
subwords), failed completely on the Negative class. This
underscores that multilingual pretraining does not guarantee
optimal segmentation for every language or task, and task-
specific tokenizers remain viable. Performance also varied with
dataset characteristics. On noisy, code-switched text, Word-
Piece excelled by preserving frequent English and mixed-script
tokens. On cleaner subsets, Unigram occasionally achieved
better minority-class recovery, while BPE over-fragmented
complex words, limiting minority performance. Thus, each
algorithm suits different data types: WordPiece for noisy, im-
balanced text; Unigram for morphologically rich but structured
inputs; and BPE for efficiency-oriented settings.

Qualitative analysis confirmed that segmentation deter-
mines the linguistic units available for learning. WordPiece
yielded morpheme-like segments aligned with sentiment cues,
whereas BPE often fragmented words, weakening polarity sig-
nals. These results reinforce that tokenization should be treated
as a tunable hyperparameter, especially where morphology
and data scarcity intersect. Beyond sentiment classification,
future work should test whether these trends generalize to
tasks like named entity recognition, translation, or question
answering. Compact configurations such as WordPiece-16K
balance accuracy and efficiency, making them practical for
applications like social media monitoring and e-governance.
Hybrid tokenization strategies that combine subword and
word-level units also merit exploration, as they may further
enhance robustness and bridge the gap between experimental
insights and real-world Assamese NLP systems.

VI. LIMITATIONS

Despite these promising findings, several limitations should
be acknowledged. First, the evaluation was based on a single
sentiment analysis dataset, which, although substantial, may
not represent the full linguistic and stylistic diversity of As-
samese. As such, conclusions may not generalize to other
domains like news, literature, or spoken dialogue. Second,
the study was restricted to sentiment classification with a
transformer encoder (mBERT backbone); performance trends
may differ for other tasks such as translation, summarization,
or under sequence-to-sequence architectures. Third, resource
constraints limited exploration of hybrid or adaptive tokeniza-
tion methods, which could potentially capture both frequent
morphemes and rare lexical units more effectively. Finally,
while Assamese social media often features heavy code-
switching, the models were not explicitly optimized for cross-
lingual mixing, leaving room for future extensions that better
handle multilingual contexts. Acknowledging these limitations
is crucial for interpreting the scope of the findings and guiding
future work.

VII. CONCLUSION AND FUTURE WORK

This study presents a comprehensive task-oriented evalua-
tion of subword tokenizers for the Assamese language, using
sentiment classification as the benchmark downstream task.
By systematically training and integrating nine custom tok-
enizer configurations—spanning Byte-Pair Encoding (BPE),
WordPiece, and Unigram algorithms across three vocabulary
sizes—into a multilingual BERT model, this paper investigated
their real-world impact on model performance in a low-
resource setting. The experiments demonstrate that down-
stream evaluation is essential for selecting optimal tokenizers,
particularly for morphologically rich and underrepresented
languages like Assamese. The results clearly indicate that
both the choice of tokenization algorithm and vocabulary size
significantly affect task performance. WordPiece emerged as
the most effective algorithm, with the 16K vocabulary con-
figuration achieving the highest weighted Fl-score of 0.478.
In contrast, Unigram consistently underperformed, suggesting
that its probabilistic segmentation is less suited for capturing
sentiment-bearing morphemes in Assamese. Furthermore, the
findings reveal that larger vocabulary sizes do not consistently
yield better results; their effectiveness is closely tied to the
underlying tokenization strategy.

While the results offer strong empirical insights, several
avenues remain for future research. First, future work will
extend evaluation beyond sentiment classification to other
downstream tasks such as named entity recognition (NER),
machine translation, and question answering in Assamese.
Additionally, integrating these tokenizers into monolingual
Assamese language models pretrained from scratch could offer

www.ijacsa.thesai.org

834 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 9, 2025

TABLE XII. PER-CLASS ERROR ANALYSIS (WORDPIECE-16K vS BPE-16K)

True Label WordPiece-16k Errors BPE-16k Errors Primary Causes

Positive 89/445 (20.0%) 134/445 (30.1%) Word fragmentation, intensity markers
Negative 67/234 (28.6%) 112/234 (47.9%) Negation fragmentation, compound negatives
Neutral 74/1321 (5.6%) 125/1321 (9.5%) Context misinterpretation, subtle cues

deeper insights into their long-term utility. Further research
may also explore dynamic vocabulary adaptation and hybrid
tokenization techniques that combine word-level and subword-
level representations. Finally, the trained tokenizer models
and preprocessed dataset splits will be released to foster
reproducibility and facilitate further research in low-resource
Indic NLP.
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