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Abstract—To address the challenges faced by distribution 

network monitoring systems—such as significant variations in 

anomaly scale, frequent missed and false detections of small-scale 

faults, and the need for real-time operational control—this paper 

proposes a lightweight multi-scale feature fusion detection 

network combined with a deep reinforcement learning-based 

autonomous control strategy, forming an end-to-end intelligent 

perception and decision-making system for distribution 

networks. To enhance detection accuracy and computational 

efficiency, a lightweight feature fusion network 

(Grid_RepGFPN) is designed, and a novel feature fusion module 

(DBB_GELAN) is proposed, which significantly reduces model 

parameters and computational cost while improving detection 

performance. Additionally, a feature extraction module 

(FTA_C2f) is constructed using partial convolution (PConv) and 

triplet attention mechanisms, combined with the ADown 

downsampling structure to improve the model’s capability to 

capture spatial and electrical measurement details. The 

programmable gradient information (PGI) strategy of YOLOv9 

is further optimized by introducing a context-guided reversible 

architecture and a Grid_PGI method with additional detection 

heads, thereby enhancing deep supervision stability and reducing 

semantic information loss. Based on the detection model, a real-

time operational control strategy is developed using deep 

reinforcement learning, enabling autonomous fault response, 

load adjustment, and network optimization through a state–

action–feedback optimization loop. Experimental results on 

multiple distribution network simulation platforms demonstrate 

that the proposed LMGrid-YOLOv8 model outperforms 

YOLOv8s, with improvements of 4.2%, 3.9%, 5.1%, and 3.0% in 

precision, recall, mAP@0.5, and mAP@0.5:0.95, respectively, 

while reducing parameters by 63.9% and increasing computation 

by only 0.4 GFLOPs, achieving a favorable balance between 

performance and resource consumption. Inference experiments 

on edge computing platforms confirm that the proposed model 

maintains high detection accuracy under real-time constraints, 

demonstrating strong applicability to real-time distribution 

network monitoring. Furthermore, class activation map-based 

visual analysis reveals the model’s superior capabilities in 

detecting small-scale faults and processing high-resolution 

network measurement regions. 
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I. INTRODUCTION 

Low-altitude unmanned aerial To address the challenges 
faced by distribution network monitoring systems—such as 
significant variations in anomaly scale, frequent missed and 

false detections of small-scale faults, and the need for real-
time operational control—this paper proposes a lightweight 
multi-scale feature fusion detection network combined with a 
deep reinforcement learning-based autonomous control 
strategy, forming an end-to-end intelligent perception and 
decision-making system for distribution networks. To enhance 
detection accuracy and computational efficiency, a lightweight 
feature fusion network (Grid_RepGFPN) is designed, and a 
novel feature fusion module (DBB_GELAN) is proposed, 
which significantly reduces model parameters and 
computational cost while improving detection performance. 
Additionally, a feature extraction module (FTA_C2f) is 
constructed using partial convolution (PConv) and triplet 
attention mechanisms, combined with the ADown 
downsampling structure to improve the model’s capability to 
capture spatial and electrical measurement details. The 
programmable gradient information (PGI) strategy of 
YOLOv9 is further optimized by introducing a context-guided 
reversible architecture and a Grid_PGI method with additional 
detection heads, thereby enhancing deep supervision stability 
and reducing semantic information loss. Based on the 
detection model, a real-time operational control strategy is 
developed using deep reinforcement learning, enabling 
autonomous fault response, load adjustment, and network 
optimization through a state–action–feedback optimization 
loop. Experimental results on multiple distribution network 
simulation platforms demonstrate that the proposed LMGrid-
YOLOv8 model outperforms YOLOv8s, with improvements 
of 4.2%, 3.9%, 5.1%, and 3.0% in precision, recall, 
mAP@0.5, and mAP@0.5:0.95, respectively, while reducing 
parameters by 63.9% and increasing computation by only 0.4 
GFLOPs, achieving a favorable balance between performance 
and resource consumption. Inference experiments on edge 
computing platforms confirm that the proposed model 
maintains high detection accuracy under real-time constraints, 
demonstrating strong applicability to real-time distribution 
network monitoring. Furthermore, class activation map-based 
visual analysis reveals the model’s superior capabilities in 
detecting small-scale faults and processing high-resolution 
network measurement regions. (UAVs), characterized by their 
wide field of view, high maneuverability, and minimal 
geographical constraints, have been widely applied in various 
fields such as management, power inspection, remote sensing, 
geospatial surveying, emergency rescue, and agricultural 
monitoring [1–4]. For example, in the “UAVs-road-cloud” 
integrated intelligent transportation architecture, real-time 
detection and recognition of targets based on UAV aerial 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 9, 2025 

64 | P a g e  
www.ijacsa.thesai.org 

imagery provides essential foundational data and decision 
support for flow monitoring, conflict prediction, and collision 
risk warning, making it a key technology for urban intelligent 
connected UAVs safety monitoring platforms [5]. However, 
UAV-based visual target detection in complex road scenarios 
still faces several challenges. On one hand, UAV imagery 
often features small targets, large scenes, diverse scales, and 
occlusions, making accurate detection of specific objects 
difficult. Existing deep neural network-based detection 
algorithms have shown satisfactory performance for medium 
and large-scale targets [6–8], but still fall short in handling 
small targets in UAV scenes due to limitations in data 
preprocessing, backbone feature extraction, and high-level 
feature adaptation, resulting in high rates of missed and false 
detections. On the other hand, the strong real-time 
requirements of urban management demand high deployment 
efficiency and inference speed, while traditional deep learning 
models tend to suffer from slow inference and low 
deployment efficiency. Although lightweight networks such as 
GCL-YOLO [9] and SF-YOLOv5 [10] have been proposed, 
tests on multiple datasets show that their accuracy and 
performance gains are limited compared to baseline models. 

In terms of small object detection, several recent studies 
have made progress. Lei Bangjun et al. [11] proposed an 
improved YOLOv8s algorithm by enhancing the detection 
head and fusing shallow and deep features to boost the 
perception and capture of small targets, constructing novel 
F_C2f_EMA and SM_SPPCSPC modules. Pan Wei et al. [12] 
introduced an improved YOLOv8s model integrating multiple 
attention mechanisms, including receptive field attention 
convolution and CBAM [13], as well as separable 
convolution-based attention for the pyramid pooling layer to 
enhance cross-layer feature interaction. In lightweight visual 
detection, many efforts have also emerged. Wang et al. [14] 
proposed UAV-YOLOv8, incorporating the BiFormer [15] 
attention mechanism into the backbone, designing the FFNB 
lightweight feature module, and introducing new detection 
scales based on this module and PAFPN. Li et al. [16] 
addressed the common problem of missed and false detections 
of small targets in aerial images by improving the Neck with 
Bi-FPN and replacing part of the C2f modules with 
GhostBlockV2 based on GhostConv [17], thereby suppressing 
information loss during long-distance feature propagation and 
significantly reducing parameter count. Li Zixuan et al. [18] 
proposed the F-GFPN fusion module, enhancing feature 
interaction via jump and cross-scale connections based on 
Efficient-RepGFPN [19], effectively improving detection 
performance for small targets like rebar tie points. 

Although these methods have optimized the backbone and 
neck networks for aerial object detection to some extent, they 
still struggle to balance detection performance and resource 
consumption. Feature fusion quality in the neck remains 
inadequate, and information loss during network propagation 
persists. This paper proposes a lightweight multi-scale object 
detection algorithm, LMUAV-YOLOv8, by improving the 
YOLOv8 baseline model and optimizing the programmable 
gradient information (PGI) strategy [20]. First, a lightweight 
and efficient feature fusion network (UAV_RepGFPN) is 
designed, which retains more shallow features through 

optimized fusion paths, generates additional shallow feature 
maps using ghost convolution, and enriches the feature space 
with the DBB_GELAN module in the deep network. Second, 
a new feature extraction module (FTA_C2f) is constructed 
using partial convolution (PConv) [21] and triplet attention 
(TA) [22], combined with the ADown [20] downsampling 
module to enhance the deep network’s spatial feature 
extraction capability. Then, a context-guided reversible 
architecture [23] is introduced and optimized within the PGI 
auxiliary branch, generating an additional P2 detection head 
while removing the P5 head to avoid semantic information 
loss caused by multi-path feature aggregation in traditional 
deep supervision. This improves detection accuracy during 
inference without increasing parameter count or computational 
cost. 

Ablation and comparison experiments on the 
VisDrone2019 test set verify the effectiveness and superiority 
of the proposed algorithm. Moreover, inference results on the 
NVIDIA Jetson Xavier NX embedded platform show that, 
compared to the baseline model, the proposed method 
achieves higher detection accuracy while meeting real-time 
requirements, demonstrating strong applicability in UAV-
based real-time detection scenarios. Finally, class activation 
map-based visualizations are used to analyze the model’s 
decision-making process during inference, providing insights 
into the underlying mechanism of the proposed algorithm. 

II. MULTISCALE YOLOV8 IMPROVED MODEL FOR 

LIGHTWEIGHTING 

The final improved network model is referred to as 
LMUAV-YOLOv8 in this paper, and its overall architecture is 
illustrated in Fig. 1. The improved model reconstructs the 
feature extraction and feature fusion networks and 
incorporates a context-guided auxiliary reversible branch. 

A. Cost of Track Length 

In the YOLO series of object detection models, shallow 
feature maps contain rich high-resolution details, which are 
particularly beneficial for detecting densely distributed small-
scale objects. To address the low detection accuracy of PANet 
and the high latency issues in GFPN-based models, Xu et al. 
proposed Efficient-RepGFPN, which facilitates 
comprehensive information exchange between high-level 
semantic features and low-level spatial detail maps through an 
improved queen-fusion mechanism and an enhanced CSPNet 
[24]. The modified CSPNet incorporates a re-parameterization 
mechanism and the connection design from the Efficient 
Layer Aggregation Network (ELAN) [25]. 

YOLOv8, as a lightweight object detection network, 
emphasizes reducing computational cost and parameter count 
while maintaining high detection accuracy. The design 
philosophy of Efficient-RepGFPN aligns with this goal by 
enabling efficient feature extraction and fusion without 
introducing excessive computational overhead. Ablation 
experiment results demonstrate that incorporating Efficient-
RepGFPN leads to a reduction in both parameter count and 
FLOPs, with an improvement in accuracy, further enhancing 
the neck network's capability for multi-scale feature fusion. 
Compared to PANet, Efficient-RepGFPN also offers greater 
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optimization potential, confirming its effectiveness in multi-
scale fusion within YOLOv8. 

Moreover, YOLOv8 requires strong feature extraction 
capabilities to accurately detect both small and large objects 
across various scales. Efficient-RepGFPN achieves this 
through efficient path enhancement and feature fusion 
mechanisms that extract and integrate multi-scale features 
without increasing model complexity, which is critical for 
improving YOLOv8’s performance in complex scenes. 

Lastly, YOLOv8 is designed with modularity in mind, 
allowing for easy adaptation and expansion according to 
different application requirements. Efficient-RepGFPN is also 
a modular design, allowing selective inclusion or removal of 
sub-modules as needed. This flexibility enables Efficient-
RepGFPN to be adapted to various YOLOv8 versions or 
configurations, offering broader application potential across 
different scenarios. 

However, since Efficient-RepGFPN is a general-purpose 
network aimed at detecting standard object types, it is not 
specifically optimized to exploit the rich information in 
shallow feature maps, which still maintain high resolution and 
may not be well-suited for general object detection tasks. To 
address this limitation, this paper proposes an improved 
feature fusion strategy based on the Efficient-RepGFPN 
architecture, named UAV_RepGFPN (as shown in Fig. 2). 
UAV_RepGFPN integrates Efficient-RepGFPN into the neck 
of the YOLOv8 architecture and applies lightweight multi-
scale enhancements. The proposed network enhances the 
fusion of multi-scale information, thereby improving small 
object detection performance and increasing the efficiency of 
spatial information retention. Additionally, the network 
structure is lightweighted to minimize computational overhead 
while reducing the loss of high-resolution features. The main 
improvements of this architecture are detailed. 

 

Fig. 1. LMUAV-YOLOv8 algorithm structure. 
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Fig. 2. UAV_RepGFPN algorithm structure. 

The original detection head architecture of Efficient-
RepGFPN includes three output layers, each corresponding to 
large, medium, and small objects, with strides of 32, 16, and 8, 
respectively. Assuming an input resolution of 640×640 pixels, 
these output layers generate feature maps of sizes 20×20, 
40×40, and 80×80, respectively. In the 80×80 feature map, 
each pixel corresponds to an 8×8 region in the original image. 
However, this resolution may be insufficient for accurately 
detecting very small objects. A 160×160 feature map would be 
more suitable for such targets. Therefore, based on Efficient-
RepGFPN, this paper adds a new output layer with a 
downsampling rate of 4 (i.e., stride 4) as a small-object 
detection head to enhance the model’s ability to extract 
features from small targets and improve multi-scale feature 
fusion. 

As shown in Fig. 3, an additional 160×160 small-object 
detection layer (P2) is introduced in the Head section of 
Efficient-RepGFPN. The B3 feature map from the backbone, a 
downsampled version of the B2 feature map, and an 
upsampled version of the F4 feature map are combined as the 
input for the F3 layer. After processing, this layer generates 
feature maps rich in small-object information. The output 

from the F3 layer is then upsampled and concatenated with the 
B2 layer’s 160×160 feature map along the channel dimension. 
This enhances the representational capacity of the fused 
160×160 feature map for small objects and increases the 
network’s sensitivity to small targets. Finally, the 
CSP\_Fusion module outputs the P2 detection head 
specifically for small-object detection. Meanwhile, during the 
top-down information flow in PANet, P2 can transmit location 
information to feature layers at other scales, thereby 
improving multi-scale feature fusion and enhancing small-
object detection accuracy. 

In addition, considering the limited presence of large-scale 
objects in aerial imagery, the detection head P5 with a 
downsampling rate of 32 and its corresponding layers in the 
Neck are removed, as indicated in gray in Fig. 3. According to 
the ablation experiments on the proposed feature fusion 
network, removing the P5 detection head results in no change 
in mAP\@0.5, while reducing the model's parameter count 
and computational cost by 13% and 4%, respectively. 
Therefore, eliminating the P5 head helps reduce model 
complexity without compromising performance. Since low-
altitude UAV imagery typically contains densely distributed 
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small objects and relatively few large, easily identifiable 
objects, the removal of the P5 detection layer does not 
negatively impact detection performance and does not conflict 
with the addition of the P2 detection head. 

 

Fig. 3. Improved detection head. 

"Queen-fusion" is a novel inter-feature-layer 
communication strategy that enables cross-scale feature fusion 
through 3×3 convolutions. It not only receives input from the 
previous layer but also aggregates feature inputs from 
neighboring layers in all directions. This design minimizes 
information loss during the feature fusion process. 

In Efficient-RepGFPN, the F5 layer typically receives 
inputs from the B5 feature map processed by a 1×1 
convolution and the B4 feature map after downsampling. 
However, considering that the shallow B3 layer contains more 
spatial and positional information than B4, this paper replaces 
the downsampled B4 with a twice-downsampled B3 in the F5 
layer. This modified B3 input is then concatenated and fused 
with the 1×1 convolved B5 feature map, as indicated by the 
red lines in Fig. 4. This approach not only enhances the 
model’s detection accuracy for small objects but also 
effectively reduces the number of parameters in the model. 

Ghost Convolution (GhostConv), proposed by Han et al. 
[17], is an efficient convolutional operation that decomposes 
the features generated by traditional costly convolutions into 
primary features and redundant features. The redundant 
features, also known as ghost feature maps, are derived from 
the primary features through a series of inexpensive linear 
transformations. This approach significantly reduces both the 
number of parameters and computational overhead while 
preserving the spatial information of the original feature maps. 

As illustrated in Fig. 5, the feature extraction process in 
GhostConv begins by applying a 1×1 convolution to an input 
feature map of size H×W×C, resulting in a primary feature 
map of size H×W×C/2. Next, a 5×5 depthwise separable 
convolution is applied to expand the receptive field and 

generate ghost feature maps of size C/2. Notably, depthwise 
convolution processes each input channel separately with its 
own filter, rather than applying all filters across all channels. 
Finally, the ghost feature maps are concatenated with the 
primary feature map to reconstruct and reuse the original 
features. This process effectively mitigates the loss of spatial 
and positional information, which is crucial for small object 
detection in feature fusion networks. 

 

Fig. 4. Improved feature fusion paths. 

 

Fig. 5. Structure of GhostConv. 

Inspired by this mechanism, and to address the degradation 
of shallow features—beneficial for small object detection—
caused by downsampling in deeper layers, this paper replaces 
the traditional downsampling modules in the F4 and F5 layers 
of the Efficient-RepGFPN with GhostConv. By generating 
more ghost features from shallow features through 
inexpensive linear operations, the model achieves improved 
detection accuracy for small objects. Ablation experiments 
show that after replacing the traditional downsampling 
modules in F4 and F5 with GhostConv, the model exhibits 
enhancements in mAP, parameter efficiency, and 
computational cost. These results indicate that the linear 
operations of GhostConv help the deep network retain shallow 
feature information more effectively, making it a practical 
choice for the current application scenario. 

The Generalized Efficient Layer Aggregation Network 
(GELAN) is a lightweight feature fusion module in YOLOv9 
that combines the gradient path planning module CSPNet with 
ELAN. The GELAN module fuses features from different 
layers, enabling the network to better capture multi-scale 
information of targets. At the same time, it is designed with 
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computational efficiency in mind, ensuring enhanced feature 
fusion capability while reducing computational cost. This 
module offers a favorable balance between accuracy and 
computational overhead. 

The Diverse Branch Block (DBB), proposed by Ding et al. 
[26], aims to improve the performance of CNNs by 
introducing a multi-branch architecture, while ensuring no 
additional inference time through structural re-
parameterization, as illustrated in Fig. 6. The DBB module 
allows the use of different kernel sizes (1×1, K×K, and 
average pooling) within the same convolutional layer. It 
increases feature space richness through multi-branch paths. 
This operation, featuring different receptive fields and 
complexity paths, enriches the feature space and is particularly 
important for feature fusion networks that need to extract and 
aggregate hierarchical information. 

 

Fig. 6. Structure of diverse branch block. 

In this paper, DBB is adopted as the convolutional block 
within the GELAN structure, forming a new multi-branch-
based efficient layer aggregation module called 
DBB_GELAN, as shown in Fig. 7. The feature fusion network 
primarily integrates shallow spatial information with deep 
semantic information, and in small object detection, shallow 
features are more critical. As shown in Fig. 2, 
UAV_RepGFPN employs DBB_GELAN as the feature fusion 
module for the neck network layers F4, F5, and P4. This not 
only introduces a multi-branch structure into the original 
mechanism, enriching the feature space and enhancing feature 
fusion, but also effectively reduces the number of parameters 
and computational cost. 

 

Fig. 7. Structure of DBB_GELAN. 

B. Backbone Network 

ADown is a lightweight downsampling module proposed 
by Wang et al. [20]. This module replaces traditional 
convolutional downsampling with pooling operations and uses 
a branching design to ensure the final feature map contains 
both the original feature information and additional 
information obtained through different processing paths, 
thereby enhancing the model’s feature representation 
capability. As shown in Fig. 8, the branches containing 
MaxPooling and a CBS module with a 3×3 convolution kernel 
are referred to as the 1×1 branch and 3×3 branch, respectively. 
First, the input feature map X undergoes average pooling with 

a 2×2 kernel, stride 1, and no padding to reduce the feature 
map size. The pooled feature map is then split into two parts: 
X1 and X2. The X1 feature map passes through the 3×3 branch, 
adjusting the number of channels to Cout/2, where Cout is the 
number of output channels. The X2 feature map passes through 
the 1×1 branch and is max-pooled to achieve lightweight 
downsampling while preserving key information. Finally, the 
outputs of the two branches are concatenated along the 
channel dimension. In this paper, the lightweight 
downsampling module ADown is applied to the B4 and B5 
layers of the backbone network as well as the deep 
downsampling modules in the feature fusion network. 
Ablation experiments show that this improvement effectively 
reduces the model’s parameter count and computational cost 
while improving accuracy. 

 

Fig. 8. Structure of ADown. 

The C2f module integrates high-level features and 
contextual information using residual connections to obtain 
richer gradient flow; however, it also introduces additional 
computational cost. Moreover, as the number of layers in the 
feature extraction network increases, while the network 
enhances its understanding of complex semantic information, 
the C2f module tends to weaken the network’s ability to 
capture spatial positional information—a phenomenon 
particularly evident in small object detection tasks. Finally, 
because the C2f module does not establish interdependencies 
between channels or spatial positions, it remains insufficient 
in addressing challenges such as target scale variation and 
complex backgrounds in UAV aerial images. To overcome 
these issues, this paper proposes a new feature fusion module 
named FTA_C2f (see Fig. 9). 

 

Fig. 9. Structure of FTA_C2f. 

The Faster Block in FasterNet [21] is a lightweight feature 
extraction module with several advantages for improving 
small object detection performance. First, in the traditional 
convolution operation within C2f, the convolution kernel is 
applied to all channels of the input feature map. However, in 
Faster Block, Partial Convolution (PConv) selects only a 
portion of consecutive channels for convolution to extract 
features. This characteristic helps preserve more complete 
high-resolution information from shallow feature maps, which 
is beneficial for detecting densely distributed small objects. 
Second, PConv significantly reduces computation and 
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memory access by performing regular convolution on only the 
front or rear consecutive channels while leaving the rest 
untouched. For example, when the partial convolution ratio is 
1/4, the computation cost is only 1/16 of that of regular 
convolution. Similarly, memory access is reduced to one-
fourth of that of regular convolution. Inspired by the 
characteristics of Faster Block, this paper designs the 
FTA_neck module shown in Fig. 10. FTA_neck is similar to 
Faster Block but differs by incorporating a Triplet Attention 
(TA) mechanism to handle densely packed small objects in 
complex backgrounds. 

 

Fig. 10. Structure of FTA_neck. 

 

Fig. 11. Structure of TripletAttention. 

As shown in Fig. 11, Triplet Attention (TA) adopts a three-
branch parallel design. The first two branches compute 
attention weights along the channel dimension (C) and the 
spatial dimensions (H and W) respectively, achieved through 
rotation operations and residual transformations with low 
computational cost. The bottom branch is similar to CBAM 
and is used to capture spatial dependencies (H and W). After 
processing all three branches, the output tensors of each 
branch are aggregated by simple averaging to form the final 
triplet attention output. The introduction of TA enables 
FTA_neck to efficiently encode both channel and spatial 
information with minimal computational overhead. By 
capturing the relationships between spatial and channel 
dimensions, FTA_neck enhances detailed representation, 
which is critical for small object detection. By integrating 
spatial and channel dimensions, the network gains better 
contextual awareness, helping to accurately identify and 

localize small targets. This results in more accurate and robust 
detection of small objects across various scenarios. 

In FTA_neck, the PConv module performs convolution on 
one-quarter of the input channels while the remaining 
channels pass through an identity mapping. The features 
extracted by PConv then go through a CBS module, which 
doubles the number of channels in the feature map. This is 
followed by a 1×1 convolution to reduce the channel count 
back to match the input’s number of channels, ensuring 
consistency. The feature map then passes through the Triplet 
Attention module. Finally, the two parts of the feature map are 
concatenated via a Concat operation. By combining PConv 
and Triplet Attention, FTA_C2f achieves fusion of channel 
and spatial dimension information while avoiding significant 
loss of spatial information, thus balancing computational cost 
and feature extraction capability. 

Replacing the C2f modules in the B4 and B5 layers of the 
backbone network with FTA_C2f allows for semantic 
information extraction while preventing excessive spatial 
information loss caused by the original feature extraction 
mechanism. This replacement also reduces parameter count 
and computational cost, enabling closer interaction and 
encoding of channel and spatial information while maintaining 
a low computational burden. Additionally, this paper finds that 
halving the number of channels in the FTA_C2f module at the 
B5 layer significantly reduces parameters and computation 
without degrading detection performance. 

C. Context-Based Programmable Gradient Information 

To address the problem of information loss in deep 
networks, Wang et al. [20] proposed Programmable Gradient 
Information (PGI). PGI coordinates the propagation of 
gradient information across different semantic levels through 
auxiliary reversible branches, ensuring that deep features 
retain task-relevant key information without adding excessive 
parameter overhead. The design of these auxiliary reversible 
branches avoids the semantic information loss that can occur 
in traditional deep supervision due to multi-path feature 
integration. Since the auxiliary reversible branches can be 
removed during model inference, they do not increase the 
computational burden during the inference process. The 
improved model incorporates PGI-based auxiliary reversible 
branches by adding auxiliary reversible branches specifically 
for small object detection and generating three additional 
auxiliary detection heads (AuxP2, AuxP3, AuxP4), proposing 
the UAV_PGI programmable gradient method, as shown in 
Fig. 12. YOLOv9 proposed using GELAN [20] as the 
reversible function in the PGI auxiliary reversible branch 
architecture, but directly using GELAN as the reversible 
function in this model did not yield good results and instead 
reduced detection accuracy. To address this issue, a new 
context-guided reversible architecture was designed. 

The Context Guided Block (CG_Block) is a key 
component of CGNet [23], inspired by the human visual 
system's reliance on contextual information to understand 
scenes. As shown in Fig. 13, CG_Block includes a local 
feature extractor (floc(*)), a surrounding context extractor 
(fsur(*)), a joint feature extractor (fjoi(*)), and a global context 
extractor (fglo(*)). floc(*) uses a 3×3 depthwise convolution to 
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extract local features, fsur(*) uses a 3×3 dilated convolution 
with a dilation rate of 2 to capture surrounding context, f joi(*) 
combines and processes these two types of features, and fglo(*) 
obtains global context through global average pooling 
followed by a multilayer perceptron, weighting the output of 
fjoi(*) to refine the joint features. CG_Block employs residual 
learning processes such as local residual learning (LRL) and 
global residual learning (GRL) to enhance complex feature 
learning and gradient backpropagation. GRL connects the 
input to fglo(*) to enable higher information flow. The design 
of CG_Block leverages multi-level contextual information, 
capturing deep semantic features while preserving shallow 
spatial information. Using channel-wise convolutions and 
residual learning, CG_Block significantly reduces parameter 
count while maintaining good accuracy. 

 

Fig. 12. UAV_PGI structure. 

Based on this, this paper proposes the context-guided 
CG_Down module. As shown in Fig. 14, CG_Down reduces 
spatial dimensions using a 3×3 convolution with stride 2 while 
increasing the number of channels. Then, f loc(*) and fsur(*) 
extract local and contextual information respectively, which 
are fused by fjoi(*). A 1×1 convolution then reduces the 
number of channels to obtain the joint features. Finally, fglo(*) 
generates a weighting vector applied to the joint features. The 
CG_Down module is introduced here as the downsampling 
module for the auxiliary branch network. 

 

Fig. 13. Structure of context guided block. 

 

Fig. 14. Structure of CG_Down. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Data Set 

To evaluate the performance of the proposed model in 
detecting small objects, the VisDrone2019 dataset [27] was 
selected as the experimental dataset for detailed comparative 
and ablation studies. This dataset contains 10,209 static aerial 
images, featuring over 2.6 million object bounding boxes 
covering common categories such as pedestrians, cars, and 
bicycles. A notable characteristic of this dataset is the 
predominance of small objects and class imbalance, providing 
ideal testing conditions for small-scale object detection. 

B. Experimental Environment and Strategy 

The model training was conducted using an NVIDIA A40-
PCIE-48GB GPU, running on Ubuntu 20.04, with PyTorch 
version 1.13.1, Python version 3.8, CUDA version 12.4, and 
YOLOv8s dependent library Ultralytics version 8.0.202. The 
network was trained for 300 iterations. During training, the 
optimizer used was Stochastic Gradient Descent (SGD) with a 
batch size of 4. The initial learning rate was set to 0.01, 
gradually decreasing to 1% of the initial learning rate by the 
end of training, and the weight decay coefficient was set to 
0.0005. A warm-up period of 5 epochs was applied, adopting 
the default data augmentation strategy from YOLOv8. Data 
augmentation was disabled in the last 10 epochs, and early 
stopping was set to 50 epochs. All input images were resized 
to 640×640 pixels. Inner-WIoU was used as the loss function, 
with hyperparameters δ, α, and ratio set to 2.7, 1.7, and 1.2 
respectively. To ensure fairness of experimental data, no 
official pretrained weights were loaded during training for any 
network in the experiments. Considering the performance 
requirements for drone detection scenarios and the need to 
balance detection performance with resource consumption, 
YOLOv8s was selected as the baseline model. 

To verify the applicability of the proposed algorithm for 
real-time UAV target detection scenarios, comparative 
experiments on detection accuracy and speed were conducted 
on an embedded platform based on the NVIDIA Jetson Xavier 
NX (16GB). The main hardware configuration of the 
embedded platform includes the Jetson Xavier NX Developer 
Kit, featuring a 384-core NVIDIA Volta GPU (with 48 Tensor 
cores), a 6-core NVIDIA Carmel ARMv8.2 CPU running at 
1.9 GHz, and 16GB of memory. The NVIDIA JetPack SDK 
version is 5.1.3. The primary software environment consists of 
Ubuntu 20.04 focal as the operating system, Python version 
3.8.10, CUDA version 11.4, TensorRT version 8.5.2.2, 
PyTorch version 2.1.0, Torchvision version 0.16.2, and 
Onnxruntime-GPU version 1.17.0. 
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C. Description of Indicators and Parameters 

To intuitively and effectively demonstrate the performance 
improvements made to YOLOv8 in this study, the following 
evaluation metrics were selected: Precision (P), Recall (R), 
Mean Average Precision (mAP), Model Parameter Size 
(Params), and Total Floating Point Operations (FLOPs). 
Among these metrics, Params represents the total number of 
parameters contained in the model, while FLOPs assess the 
computational complexity of the model. Precision evaluates 
the accuracy of the prediction results, and Recall measures the 
model’s ability to correctly identify true positive samples. 

D. Comparison Experiment 

To demonstrate the advancement of the proposed model, 
comparisons were conducted on the VisDrone2019 test set 
between the proposed model and various sizes of YOLOv8 
(YOLOv8n, YOLOv8s, YOLOv8m), the YOLOv9c model, as 
well as algorithms reported in the literature. The experimental 
results are shown in Table I. The improved models of different 
sizes achieved significant improvements in precision, recall, 
and mAP@0.5 metrics. The proposed improved model notably 
enhanced detection accuracy while significantly reducing 

model size and computational complexity. Specifically, 
compared to YOLOv8s, LMUAV-YOLOv8s improved 
precision, recall, mAP@0.5, and mAP@0.5:0.95 by 4.8, 4.5, 
5.3, and 3.3 percentage points respectively, while reducing 
parameter count by 63.9% and increasing computation by only 
0.4 GFLOPs. 

Compared to YOLOv8m, LMUAV-YOLOv8s improved 
precision, recall, mAP@0.5, and mAP@0.5:0.95 by 0.5, 2.5, 
2.3, and 1.1 percentage points, respectively, with reductions of 
77.3% and 59.4% in parameters and computation. Compared 
to high-precision UAV aerial target detection algorithms 
[12,14], LMUAV-YOLOv8s shows significant advantages in 
accuracy, model size, and computational complexity. 
Although lightweight UAV aerial target detection algorithms 
[28] have smaller model size and computation compared to 
LMUAV-YOLOv8s, they suffer from excessive accuracy loss. 

The comparative experimental results indicate that 
LMUAV-YOLOv8 offers significant advantages in both 
detection accuracy and lightweight design compared to 
mainstream target detection algorithms and the latest aerial 
target detection methods. 

TABLE I.  COMPARATIVE EXPERIMENTAL RESULTS OF MODELS 

Model P/% R/% mAP@0.5/% mAP@0.5：0.95/% Model Size/MB Number of Parameters/106 Computation /109 

YOLOv8n 38.8 29.6 27.3 15.1 6.20 3.00 8.1 

LMUAV_YOLOv8

n 
41.3 33.0 31.1 17.5 2.79 1.16 10.2 

YOLOv8s 45.3 34.5 32.9 18.6 22.50 11.13 28.5 

LMUAV_YOLOv8s 50.1 39.0 38.2 21.9 8.41 4.01 28.9 

YOLOv8m 49.6 36.5 35.9 20.8 52.00 25.84 78.7 

YOLOv9-c 50.2 38.5 37.0 22.1 49.10 25.30 102.1 

Reference [12] 48.9 38.5 37.2 21.2 23.08 11.85 38.5 

Reference [14] 46.3 36.8 35.1 20.0 20.87 10.70 35.1 

Reference [28] 46.8 35.5 34.2 19.6 12.65 6.49 24.8 
 

To verify the detection performance of the proposed model 
on various targets, comparisons were made between the 
proposed model, the baseline YOLOv8s, and YOLOv9c in 
terms of classification. The experimental results are shown in 
Table II, detailing the precision, recall, and average precision 
(AP) for each target category, as well as the overall mAP@0.5 
across all categories. Compared to YOLOv8s, the proposed 
model significantly improved the AP values for each category. 
Notably, for small targets such as pedestrians, crowds, 
tricycles, cars, and motorcycles, the AP values increased by 
8.1, 8.9, 8.0, 5.0, and 5.5 percentage points, respectively. 
Specifically, the recall rates for pedestrians, crowds, tricycles, 
cars, and bicycles improved significantly by 7.1, 7.7, 8.2, 4.0, 
and 3.8 percentage points, indicating that the proposed model 
greatly reduced false negatives and demonstrated higher 
reliability in densely populated pedestrian and UAVs scenes. 
Furthermore, detection precision across categories also 
showed varying degrees of significant improvement, with 
bicycles, crowds, tricycles, and motorcycles increasing by 
11.1, 7.3, 4.8, and 6.9 percentage points respectively, 
demonstrating that the improved model is more accurate in 
identifying targets and significantly reduces false positives. 

These experimental results indicate that 
LMUAV_YOLOv8s not only significantly improves small 
target detection accuracy but also advances detection 
performance for medium and large targets. Compared to 
YOLOv9c, the improved model exhibits higher performance 
in small target detection, with AP values for pedestrians, 
crowds, and cars exceeding YOLOv9c by 4.1, 7.6, and 1.8 
percentage points respectively, and mAP@0.5 exceeding 
YOLOv9c by 1.2 percentage points. However, due to 
YOLOv9c’s higher computational cost and parameter count 
compared to the proposed model, YOLOv9c achieves slightly 
better AP values for trucks and buses. Therefore, YOLOv9c’s 
balance between detection performance and resource 
consumption is suboptimal, making it less suitable for 
resource-constrained embedded devices. 

To validate the effectiveness of the proposed feature fusion 
method, this paper compares UAV_RepGFPN with other 
advanced feature fusion techniques. The comparison results 
are shown in Table III. PAFPN is a feature fusion technique 
used in YOLOv8 that combines multi-scale feature 
information through lateral connections and a pyramid 
hierarchical structure to achieve more comprehensive and 
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multi-scale feature representation. The author in [11] describes 
the use of PAFPN in YOLOv8, which includes the P2 
detection head but removes the P5 detection head. Reference 
[28] discusses the commonly used BiFPN implementation in 
YOLOv8, which includes skip connections added at the P3 
and P4 layers. Reference [29] presents the general use of 
Efficient-RepGFPN in YOLOv8 with the addition of a small 
object detection head. 

Compared with the above feature fusion methods, the 
proposed UAV_RepGFPN demonstrates significant 
advantages in performance metrics, model size, and 
computational cost. Compared to the optimized PAFPN 
method in reference [11], UAV_RepGFPN improves 
precision, recall, mAP@0.5, and mAP@0.5:0.95 by 0.5, 0.5, 

0.8, and 0.4 percentage points respectively. Additionally, the 
computational weight decreases by 7.0×108 FLOPs, while the 
model size remains nearly unchanged, differing by only 0.07 
MB. 

To verify the impact of the Triplet Attention module added 
to the Faster_Block on model performance, this study 
combines Faster_Block with different attention mechanisms 
based on the improved model for comparison. The 
experimental results are shown in Table IV. Compared to 
several other attention mechanisms, Triplet Attention, as a 
lightweight spatial-channel attention mechanism, achieves the 
highest performance improvement while causing almost no 
increase in model parameters and computational cost. 

TABLE II.  COMPARATIVE EXPERIMENTAL RESULTS OF DETECTION ACCURACY FOR EACH CATEGORY 

Model Result Pedestrian People Bicycle Car Van Truck Tricycle 
Awning-

Tricycle 
Bus Motor all 

YOLOv8s 

P 50.7 50.1 22.2 66.7 44.4 44.7 25.1 40.5 67.0 41.3 45.3 

R 25.9 12.0 12.0 72.9 40.6 41.0 26.0 22.7 56.0 36.0 34.5 

mAP@0.5 27.9 15.6 9.0 72.2 38.5 39.8 17.5 19.3 58.6 30.3 32.9 

YOLOv9c 

P 56.4 52.2 32.3 72.2 48.7 51.6 28.5 38.4 75.0 47.8 50.3 

R 28.9 13.7 15.2 75.4 43.3 49.1 35.3 25.0 55.9 39.8 38.2 

mAP@0.5 31.9 16.9 14.0 75.4 41.3 47.2 23.5 19.5 62.6 36.2 36.9 

LMUAV_YOLOv8s 

P 55.2 57.4 33.3 70.5 47.7 47.7 29.9 42.4 69.2 48.2 50.1 

R 33.0 19.7 15.8 76.9 44.3 46.7 34.2 23.9 56.3 39.1 39.0 

mAP@0.5 36.0 24.5 14.0 77.2 43.4 44.0 24.5 21.9 60.8 35.8 38.2 

TABLE III.  COMPARATIVE EXPERIMENTAL RESULTS OF DIFFERENT FEATURE FUSION METHODS 

Model P/% R/% mAP@0.5/% 
mAP@0.5：

0.95/% 

Model 

Size/MB 
Computation /109 

Number of 

Parameters/106 

PAFPN 45.3 34.5 32.9 18.6 22.50 28.5 11.13 

Reference [11] 48.0 37.6 36.6 20.8 15.20 34.6 7.40 

Reference [28] 46.8 36.0 34.8 20.0 20.40 34.5 9.66 

Reference [29] 48.1 37.6 36.7 21.0 20.30 37.8 10.30 

UAV_RepGFPN 48.5 38.1 37.1 21.2 15.27 33.9 7.62 

TABLE IV.  COMPARATIVE EXPERIMENTAL RESULTS OF DIFFERENT ATTENTION MECHANISMS 

Model P/% R/% mAP@0.5/% 
mAP@0.5：

0.95/% 

Number of 

Parameters/106 

Model 

Size/MB 
Computation /109 

Faster_Block 48.9 37.8 37.4 21.4 4.01 8.39 28.9 

+SE 48.8 38.2 37.4 21.4 4.01 8.41 28.9 

+EMA 48.3 38.1 37.2 21.2 4.02 8.41 29.1 

+SimAM 48.5 38.3 37.5 21.4 4.01 8.39 28.9 

+MLCA 48.4 37.8 37.4 21.5 4.01 8.39 28.9 

+CPCA 48.9 38.1 37.3 21.4 4.13 8.63 29.4 

+TA 49.2 38.4 37.6 21.5 4.01 8.41 28.9 

+BiLevelRouting 49.2 37.9 37.4 21.3 4.13 8.78 29.4 
 

E. Ablation Experiment 

To verify the effectiveness of each improvement method, 
YOLOv8s was used as the baseline model, and ablation 
experiments were conducted on each improved module based 

on the baseline. The modules UAV_RepGFPN, ADown, 
FTA_C2f, and UAV-PGI were added sequentially, with the 
resulting networks denoted as Model_A, Model_B, Model_C, 
Model_D, Model_E, and Model_F. The experimental results 
are shown in Table V. 
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TABLE V.  ABLATION EXPERIMENT OF LMUAV-YOLOV8S 

Model 

UAV 

_RepGFP

N 

ADown FTA_C2f UAV_PGI 
Number of 

participants/106 
Calculations/109 P/% R/% mAP@0.5/% 

mAP@0.5/%: 

0.95/% 

YOLOv8s × × × × 11.13 28.5 45.3 34.5 32.9 18.6 

Model_A √ × × × 7.62 33.9 48.5 38.1 37.1 21.2 

Model_B × √ √ × 7.73 24.2 45.9 34.9 33.6 19.1 

Model_C √ √ × × 6.35 31.9 49.0 38.2 37.4 21.4 

Model_D √ × √ × 5.29 31.0 48.9 38.3 37.6 21.6 

Model_E √ √ √ × 4.01 28.9 49.2 38.4 37.6 21.5 

Model_F √ √ √ √ 4.01 28.9 50.1 39.0 38.2 21.9 
 

1) As shown in Model_A, by designing the lightweight 

multi-scale feature fusion network UAV_RepGFPN, the 

network performance was significantly improved, with 

mAP@0.5 increasing by 4.2 percentage points; at the same 

time, through optimization of the feature fusion paths, 

downsampling modules, and feature fusion modules, the 

parameter count was reduced by 31.5%. UAV_RepGFPN 

enhances the network’s ability to capture spatial location 

information, leading to better extraction of small object 

features. 

2) As shown in Model_C, using the ADown 

downsampling module in the network’s high downsampling 

layers, which replaces convolution with average pooling and 

max pooling operations, reduces the model’s parameter count 

and computational load by 16.6% and 5.8% respectively, 

while accuracy and mAP@0.5 improved by 0.5 and 0.3 

percentage points. 

3) As shown in Models D and E, replacing traditional 

convolutions with PConv in the backbone’s C2f modules 

results in substantial reductions in parameters and 

computation; adding the triplet attention mechanism to the C2f 

bottleneck further improves model performance with 

negligible impact on complexity. FTA_C2f improves feature 

extraction efficiency while reducing parameters and 

computation by 43.8% and 14.7%, respectively. 

4) As shown in Model_F, the introduction of UAV_PGI 

can improve the model’s accuracy and mAP@0.5 by 0.9 and 

0.6 percentage points, respectively, without adding any 

computation or parameters during inference. 
The experiments of adding each proposed module one by 

one demonstrate that every improvement contributes to 
performance enhancement. This series of optimizations not 
only significantly boosts detection accuracy but also 
effectively reduces model complexity, making the model more 
suitable for resource-constrained UAV object detection 
scenarios. 

To verify the effectiveness of the improvements made to 
the feature fusion network, PAFPN was used as the baseline 
model, with Efficient-GFPN as the base structure for the neck 
network. Then, the P2 detection head was added, the P5 
detection head was removed, and improvements were made to 
Queen Fusion, GhostConv, and DBB_GELAN, resulting in 
the creation of Neck_A, Neck_B, Neck_C, Neck_D, Neck_E, 
Neck_F, and Neck_G for ablation experiments on the feature 
fusion network. The experimental results are shown in 
Table VI. 

TABLE VI.  ABLATION EXPERIMENT OF UAV_REPGFPN 

Model 
Efficient-

GFPN 
Add P2 

Remove 

P5 

Improvement 

of Queen 

fusion 

GhostConv DBB_GELAN 
Number of 

participants/106 
Calculations/109 mAP@0.5/% 

YOLOv8s × × × × × × 11.13 28.5 32.9 

Neck_A √ × × × × × 10.40 27.9 33.0 

Neck_B √ √ × × × × 10.30 37.8 36.7 

Neck_C √ √ √ × × × 8.87 36.1 36.7 

Neck_D × √ √ × × × 7.40 34.1 36.1 

Neck_E √ √ √ √ × × 8.54 36.1 36.7 

Neck_F √ √ √ √ √ × 8.32 35.6 36.9 

Neck_G √ √ √ √ √ √ 7.62 33.9 37.1 
 

5) Based on YOLOv8s, model Neck_A introduced 

Efficient-GFPN as the feature fusion network, reducing the 

model’s parameter count and computation by 6.5% and 2.1%, 

respectively, while mAP increased by 0.1 percentage points. 

This indicates that the Efficient-GFPN module can reduce 

model complexity while improving detection performance, 

demonstrating good applicability of Efficient-RepGFPN in 

YOLOv8. 

1) Model Neck_B added the P2 detection head on top of 

Neck_A. Although the parameter count and computation 

increased, mAP significantly improved from 33.3% to 36.7%. 

This shows that adding P2 effectively enhances the model’s 

mailto:mAP@0.5/%25
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multi-scale feature extraction ability, thus improving detection 

accuracy. 

2) Removing the P5 detection layer in Neck_C led to 

reductions in parameters and computation by 13.8% and 4.5%, 

respectively, while mAP remained unchanged at 36.7%. This 

suggests that P5 has a minor role in this model, and its 

removal reduces complexity without sacrificing accuracy. 

3) After improving Queen Fusion, even though 

parameters and computation decreased, mAP remained at 

36.7%. This indicates that the improved Queen Fusion module 

maintains detection accuracy while reducing computational 

resource consumption. 

4) Introducing GhostConv based on the improved Queen 

Fusion further reduced parameters and computation, while 

mAP increased to 36.9%, demonstrating the effectiveness of 

this improvement. 

5) Adding DBB_GELAN on top of Neck_F reduced 

parameters and computation by 8.4% and 4.7%, respectively, 

and increased mAP by 0.2 percentage points. This shows that 

the DBB_GELAN module can significantly enhance model 

efficiency and accuracy. 
Each step of the improvements targeted different aspects 

of the model, ultimately achieving the goal of reducing 
parameters and computation while improving detection 
accuracy. Particularly, the combination of adding P2, 
removing P5, and introducing DBB_GELAN significantly 
improved model efficiency while maintaining or enhancing 
accuracy. 

F. Visual Analysis 

To visually demonstrate the detection performance of the 
proposed model, comparative experiments were conducted 
across four dimensions: PR curves, confusion matrices, 
inference result images, and saliency maps. 

Fig. 15 shows the PR curves of YOLOv8s and LMUAV-
YOLOv8s on the VisDrone2019 dataset. From the average 
precision of the PR curves, the LMUAV-YOLOv8s model 
overall outperforms YOLOv8s, with a larger area under the 
curve, indicating higher precision at various recall rates. 

 

Fig. 15. PR curve. 

Fig. 16 presents the confusion matrices of YOLOv8s and 
LMUAV-YOLOv8s on the VisDrone2019 dataset. Fig. 16(a) 
is the confusion matrix of YOLOv8s, while Fig. 16(b) is that 
of LMUAV-YOLOv8s. The diagonal values in the confusion 
matrix of LMUAV-YOLOv8s are generally higher than those 
of YOLOv8s, and the values in the last row (background) are 
generally lower, indicating that LMUAV-YOLOv8s 
effectively reduces false positives and false negatives across 
categories. However, for categories with less distinctive 
features such as pedestrians, bicycles, tricycles, and 
motorcycles, although the improved model reduces false 
positive and false negative rates, the proportion of correctly 
detected instances remains relatively low. 

To intuitively compare the performance of the models, 
four challenging scenarios were selected: complex background 

scenes, densely distributed small target scenes, occluded small 
target scenes, and low-light scenes. 

For a direct comparison of the detection performance of 
these three algorithms, a quantitative analysis was conducted 
on the inference results, counting the detection performance 
for specific target categories (i.e. the ground truth and the 
number of correctly detected targets by each model) under 
different scenarios. 

• stronger detection capability for distant UAVs and 
densely packed pedestrians from high-altitude views; 

• more accurate recognition and classification of visually 
similar objects, such as cars and vans, bicycles and 
motorcycles, across multiple scenarios; 

• stronger detection ability for partially occluded objects. 
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Fig. 16. Confusion matrix. 

 

Fig. 17. Performance comparison of object detection models in multiple scenarios. 

G. Model Deployment Experimental Results and Analysis 

To validate the effectiveness of the proposed algorithm on 
a UAV embedded platform, comparative experiments on 
detection accuracy and speed were conducted on the NVIDIA 
Jetson Xavier NX platform using the VisDrone2019 dataset. 
The proposed method was compared against six state-of-the-

art models (YOLOv8, YOLOv9, YOLOv10, UAV-YOLOv8, 
HV-YOLOv8 [31], Aero-YOLO [32], and the method in 
[12]). Additionally, the impact of TensorRT precision 
calibration modes on detection performance was evaluated. 
The evaluation metrics for accuracy included precision, recall, 
and mean average precision (mAP), while detection latency 
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was used to assess detection speed. Detection latency refers to 
the sum of image preprocessing delay, inference delay, and 
non-maximum suppression delay. Latency was measured on 
the embedded platform by running the models on the test 
dataset with a batch size of 1, calculating the average 
detection latency. The evaluation was conducted using single-
precision floating point (FP32), half-precision floating point 
(FP16), and 8-bit integer (INT8) computation modes. A batch 
size of 1 was chosen because the goal is real-time image 
processing, matching the maximum image acquisition rate of 
the camera. The input image size used was 384×640. The 
models trained on a high-performance computing platform 
were deployed to the Jetson Xavier NX development board. 
TensorRT acceleration was utilized to convert the PyTorch-
trained UAV detection model’s .pt weight files into .onnx 
intermediate files. Then, the .onnx files were used to build 
inference engine (.engine) files for accelerated inference, 
allowing the model to run efficiently on the embedded 
platform. 

To further validate the effectiveness of the improved 
algorithm, this section evaluates the proposed method on the 
VisDrone2019 dataset and conducts comparative experiments 
with other state-of-the-art (SOTA) object detection models 
under the same experimental conditions. The detailed 
comparison results are shown in Fig. 17. As seen in Table VII, 
after FP32 (single precision) and FP16 (half precision) 
calibration, the model size of LMUAV-YOLOv8s is reduced 
to 21.4 MB and 10.3 MB, respectively. Compared with the 
algorithm proposed in [12], which has similar detection 
accuracy, the improved algorithm reduces the model size by 
64.6% and 59.3% under the two quantization methods. 

Compared with the lightweight algorithm YOLO-Aero, the 
improved algorithm reduces the model size by 42.6% and 
31.7% under the two quantization schemes. Thanks to the use 
of lightweight multi-scale feature fusion, efficient feature 
extraction networks, and context-guided programmable 
gradient information, LMUAV-YOLOv8s achieves 
significantly smaller model sizes under both precision 
calibrations compared to other SOTA models, accelerating 
model download speeds, reducing storage requirements, and 
lowering memory usage during deployment—making it 
especially suitable for embedded devices. 

Without TensorRT acceleration and after single-precision 
calibration with TensorRT acceleration, the detection latency 
of all models at the small (s) scale in Table VII exceeds 33 ms, 
failing to meet real-time detection latency requirements. After 
half-precision calibration, LMUAV-YOLOv8n and LMUAV-
YOLOv8s achieve detection latencies of 25.3 ms and 28.2 ms, 
respectively, satisfying real-time detection latency demands. 
Specifically, compared to YOLOv9s, UAV-YOLOv8s, and 
the method in [14], LMUAV-YOLOv8s reduces detection 
latency by 1.3%, 21.5%, and 64.6%, respectively, while 
improving detection accuracy (mAP@0.5) by 4.6, 3.3, and 0.9 
percentage points. Compared to lightweight algorithms 
(YOLOv8s, HV-YOLOv8s, Aero-YOLO), although LMUAV-
YOLOv8s shows increased detection latency by 6 ms, 3 ms, 
and 2.3 ms, it achieves higher detection accuracy (mAP@0.5) 
improvements of 5.2, 5.6, and 6.9 percentage points, 
respectively, demonstrating superior overall performance. 
Therefore, after TensorRT acceleration, the LMUAV-
YOLOv8 model achieves a better balance between detection 
accuracy and latency. 

TABLE VII.  MODEL TESTING RESULTS ON JETSON XAVIER NX PLATFORM 

Model Accuracy Calibration Model size/MB P/% R/% mAP@0.5% mAP@0.5%: 0.95/% Detection delay/ms 

YOLOv8n 
FP32 17.3 39.4 30.0 27.5 15.2 20.9 

FP16 7.5 39.4 30.0 27.5 15.2 13.9 

LMUAV-

YOLOv8n 

FP32 9.6 42.3 31.6 30.3 17.0 30.9 

FP16 5.5 42.1 31.7 30.3 17.0 25.3 

YOLOv8s 
FP32 60.8 45.8 34.4 32.9 18.6 49.1 

FP16 22.9 45.6 34.4 32.8 18.5 22.2 

LMUAV-

YOLOv8s 

FP32 21.4 50.1 37.9 38.1 21.8 53.9 

FP16 10.3 49.9 37.9 38.0 21.7 28.2 

YOLOv9s 
FP32 44.3 46.8 34.7 33.4 19.0 55.2 

FP16 16.9 46.7 34.6 33.4 18.9 29.5 

YOLOv10s 
FP32 34.7 45.3 35.1 33.5 18.6 43.4 

FP16 16.0 44.8 35.0 33.3 18.5 20.5 

UAV-

YOLOv8[14] 

FP32 57.6 45.9 36.7 34.8 19.9 71.8 

FP16 22.9 46.2 36.5 34.7 19.8 36.7 

HV-

YOLOv8[30] 

FP32 53.8 45.5 34.2 32.4 18.2 51.2 

FP16 20.6 45.41 34.1 32.4 18.2 25.2 

YOLO-

Aero[31] 

FP32 37.3 43.1 33.2 31.1 17.4 48.4 

FP16 15.1 43.0 33.1 31.1 17.3 25.9 

[12] 
FP32 60.5 49.0 38.5 37.1 21.3 117.8 

FP16 25.3 49.0 38.4 37.1 21.2 81.4 
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In summary, the proposed LMUAV-YOLOv8 model 
demonstrates excellent detection performance on embedded 
platforms, indicating strong suitability for real-time UAV 
target detection scenarios. 

IV. MODEL INTERPRETATION 

Deep learning models contain a large number of 
parameters that are difficult to interpret and involve complex 
nonlinear operations, making their interpretability a significant 
challenge. To address this challenge, researchers have 
proposed various saliency map generation methods to explain 
the behavior of deep neural networks. Saliency maps highlight 
important regions in the input image, helping to interpret the 
model’s decision-making process. Among these methods, 
Class Activation Map (CAM) approaches are widely used due 
to their speed and lack of need for manual guidance. These 
methods generate saliency maps corresponding to the input 
image by utilizing the model’s feature maps or gradient 
information, emphasizing regions most important for the 
model’s prediction. 

This work employs the High-Resolution Class Activation 
Mapping (HiResCAM) method to generate saliency maps. 
First, HiResCAM backpropagates the confidence scores of the 
model’s output classes and bounding box regressions to obtain 
the gradient value of each pixel. The gradient values reflect 
the model’s attention to different regions of the input image 
during classification and localization decisions. In the 
heatmaps generated by HiResCAM, pixels with high gradients 
are shown in deep red, indicating regions closely related to 
object recognition and localization; pixels with low gradients 
are shown in deep blue, indicating regions less related to these 
tasks. 

To further verify the effectiveness of the proposed 
modules and explain their mechanisms, the baseline model 
YOLOv8s and three models from the ablation experiments 
(Experiments A, E, and F) were selected to generate saliency 
maps across four scenarios. Compared to the baseline model, 
the saliency maps of ablation experiment A show three 
changes: the red regions become larger and more 
concentrated, new small blue regions appear or small blue 
regions turn red, and the red regions of cars occluded by trees 
gradually become larger and more focused. 

1) The enlargement and concentration of red regions 

indicate that the introduction of the UAV_RepGFPN network 

enables more efficient extraction and fusion of multi-scale 

features, making the feature information of target regions 

more complete and clear, thereby improving detection 

confidence. 

2) The deepening of red regions on small objects indicates 

increased detection confidence for small targets, while newly 

appearing small blue regions suggest the model can detect 

more low-confidence small targets, demonstrating that the 

model retains high-resolution features over a larger area and is 

more effective in handling tasks with high detail and 

resolution requirements. 

3) The expansion and concentration of red regions on 

occluded objects indicate that the UAV_RepGFPN network 

helps the model recover occluded parts of the features and 

increases confidence in those features when handling partially 

occluded targets. 

Ablation experiment E (which introduces lightweight 
modules) maintains the additional blue and light red regions 
observed in ablation experiment A across various scenarios, 
while the red regions become more concentrated. This 
indicates that after lightweight processing and the introduction 
of the Triplet Attention mechanism, the model still maintains 
the ability to detect small and low-confidence objects, while 
further improving detection accuracy in high-confidence 
regions. Specifically, the FTA_C2f module introduced in 
experiment E performs convolution operations on non-masked 
regions, preserving more high-resolution features needed for 
small object detection. This allows the model to better detect 
fine targets, even within lower-confidence regions. 
Furthermore, the FTA_C2f module jointly encodes spatial and 
channel information, significantly enhancing the model’s 
spatial position capturing ability and increasing attention to 
important feature regions, resulting in more concentrated red 
areas. These improvements collectively enable the model to 
detect accurately within high-confidence regions while 
maintaining sensitivity to small objects over a broader area. 

Compared to ablation experiment E, the heatmaps 
generated by ablation experiment F show even more focused 
red regions and further improvements in reducing small object 
misses, which is closely related to UAV_PGI. The context-
guided auxiliary branch produces more reliable gradients by 
reducing information loss, ensuring accurate parameter 
updates during training and improving detection confidence. 
This is reflected in the heatmaps as more focused red regions 
and the presence of additional small blue or red areas. 

V. CONCLUSION 

In this study, to address the issues of missed and false 
detections of small-scale faults and anomalies in complex 
distribution network environments, a lightweight multi-scale 
feature fusion detection network named LMGrid-YOLOv8 is 
proposed and embedded into a deep reinforcement learning 
framework to enable distribution network-oriented fault 
detection and autonomous control. Specifically: 

• A lightweight multi-scale feature fusion structure 
Grid_RepGFPN tailored for distribution network 
monitoring data is designed to effectively enhance the 
fusion efficiency of electrical and spatial information; 

• The introduction of FTA_neck and ADown modules 
improves the spatial feature extraction capability of the 
deep backbone network while maintaining lightweight 
characteristics and reducing loss of high-resolution 
measurements; 

• A context-guided reversible branch structure Grid_PGI 
is designed to alleviate the information bottleneck issue, 
improving both training efficiency and feature 
representation capability. 

Comparative experiments show that LMGrid-YOLOv8 
significantly improves detection accuracy for small or subtle 
anomalies, such as partial discharges, line overloads, and 
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minor voltage fluctuations, while keeping the number of 
parameters and computational cost low, with average 
precision (AP) and recall for these events outperforming 
mainstream detection networks. Embedded deployment 
experiments demonstrate that the model achieves an inference 
speed of 28.2 ms/frame and a detection accuracy of 38.0% on 
an edge computing platform, meeting the real-time monitoring 
requirements of distribution networks and achieving a good 
balance between speed and accuracy. Class activation maps 
further confirm the model’s ability to focus on critical fault 
points and capture long-range correlations, enhancing its 
detection performance in complex network scenarios. 
Additionally, by integrating the detection module with a deep 
reinforcement learning-based control strategy, real-time fault 
response and load adjustment can be realized, demonstrating 
strong system integration and practical value. Nevertheless, 
there is still room for improvement in detecting extremely 
subtle or transient anomalies. Future work will focus on 
further optimizing the model structure to continuously 
enhance detection accuracy and the robustness of the 
reinforcement learning control strategy under constrained 
computational resources. 
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