(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 9, 2025

Scalable Formal Verification of Modular Concurrent
Systems: A Survey of Techniques, Tools and
Challenges

Sawsen Khlifal, Chiheb Ameur Abid2, Asma ben Letaifa®, Belhassen Zouari*

Higher School of Communications of Tunis, University of Carthage Ariana, Tunisia
Faculty of Sciences of Tunis, University of Tunis El Manar Tunis, Tunisia

1,3
2

LR11TICO5, Mediatron Lab, 2083, Ariana, Tunisial-23
ICL-Junia, Université Catholique de Lille, LITL, F-59000 Lille, France*

Abstract—The increasing complexity of distributed and con-
current systems raises pressing challenges for ensuring cor-
rectness and reliability. Formal verification, and in particular
model checking, offers a rigorous foundation to validate system
properties, yet suffers from the well-known state space explosion
problem. This difficulty is especially acute in modular archi-
tectures, where local behaviors intertwine with synchronization
across components. This paper provides a structured survey
of the main techniques designed to overcome these challenges,
including state space reduction, abstraction, compositional rea-
soning, symbolic approaches, and distributed verification. We
also review representative tools such as SPIN, NuSMYV, LTSmin,
DiVinE, and STORM, assessing their capabilities and limitations
in handling modular and concurrent models. Building on this
landscape, we position the Reduced Distributed State Space
(RDSS) as a novel framework that addresses key scalability
limits. RDSS reduces global complexity into module-specific meta-
graphs, ensures stuttering equivalence, and enables local model
checking without exploring the full global state space. Com-
parative experiments demonstrate significant gains over existing
approaches, particularly for systems where modules are not all
synchronized on the same transitions. We conclude by identi-
fying open challenges and future research directions, including
distributed implementations, Al-driven heuristics, and hybrid
reductions. Our survey underscores the importance of structural
awareness in modern verification workflows and establishes RDSS
as a promising foundation for scalable verification of modular
concurrent systems.
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I. INTRODUCTION

The escalating complexity of modern concurrent and dis-
tributed systems has significantly exacerbated the requirement
for rigorous verification. From autonomous vehicle networks
and smart home infrastructures to critical cloud services and
industrial IoT, system components increasingly operate inde-
pendently, communicate asynchronously, and must coordinate
reliably across dynamic environments. This complexity makes
ensuring system correctness a central challenge in software
engineering.

Because control is distributed and interactions evolve dy-
namically over time, conventional testing struggles to provide
meaningful guarantees about the correctness or robustness

of such systems. One effective way to gain confidence in
the behavior of such systems is through formal verification.
Particularly, model checking stands out as a widely adopted
technique. Its automatic, exhaustive nature provides a strong
safety net against subtle concurrency bugs. It allows for the
exploration of all possible system behaviors to detect de-
sign flaws before deployment. However, state space explosion
remains a major obstacle [1], [2]. As system components
interact, synchronize, and their architectures become more
modular, the global state space can grow exponentially, render-
ing classical model checking intractable, even for moderately
sized modular systems.

To mitigate this, a wide array of techniques has emerged,
ranging from symbolic representations [3] to partial-order
reductions [4], compositional reasoning [5], and on-the-fly
verification [6]. These methods, implemented in tools, such as
LTSmin [7], SPIN [8], PMC-SOG [9] and NuSMYV [10], have
significantly improved verification performance. Still, they of-
ten struggle when applied to Modular Petri net models, where
both local behavior and inter-module synchronizations must
be considered. However, the increasing scale and modularity
of real-world systems demand approaches that are not only
scalable but also structure-aware, able to exploit the modular
decomposition of the system to control complexity. Moreover,
existing surveys either lack depth, focus on outdated tools,
or fail to address the nuances of modular verification in
distributed contexts.

In this paper, we propose a structured and up-to-date survey
of the techniques and tools used to address the state space
explosion in modular and distributed systems.We examine the
current landscape of verification tools, identifying those that
can support modularity, distributed architectures, and scalable
verification. By organizing the literature by technique, tool
support, and target application domain, we aim to clarify the
strengths and limitations of each class of solution.

We also explore how the formalism of our Reduced Dis-
tributed State Space (RDSS) allows for localized verification
by isolating module-specific properties expressed in LTL/X.
This approach enables efficient model checking that leverages
system modularity without requiring global state enumeration.

This paper is intended to guide researchers and practi-
tioners seeking to understand or implement scalable formal
verification strategies for distributed systems. Our goal is
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to highlight the growing need for structure-aware methods,
evaluate the practical impact of recent techniques, and expose
gaps in tool support and methodology that merit further
investigation.

The structure of this paper is as follows. Section II in-
troduces the background and key concepts underlying formal
verification, temporal logics, and Modular Petri nets. Sec-
tion III analyzes the scalability problem in modular concur-
rency, detailing the main dimensions of state space explo-
sion. Section IV surveys the principal verification techniques
that address these challenges, including reduction methods,
abstraction, compositional reasoning, symbolic approaches,
and distributed exploration. Section V reviews the tooling
ecosystem, highlighting representative model checkers and
their capabilities for modular and concurrent systems. Sec-
tion VI presents the Reduced Distributed State Space (RDSS)
framework, outlining its principles, key contributions, and
positioning within the literature. Section VII discusses fu-
ture directions and possible extensions, including distributed
implementations, hybrid strategies, and Al-driven heuristics.
Finally, Section VIII concludes the paper by summarizing
our findings and emphasizing the role of RDSS in advancing
scalable verification.

II. ESSENTIAL CONCEPTS AND PRELIMINARIES

Modern concurrent and distributed systems are character-
ized by the parallel execution of multiple components that
often interact asynchronously. To rigorously verify such sys-
tems, formal methods —particularly model checking — have
become indispensable. This section introduces foundational
concepts, including transition systems, temporal logics, Mod-
ular Petri nets, and model checking, which underpin many of
the techniques discussed in this survey. The above definitions
are adapted from Clarke et al. [11] and Baier and Katoen [12],
which constitute the classical references in the field of model
checking.

A. Labeled Transition System

Labeled Transition Systems (LTS) constitute a fundamental
formalism for modeling and analyzing concurrent and dis-
tributed systems. These mathematical structures extend the ba-
sic concept of transition systems by associating explicit actions
with state transitions, thereby enabling a richer representation
of dynamic system behavior. LTS finds applications across
numerous domains in theoretical computer science, particularly
in formal verification, protocol analysis, and reactive system
specification. Their capability to distinguish between observ-
able and unobservable actions makes them particularly well-
suited for modeling systems where certain internal behaviors
must be abstracted from the external interface.

Definition 1: A Labeled Transition System (LTS) is for-
mally expressed as a quadruple:

LTS = (T, Act, —, I)
where:

e [ denotes a finite ensemble of states,

e  Act designates a finite repertoire of actions,
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e —C I' x Act x T represents the labeled transition
relation,

e | C T constitutes the collection of initial states.

For any transition (s, a,s’) €—, the concise notation

a /

s—s
indicates the existence of a passage from state s toward
state s’, adorned with the label a.

Within the LTS framework, one draws a sharp distinction
between:

e  Observable actions, symbolized as Obs C Act,

e Unobservable actions, symbolized as UnObs C Act,

such that:

Obs U UnObs = Act, Obs NUnObs = @.

This partition allows the modeling of two distinct realms:
the overtly perceptible behaviors of a system, and its latent,
internal evolutions, those hidden pulsations that govern its
subterranean logic yet remain invisible to an external observer.

Fig. 1 illustrates LTS, with sg serving as the initial state.
{a, b} make up the set of observed actions. Unlabeled edges
are meant to be labeled by non-observed actions.

SN a N b N
—{ S0 ) { 2} { 54 )
NS _,< N

\‘

|
X PN b TN
LSt ) (93 |/ %5 )
N N N

Fig. 1. Example of a labeled transition system.

B. Kripke Structure

In the domain of formal verification, Kripke Structures play
a pivotal role as the semantic foundation for temporal logics
such as Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL). They extend the notion of transition systems
by enriching states with atomic propositions that capture
observable properties of the system. This labeling mechanism
enables the evaluation of temporal formulas, thereby bridging
the gap between system executions and logical specifications.

Definition 2: Let AP be a finite set of atomic propositions.
A Kripke Structure (KS) over AP is a quadruple

KS = <FaF07R7L>a

where

e ['is a finite set of states,
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o Iy C T is the set of initial states,
e RCT xTis a (total) transition relation,! and

e L :T — 2% is a labeling (interpretation) function
that assigns to each state the set of atomic propositions
true in that state, and each state of the KS is labeled
with the values of these propositions.

A Kiripke Structure example is shown in Fig. 2. There are
two elements in the set of atomic propositions {a, b}.

Fig. 2. Example of Kripke Structure.

Paths and reachability. A (finite or infinite) path is a sequence
P = S9S1S2 ... with (Si, Sq;+1) € R for all 7 > 0.

o A state s’ € I' is reachable from s € I, written s =
s, iff there exists a finite path s . .. sx such that sg =
sand s, = s’

e A state s is dead (a sink) if there is no s’ € I" with
(s,s') € R.

Kripke Structures thus furnish the semantic substrate for
model checking: a system satisfies a temporal specification
precisely when all (or some, depending on the logic) paths of
its Kripke Structure satisfy the corresponding formula.

C. Labeled Kripke Structure

While Kripke Structures provide the semantic foundation of
temporal logics, in many verification settings it becomes nec-
essary to make explicit the actions that drive state transitions.
To address this issue, the notion of a Labeled Kripke Structure
(LKS) has been introduced. An LKS integrates the action-
labeled transitions of a Labeled Transition System (LTS)
with the state-labeling of a Kripke Structure (KS). This dual
enrichment bridges the gap between transition systems and
Kripke semantics, yielding a versatile framework for reasoning
simultaneously about state-based properties and action-driven
behaviors in concurrent and distributed systems.

Definition 3: Let AP be a finite set of atomic propositions
and let Act be a finite set of actions.
A Labeled Kripke Structure (LKS) over AP is a quintuple

LKS = (T, Act,L,R,Ty),

1
Totality means Vs € I', 3s’ € T such that (s, s’) € R.
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where:

o (I', Act,R,Ty) is a Labeled Transition System (LTS),
e (I'L,R,Ty) is a Kripke Structure (KS).

An illustration of LKS over AP = {a, b} is shown in Fig.
3.

\ ol
—» S0 I—H/

_( =l Py

- (57 O
=\

Fig. 3. Example of labeled Kripke Structure.

Remark. An LTS (resp. KS and LKS) can be represented in
different ways: explicitly, where each state and arc is stored
individually in memory; symbolically, where sets of states are
encoded compactly using decision diagrams such as Binary
Decision Diagrams (BDDs); or in a hybrid manner, with states
represented symbolically while transitions are kept explicit. In
addition, such models are often illustrated in an abstract form,
for instance through state—transition graphs that emphasize
their structural properties rather than their implementation
details.

D. Modular Petri Net

Petri nets are a well-established formalism for modeling
concurrent and distributed systems. However, when dealing
with complex systems, a monolithic representation often be-
comes intractable. The notion of a Modular Petri Net (MPN)
was introduced to address this limitation by decomposing a
system into a finite collection of communicating modules, each
being an ordinary Petri net. Communication between modules
can occur in two ways: A synchronized mode through the
fusion of places, or an asynchronous mode through the fusion
of transitions. As shown by Christensen and Petrucci [13],
any modular net with shared places can be transformed into
an equivalent net with only shared transitions. For this reason,
in our study we focus exclusively on modules that interact
through shared transitions.

Definition 4: A Modular Petri Net (MPN) is a pair
MPN = (5,TF),
that satisfies the following conditions:

1) S is a finite set of modules where:
a) Each module s € S is an ordinary Petri net

s = (PsyTs = Tsync,s Un,sy WS7MOS)7
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where, Ty s denotes the set of synchro-
nized transitions of module s, and 7T;  de-
notes the set of local (or internal) transitions
of s.

b) The sets of states and transitions of distinct
modules are pairwise disjoint:

P, UT,
Vsl,SQGS, 817582 = ( o ‘1)

c) The global sets of places and transitions are

given by
T=JT..

P=|JP.

seS seSs

2) TF C 2T\ {&} is a finite collection of non-empty
transition fusion sets.

Fig. 4 displays a Modular Petri Net example. The three
modules that make up this net are A, B, and C. Both modules A
and B are in sync through transition Syncl, and both modules
B and C are in sync through transition Sync2.

Module A Module B Module C
al b1 c1
tb1 sync te sync2
sync1
a2 b b3
c2
tal ta2 sync2 tb2
a3 b4

Fig. 4. Example of Modular Petri Net.

Thus, Modular Petri Nets establish a rigorous modeling
framework in which complex systems can be decomposed into
smaller communicating modules. By distinguishing between
local and synchronized transitions, this formalism not only
preserves clarity in system representation but also provides
a solid foundation for subsequent works that favor modularity
and compositional reasoning in the analysis and verification of
distributed systems.

E. Temporal Logics: LTL and CTL

Temporal logics are central in the specification and ver-
ification of concurrent and distributed systems. They enrich
propositional logic with temporal operators, making it possible
to express properties not only about individual states but
also about the evolution of executions over time. Among the
most widely studied are Linear Temporal Logic (LTL) and
Computation Tree Logic (CTL), which differ in the way they
interpret paths and quantify over possible system behaviors.

N(Ps, UTs,) = 2.
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1) Linear Temporal Logic (LTL): Linear Temporal Logic
(LTL) extends propositional logic with temporal operators
to describe both static properties of states and the dynamic
progression of system executions. It is widely used to specify
properties such as safety (ensuring that undesirable events
never occur) and liveness (ensuring that desired events even-
tually occur).

An LTL formula is built over a finite set AP of atomic
propositions that capture the elementary properties of states.
Boolean operators (-, A, V) allow the expression of static
conditions, while temporal operators such as X (next), U
(until), R (release), F' (eventually), and G (always) enable the
specification of dynamic properties. Formally, an LTL formula
<pAi1§ defined over AP, and its models are infinite words over
2

Definition 5: (LTL Syntax) The set of LTL formulas is
defined inductively as follows:

1) Each p € AP is an LTL formula.
2) If ¢ and ¢ are LTL formulas, then so are —¢, @V,
X, and U .

Additional operators are introduced as abbreviations:

Fo:=TUyp, Gp=-F=p,  oR:=(~pU).

The semantics of LTL link logical formulas to system
behaviors by determining whether an execution o satisfies a
formula .

Definition 6: (LTL Semantics) Let ©u = wugujus... be
an infinite word with u; C AP. For an LTL formula ¢, the
satisfaction relation u |= ¢ is defined inductively:

o ulpiff p € uo,

o ulEpiffulE e,

e ulEoeVyiffulEyporulE,
o ulEXpiff ujus... =,

e u E U4 iff there exists £k > 0 such that
UpUk+1 .. =1 and for all 0 < i < k, wiuiqr ... =
®.

Given a Kripke Structure K = (I', L, R, so), an infinite
path @ = sg — s — induces the word w =
L(s0)L(s1) ... over 247, We write K |= ¢ if every infinite
path 7 of K satisfies .

Remark. The fragment L7 L\ X, which omits the “next” oper-
ator, is frequently considered in verification since it guarantees
desirable properties such as stuttering invariance.

2) Computation Tree Logic (CTL): Computation Tree
Logic (CTL) is a branching-time temporal logic, complemen-
tary to LTL, that introduces explicit path quantifiers. Whereas
LTL formulas are evaluated along a single linear path, CTL
formulas are interpreted over the computation tree unfolding
from the initial state of a Kripke Structure. Path quantifiers A
(“for all paths”) and E (“there exists a path”) combine with
temporal operators X (next), F' (eventually), G (globally), and
U (until) to form operators such as AX, EF, AG, or E[pU)].
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Definition 7: (CTL Syntax) Let AP be a finite set of
atomic propositions. CTL formulas are defined inductively as
follows:

1) Each p € AP is a CTL formula.

2) If ¢ and ¢ are CTL formulas, then so are -, @ V1.

3) If ¢ and ¢ are CTL formulas, then the following are
also CTL formulas: AX p, EX ¢, AFp, EFp, AGp,
EGey, AlpU)], and E[pU)].

The semantics of CTL formulas are defined with respect
to states and their computation trees. Path quantifiers specify
whether a property holds across all possible futures (A) or on
at least one possible future (F).

Definition 8: (CTL Semantics) Given a Kripke Structure
K =(T',L, R, sp), the semantics of CTL formulas are defined
as follows:

o K,s | AX iff for all successors s’ of s, K, s = ¢,

e K, s EXyp iff there exists a successor s’ of s such
that K, s’ = ¢,

e K,s & AFy iff along all paths starting at s, ¢
eventually holds,

e K,s = EGy iff there exists a path from s where ¢
holds globally,

e and analogously for the other operators.

Remark. The essential distinction between LTL and CTL lies
in their view of time: LTL formulas are interpreted along single
linear paths without explicit quantifiers, while CTL relies on
branching-time semantics, combining state formulas with the
path quantifiers A and F (see Table I).

TABLE I. COMPARISON BETWEEN LTL AND CTL

Aspect LTL CTL

Time model Linear time: formulas are in- Branching time: formulas are
terpreted along single infinite interpreted over computation
paths. trees with multiple possible

futures.

Quantification | Implicit: no explicit path Explicit: path quantifiers A
quantifiers, properties are (all paths) and E (there exists
evaluated over all paths. a path) precede temporal op-

erators.

Syntax Operators: —, V, X, U (with | Operators: —, V, combined
derived F, G, R). with AX, FEX, AF,

EF, AG, EG, AlpUvy],
E[pUy].

Semantics Evaluated over infinite words Evaluated over states in a
induced by paths in a Kripke Kripke Structure with respect
Structure. to their computation tree.

Expressiveness| Suitable for specifying prop- Suitable for reasoning about
erties of individual executions | branching choices and exis-
(e.g. safety, liveness). tence/universality of behav-

iors.

Verification Model checking reduces to Model checking often based
automata-theoretic techniques on fixpoint computations over
(Biichi automata). the state space.

FE. Model Checking

Model checking is an automated verification technique
that, given a finite-state model of a system and a formal
property, determines whether the property holds in the model.
In the event of a violation, the model checker generates a
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counterexample, i.e. an execution trace from the initial state to
a state that violates the condition. This significantly enhances
its practical value, as it helps designers identify and correct
errors. Clarke, one of the pioneers of the field, underlined its
significance [11]: “It is impossible to overestimate the impor-
tance of the counterexample feature. The counterexamples are
invaluable in debugging complex systems. Some people use
model checking just for this feature."

Based on state-space exploration, the model checking pro-
cedure can be described in four main phases [14] (see Fig. 5

[15]):

e  State-space generation: Construct the state-space of
the model M, representing all possible infinite execu-
tions of M. The generated state-space can be modeled
as an w-automaton Aj;, whose language L£(Ays) is
given in the form of a Kripke Structure.

e  Property translation: Transform the LTL property ¢
into an w-automaton A, whose language L(A-,)
consists of all infinite executions that violate .

e  Product construction: Build the synchronized product
automaton Ap; @ A-,, which accepts the language
L(An) N L(A-,), representing all executions of M
that invalidate .

e  Emptiness check: Verify whether £(Ay)NL(A-,) =
. If the intersection is empty, the system satisfies .
Otherwise, the product automaton accepts an infinite
word that violates (, which is then returned as a
counterexample.

Modeling

Phase

(‘numerpnmple
Fig. 5. Schematic view of model-checking approach.

The range of properties addressed by model checking is
quite broad. For example, one can verify safety conditions,
such as whether a system may reach a deadlock state, or
quantitative aspects, such as whether every message will
eventually be delivered with a probability of at least 0.99. In
both cases, the verification is carried out automatically: the
model checker systematically explores the system state space
in order to detect any possible violation of the specification.

Several advantages explain the popularity of this technique.
It requires little manual effort, as most of the process is
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automated; it is versatile, covering a wide variety of correctness
properties; and it remains comparatively efficient, even on
complex designs. In addition, model checking can be applied
even when only partial system specifications are available.
While limitations persist, most notably the state explosion
problem, the approach has proven to be one of the most
practical and widely used methods in the field of formal
verification.

However, the practical applicability of model checking is
significantly challenged by the state-space explosion problem,
which becomes particularly acute in the context of modular and
concurrent systems. This limitation motivates the following
discussion on scalability issues in modular concurrency.

III. THE SCALABILITY PROBLEM IN MODULAR
CONCURRENCY

Concurrent and distributed systems, especially when mod-
eled in a modular fashion, pose intrinsic challenges to formal
verification. Although model checking provides strong guar-
antees, its practical use is often hampered by the exponential
growth of the state space. This phenomenon is commonly
referred to as the scalability problem. In this section, we
examine the fundamental dimensions of scalability in modular
concurrency, highlighting how structural and semantic aspects
of systems trigger combinatorial blow-ups that no straightfor-
ward verification method can overcome. These dimensions set
the stage for the reduction and abstraction techniques reviewed
in the subsequent sections.

A. Dimensions of the Scalability Problem in Modular Concur-
rency

The scalability problem in modular verification manifests
along several complementary dimensions. Each of these di-
mensions reflects a specific source of combinatorial growth
that challenges verification pipelines and limits the applica-
bility of Naive exploration strategies. By disentangling these
dimensions, we gain a clearer view of where reduction and
abstraction techniques must intervene to keep verification
tractable. In the following, we outline four major dimensions
that have been consistently identified in recent research: in-
terleaving blow-up, synchronization hotspots, heterogeneous
architectures, and property preservation requirements.

1) Interleaving blow-up: In modular concurrent systems,
each independent action multiplies the interleaving possibil-
ities. This leads to a combinatorial explosion of the state
space. Even simple system topologies may generate billions
of states. Such growth renders explicit exploration infeasible
due to memory and time limitations. The issue worsens when
components interleave freely, forming dense state graphs that
are extremely hard to verify exhaustively.

This challenge has long been identified as a core scalability
barrier in model checking [16]. Recent work shows that, even
with optimized reductions, state counts can exceed 10'? in
real-world concurrent systems [17].

2) Synchronization hotspots:  Partial-Order Reduction
(POR) aims to prune redundant interleavings by merging
equivalent execution paths. However, when modules
synchronize tightly on shared transitions, independence
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drops. This reduces the effectiveness of POR, increasing
exploration cost. Recent complexity results show that finding
near-optimal POR reductions is NP-hard. This underlines the
need for hybrid strategies combining POR with abstraction or
symmetry to regain scalability [18].

3) Heterogeneous architectures: Modern concurrent sys-
tems often execute across heterogeneous platforms such as
multi-core CPUs, GPUs, and distributed clusters. Such plat-
forms promise improved scalability. However, they require
careful handling of memory consistency to maintain sound-
ness and determinism across parallel or distributed memory.
Mismatch in consistency models can cause nondeterministic
and incorrect behaviors. Recent work highlights that enforcing
cache-coherent shared memory across heterogeneous devices
remains challenging, and formal verification must account for
these architectural inconsistencies [19].

4) Property preservation: Effective reduction methods
must guarantee preservation of critical behavioral properties,
especially temporal logic specifications. This usually requires
maintaining trace equivalence or stuttering equivalence, es-
sential for logics like LTL without the next-time operator
(LTL\ X). Recent formal work characterizes stuttering equiv-
alence rigorously and reaffirms that LTL\ X properties remain
valid under such equivalence [20].

To provide a structured overview, Table II summarizes the
four core dimensions that shape scalability limits in modular
concurrent systems.

TABLE II. DIMENSIONS OF THE SCALABILITY PROBLEM IN MODULAR
CONCURRENCY

Aspect Description

Interleaving Blow-Up Exponential growth in interleavings due to concurrent,

independent actions.

Synchronization Hotspots Synchronous transitions undermine Partial-Order Re-

duction (POR); optimizing POR is NP-hard.

Heterogeneous Architec- Multi-core, GPU, and cluster deployments challenge
tures soundness and tool integration.

Property Preservation Reductions must preserve trace or stuttering equiva-
lence to ensure correctness in temporal logics (e.g.
LTL\X, CTL*).

B. Real-World Failures Underscoring Scalability Challenges

The scalability issues discussed above are not only theo-
retical. They have had severe real-world consequences across
hardware, avionics, medical systems, and cloud infrastructures.

o Intel Pentium II FDIV bug. A floating-point division
error escaped formal analysis and led to costly hard-
ware failures [21].

e  Therac-25 radiation accidents. Concurrency-related
defects in the control software caused lethal over-
doses, revealing verification gaps in safety-critical
systems [22].

e Boeing 737 MAX crashes (2018-2019). Insufficient
verification of the MCAS flight-control logic under
modular and concurrent interactions contributed to
catastrophic accidents [23], [24].

e Autonomous vehicle accidents (Tesla, Uber, 2016—
2021). Real-time decision modules misinterpreted sen-
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sor data due to concurrency, leading to fatal out-
comes [25].

e  Spectre/Meltdown vulnerabilities (2018). These hard-
ware flaws exposed the limits of verifying speculative
execution and microarchitectural concurrency [26].

e Cloud outages (AWS, Azure, Google Cloud, 2020-
2022). Complex interactions within distributed ser-
vices triggered cascading failures that standard veri-
fication techniques struggled to predict [28]-[30].

These failures illustrate how state explosion, synchroniza-
tion complexity, heterogeneous architectures, and property
preservation remain key impediments to scalable and trust-
worthy verification.

IV. LANDSCAPE OF SCALABLE VERIFICATION
TECHNIQUES

A wide range of techniques has been proposed to mitigate
the scalability challenges of model checking.

As shown in Fig. 6, these approaches can be organized into
a taxonomy that highlights the main methodological categories,
which will be detailed in the subsequent subsections.

These approaches range from algorithmic reductions that
shrink the explored state space, to compositional reasoning
frameworks that exploit modularity, and to strategies that har-
ness high-performance computing platforms such as multi-core
processors, GPUs, and distributed clusters. This section pro-
vides a structured overview of the methodological principles
that underpin scalable verification. We highlight algorithmic
strategies like state space reduction, abstraction, compositional
reasoning, distributed exploration, and symbolic approaches,
which form the foundation for advancing model checking in
modular and concurrent systems.

A. State Space Reduction Methods

1) Partial-Order Reduction (POR): Partial-Order Reduc-
tion (POR) reduces redundant interleavings by exploiting the
independence of concurrent actions. It has become one of
the most effective techniques to alleviate the state explosion
problem in modular and concurrent systems.

A quasi-optimal POR framework was formalized in [31],
demonstrating how near-optimal reductions can drastically
shrink the explored space in realistic models. Practical ad-
vances have followed, such as context-sensitive DPOR with
observers, which improves scalability while preserving cor-
rectness [32]. Other recent work proposes interference-based
DPOR to further prune unnecessary interleavings [33]. At the
same time, theoretical results confirm the intrinsic hardness
of optimizing POR, proving that even approximate solutions
remain NP-hard [18].

These developments underline both the practical benefits
of POR in real verification pipelines and the fundamental
complexity limits that still motivate new heuristics and hybrid
strategies.
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2) Symmetry reduction: Symmetry reduction (SR) ad-
dresses the state explosion problem by identifying and merging
states that are equivalent under permutations of identical com-
ponents. For instance, in systems composed of many replicated
processes, the order in which two identical processes execute
is often irrelevant; exploring only one such case is sufficient.

This principle has been successfully applied in the context
of Communicating Sequential Processes (CSP), a process
algebra for modeling concurrent systems. Using the Fail-
ures—Divergences Refinement (FDR) model checker, groups of
symmetric states are collapsed so that only a single represen-
tative is explored. This technique has enabled the verification
of models with otherwise extremely large state spaces [34].

More recently, for distributed round-based protocols, parti-
tion symmetry reduction and message-order reduction dramat-
ically shrink the model size by exploiting template symme-
tries [35].

Another promising direction is the use of counter ab-
straction, where systems with many identical components are
represented by counting processes instead of enumerating each
explicitly. The recent work of Eichler et al. [36] introduces
a precise (0,1)-counter abstraction for parameterized verifi-
cation. This approach leverages process symmetry while pre-
serving essential behavioral distinctions, thus enabling scalable
verification of modular concurrent systems with large numbers
of replicated components.

Together, these results illustrate not just how leveraging
symmetry enables scalability in modular settings, but also
how such reductions can be integrated into modern verification
frameworks.

3) Stubborn sets: Stubborn sets are a state space reduction
method that, like partial-order reduction, exploits the indepen-
dence of concurrent actions. The idea is to identify a subset
of transitions as the stubborn set that suffices to represent
all relevant behaviors from a given state. By exploring only
these transitions, large portions of equivalent interleavings can
be safely omitted while preserving essential properties, like
reachability and stuttering-invariant temporal logic formulas
[LTLAX).

The core principle of this method continues to be refined
and adapted to new and complex verification scenarios. For
example, it has been extended to handle two-player reacha-
bility games, providing efficient reduction in adversarial set-
tings where the outcome depends on the choices of multiple
agents [37].

Furthermore, the versatility of stubborn sets is demon-
strated by their application beyond standard Petri nets; they
have been successfully integrated into frameworks for verify-
ing Time Petri Nets, helping to mitigate state explosion in real-
time systems by reducing redundant interleavings of temporal
actions [38].

These developments underscore that stubborn sets remain
a fundamental and adaptable technique for tackling state space
explosion in diverse types of concurrent systems.

B. Abstract State Space Representations

Abstraction is a fundamental method to tackle the state
explosion problem by collapsing sets of concrete states into
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Fig. 6. Overview of scalable verification techniques, categorized into state space reduction, abstraction, compositional reasoning, parallel and distributed
approaches, and symbolic/probabilistic methods.

abstract representatives. In contrast to reductions such as
POR or symmetry, which preserve the concrete structure but
prune interleavings, abstraction constructs a higher-level model
that approximates the original system. Three categories of
abstraction are commonly distinguished in the literature:

1) Predicate abstraction: Predicate abstraction replaces
concrete data domains with Boolean predicates that capture
properties relevant to the verification task. This technique
underpins the well-known CEGAR (Counterexample-Guided
Abstraction Refinement) framework, where spurious coun-
terexamples trigger automatic refinement. Recent work applies
predicate abstraction to real-time multi-agent systems, produc-
ing finite abstract models that remain correct for temporal
logics, such as TCTL [39].

2) Data / Variable abstraction: Variable abstraction re-
duces large or infinite data domains into coarser partitions
such as intervals, symbolic ranges, or sets. This approach is
particularly useful in systems with timing or quantitative data,
where abstraction preserves the control structure but simplifies
the analysis. Examples include abstractions used for timed
automata and hybrid systems, where compact representations
allow tractable model checking [40].

3) Counter abstraction: Counter abstraction (also known
as symmetry-based abstraction) aggregates identical processes
by recording how many are in each local state, rather than

tracking each process individually. This method has been
widely used in the parameterized verification of concurrent
protocols, significantly reducing the state space of replicated-
component systems. Recent advances refine counter abstrac-
tion with precise (0,1)-counters for parameterized systems,
ensuring scalability without losing critical behaviors [36].

These three categories form the canonical core of abstrac-
tion techniques in model checking, offering scalable verifica-
tion through higher-level representations of system behavior.

C. Compositional Verification

Compositional verification is a fundamental strategy to
address state explosion by leveraging the modular structure
of a system. Instead of verifying the system monolithically,
this approach decomposes the verification task by analyzing
individual components in isolation. The results of these local
analyses are then composed to infer global properties of
the entire system. The core challenge lies in managing the
interactions between components, typically through the use of
assumptions, contracts, or abstract interfaces.

1) Assume-guarantee reasoning: Assume-Guarantee Rea-
soning (AGR) is a cornerstone compositional technique that
verifies systems by analyzing their parts separately. Instead
of building a single large model for the entire system, AGR
checks each component under specific assumptions about how
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others will behave. The core idea is captured by a simple
rule: a component C' guarantees a property G provided its
environment meets an assumption A, written as (A)C(G).

To verify a system made of two components, suitable
assumptions must be found so that each component’s guarantee
holds when the other acts as assumed. This avoids construct-
ing the global state space altogether. The main challenge is
automatically discovering these assumptions.

Recent advances are expanding the scope and expres-
siveness of AGR along two key dimensions: by developing
novel logical frameworks to specify complex compositional
properties, such as using epistemic logic to reason about
knowledge in concurrent systems [5], and by creating powerful
symbolic techniques that apply this reasoning to verify intricate
systems, such as multi-language security protocols [27].

2) Interface theories: Interface Theories provide a for-
mal foundation for modeling component interactions through
contracts. A contract explicitly defines the assumptions a
component makes on its environment and the guarantees it pro-
vides under those conditions. This formalism enables rigorous
compositional reasoning by ensuring that each component’s
guarantees satisfy the assumptions of others in the system,
thereby guaranteeing overall correctness [41].

Contract-Based Design (CBD) elevates this concept to
a systems engineering methodology. It promotes modularity,
reuse, and incremental development by allowing components
to be specified, verified, and refined independently based on
their contracts. This approach is particularly effective for large-
scale concurrent systems, as it localizes verification efforts and
simplifies integration. Recent research has focused on over-
coming the practical challenge of manual contract specification
by developing methods for the automated composition and re-
finement of contracts, making the methodology more scalable
and accessible for complex system-on-chip designs [42]. The
practical impact of CBD is significant, with successful applica-
tions spanning critical domains such as cyber-physical systems
(CPS), where it helps manage the complexity of interactions
between computational and physical elements [43]. This also
extends to the automotive and aerospace industries.

3) Compositional abstraction and minimization: This tech-
nique involves generating a simplified, abstract model for
each component that is conservative with respect to the
properties of interest. The key idea is to reduce the state
space of individual components before composition, making
the subsequent global analysis more tractable. The abstraction
must be precise enough to preserve relevant behaviors when
components interact.

Methods range from traditional abstraction refinement (CE-
GAR) applied compositionally to techniques that exploit the
modular structure to minimize each component while preserv-
ing equivalence (e.g. bisimulation minimization).

A recent advancement in this area focuses on compositional
model checking for multi-properties, which aims to verify
multiple system properties simultaneously and efficiently by
leveraging the compositional structure [44]. The final verifi-
cation step is performed on the composition of the abstract
models, which is typically much smaller than the composition
of the original components.
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D. Distributed and Parallel Verification

The exponential growth in state space size often ex-
ceeds the capabilities of sequential verification, necessitating
approaches that leverage parallel and distributed computing
architectures. This subsection explores three key strategies that
exploit modern hardware to distribute the computational and
memory load of verification. These techniques, which target
multi-core CPUs, GPUs, and distributed clusters respectively,
form an essential toolkit for scaling verification to extremely
large and complex modular systems.

1) Multi-core verification: A key strategy to combat state
explosion leverages the parallel processing power of multi-
core CPUs. This involves designing model checking algorithms
and data structures that can efficiently distribute the workload
across multiple cores, aiming for near-linear speedups. The
challenge lies not only in parallelizing state space exploration
but also in ensuring that the underlying data structures scale
without becoming a bottleneck due to memory contention or
fragmentation.

Recent innovations address this core challenge head-on.
The EDDY framework exemplifies this progress, introducing
a novel multi-core Binary Decision Diagram (BDD) package
specifically engineered for modern shared-memory architec-
tures [45]. Its main contributions include advanced dynamic
memory management and a fragmentation-reducing allocator,
which together mitigate critical performance overheads that
plague traditional implementations. By optimizing memory
access patterns and locality, EDDY enables more efficient
parallel symbolic verification, directly increasing the scale of
systems that can be checked. This focus on low-level memory
optimization complements higher-level concurrency strategies,
such as work stealing and lock-free data structures, forming a
robust and scalable foundation for multi-core model checking.

a) GPU-based model checking: The massive paral-
lelism offered by GPUs is exploited to accelerate demanding
verification tasks, particularly for complex system models. This
approach moves beyond traditional CPU-bound algorithms to
harness the thousands of cores available on a GPU for parallel
state space exploration and analysis.

GPU acceleration effectively scales Statistical Model
Checking (SMC), a key method for verifying stochastic and
timed systems. For instance, executing simulations of Extended
Timed Automata on the GPU significantly accelerates the
verification of temporal and probabilistic properties [46]. This
approach efficiently tackles state space explosion in complex
real-time models.

2) Distributed state space construction: Distributed verifi-
cation decomposes the global state space across a network of
machines, each responsible for exploring a distinct partition.
This approach directly addresses the memory limitations of
a single node, enabling the analysis of exceptionally large
systems. The performance and scalability of this strategy
critically depend on the underlying network technology and
the efficiency of state management.

Cutting-edge research now leverages high-speed RDMA
networks to minimize communication overhead. For instance,
recent algorithms combine distributed exploration with sophis-
ticated state reconstruction techniques, dramatically reducing
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the amount of data that needs to be transmitted between nodes.
An evaluation of such an approach shows significant improve-
ments in scalability and efficiency for explicit state model
checking, demonstrating the potential of modern networking
technologies for distributed verification [47]. This line of work
is directly applicable to large-scale modular systems, including
those using RDSS-style construction.

E. Symbolic and Probabilistic Verification

While the previous techniques often deal with the state
space explicitly or by exploiting its structure, another family
of approaches uses fundamentally different representations.
This part covers two such powerful paradigms: symbolic
verification, which uses compact encodings to represent vast
state spaces implicitly, and probabilistic verification, which
extends classical model checking to reason about stochas-
tic behaviors and quantitative properties. The integration of
symbolic and probabilistic methods opens new frontiers for
scalable verification.

1) Symbolic methods: Symbolic model checking tech-
niques avoid explicit state enumeration by using compact logi-
cal representations. These methods employ data structures such
as Binary Decision Diagrams (BDDs) and satisfiability solvers
(SAT/SMT) to encode state sets and transition relations as
formulas. This approach enables efficient property checking by
exploring large state spaces symbolically rather than explicitly.

The practical effectiveness of these techniques depends
fundamentally on the performance of their underlying rea-
soning engines. Modern SAT/SMT solvers have demonstrated
remarkable capability in solving complex constraint problems
across various domains. As shown in recent evaluations of
large-scale puzzle solving, these solvers can efficiently handle
problems with millions of constraints and variables, showcas-
ing their scalability and robustness [48]. In formal verification,
this computational power enables the analysis of complex
system properties by reducing verification tasks to satisfiability
problems, making symbolic methods essential for handling
large-scale industrial systems.

2) Probabilistic verification: Probabilistic model checking
extends classical verification to systems that exhibit random
or unpredictable behavior. This approach analyzes quantitative
properties of models such as Markov chains, which describe
systems evolving probabilistically over time. Unlike tradi-
tional verification that provides yes/no answers, probabilistic
methods compute likelihoods, for example, determining the
probability that a communication protocol successfully delivers
a message or calculating the expected energy consumption of
a distributed algorithm.

The theoretical foundation for efficiently analyzing these
models relies heavily on notions of behavioral equivalence.
Recent advances have focused on developing a spectrum of
approximate probabilistic bisimulations, which provide a for-
mal framework for quantifying the similarity between states in
probabilistic systems [49]. This allows for the construction of
simplified models that preserve quantitative properties within
precise error bounds, enabling more efficient analysis.

To consolidate this discussion, Table III provides a struc-
tured summary of the main categories of scalable verifica-
tion techniques, their key methodological principles, typical
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domains of application, and their suitability for modular con-
currency.

Remark. Some references appear in multiple sections of
this survey. This reflects their dual relevance: for instance, a
contribution may introduce a novel reduction technique while
also providing its implementation in a widely used tool. In such
cases, the same source is cited in both the methodological and
tooling contexts to accurately represent its impact across the
landscape.

V. ToOOLING ECOSYSTEM: CAPABILITIES FOR MODULAR
SYSTEMS

In parallel with theoretical advances, a rich ecosystem of
verification tools has been developed. These platforms imple-
ment the reduction, abstraction, and compositional techniques
surveyed in the previous section, thus bridging academic
research with industrial applications. This section reviews the
most influential verification tools and evaluates their relevance
for modular and concurrent systems.

A. Classical Explicit-State Tools

Classical explicit-state tools represent the first generation of
practical model checkers. They operate by directly constructing
and exploring the state space. They are often supported by
sophisticated search strategies and reduction techniques to
manage the explosion of states. Although more recent symbolic
and distributed approaches have emerged, these tools remain
highly influential. They are still actively used in both academia
and industry. The following subsections briefly review three
representative explicit-state platforms.

1) SPIN: The SPIN model checker [8] remains one of
the most widely used explicit-state verification engines. It
targets systems specified in the Promela modeling language
and implements techniques such as partial-order reduction and
bitstate hashing. SPIN has been applied to a broad spectrum of
communication protocols and distributed algorithms, demon-
strating scalability up to millions of states. While not natively
modular, its support for asynchronous processes makes it rel-
evant for analyzing concurrent behaviors in modular settings.

2) NuSMV: NuSMV [10] is a symbolic model checker
supporting both CTL and LTL properties. It implements BDD-
based symbolic methods and SAT-based bounded model check-
ing, providing a balance between explicit and symbolic explo-
ration. Although its architecture is not specifically modular,
NuSMYV has served as a foundation for contract-based veri-
fication frameworks, notably in embedded and safety-critical
software.

3) UPPAAL: UPPAAL [50], [51] focuses on timed au-
tomata and real-time systems. It integrates symbolic techniques
for handling clock variables, making it particularly suited
for modular cyber-physical systems. Compositional extensions
of UPPAAL support verification of large networks of timed
components, where timing constraints play a central role.

B. High-Performance Verification Frameworks

High-performance frameworks emerged to overcome the
scalability limitations of classical explicit-state tools. These
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TABLE III. COMPARATIVE SUMMARY OF SCALABLE VERIFICATION TECHNIQUES, THEIR DOMAINS, AND SUITABILITY FOR MODULAR CONCURRENCY

Category Key Methods / References

Domain of Application Suitability for Modular Concurrency

State Space Reduction POR [18], [31]-[33], Stubborn Sets [37], [38],

Symmetry [35], [36]

Protocols, Hardware verification, Petri High — directly addresses interleaving
nets and replication in concurrent modules

Abstract Representations Predicate [39], Variable/Data [40], Counter [36]

Hybrid systems, Real-time models, Pa-
rameterized protocols

Medium to High — effective when ab-
straction is precise, but risk of spurious
behaviors

Compositional Verification AGR [5], [27], Interface Theories [41]-[43], Com-

positional Abstraction [44]

Large-scale software, Cyber-physical
systems, Security protocols

High — inherently modular, though as-
sumption discovery and contract design
remain challenging

Parallel & Distributed, Sym-
bolic & Probabilistic Verifica-
tion

Multi-core [45], GPU [46], Distributed [47], Sym-
bolic/Probabilistic [48], [49]

Industrial-scale models, Stochastic pro-
tocols, Cloud infrastructures

Medium to High — excellent for scal-
ing exploration, less natural for modular
decomposition

platforms exploit optimized data structures, parallel architec-
tures, and language-independent interfaces to accelerate state
space exploration. They provide the backbone for verifying
larger and more complex models, while often serving as
integration points for new reduction techniques and symbolic
back-ends. The following subsections review representative
frameworks in this category.

1) LTSmin: LTSmin [52] is a high-performance language-
independent model checker that provides interfaces to multiple
modeling languages (e.g. Promela, DVE, PNML). It integrates
symbolic techniques (decision diagrams), parallel reachability,
and partial-order reductions. Its modular architecture and na-
tive support for Petri nets make it highly relevant for modular
concurrency.

2) DiVinE: DiVinE [53] is a distributed explicit-state
model checker designed for large-scale verification on clusters
and high-performance computing platforms. It implements
parallel reachability, on-the-fly LTL model checking, and ad-
vanced partial-order reductions. DiVinE demonstrates strong
scalability for concurrent modular models distributed across
thousands of cores.

3) EDDY (multi-core BDD): The EDDY framework [45]
provides a multi-core BDD package optimized for shared-
memory architectures. By redesigning memory allocators and
dynamic variable reordering, EDDY improves symbolic model
checking on multi-core CPUs. This directly addresses the need
for efficient symbolic verification in modular systems with
large state spaces.

C. Probabilistic and Symbolic Engines

Another important branch of verification frameworks fo-
cuses on symbolic and probabilistic approaches. Instead of
relying solely on explicit state enumeration, these engines
use compact logical representations or stochastic models to
capture system behaviors. Symbolic methods such as BDD-
or SAT/SMT-based encodings enable implicit exploration of
vast state spaces, while probabilistic model checkers extend
classical verification to reason about uncertainty and quantita-
tive properties. Together, these tools greatly expand the range
of systems and properties that can be analyzed. The following
subsections highlight representative engines in this category.

1) STORM: STORM is a modern probabilistic model
checker that integrates symbolic, explicit, and numerical meth-
ods into a unified framework. It supports a wide range of prob-
abilistic models, including Markov decision processes (MDPs),

continuous-time Markov chains (CTMCs), and stochastic Petri
nets, making it applicable to both academic benchmarks and
industrial-scale case studies. Unlike earlier tools that special-
ized in either symbolic or explicit techniques, STORM pro-
vides a flexible architecture that combines multiple engines to
balance scalability and precision. Recent evaluations confirm
its ability to analyze large and complex quantitative models
while maintaining soundness and efficiency [54]. This makes
STORM particularly relevant for modular and concurrent
systems where stochastic behaviors interact with structural
concurrency.

2) PRISM: PRISM [55] pioneered probabilistic model
checking and remains a widely used tool for analyzing stochas-
tic protocols and cyber-physical systems. It supports a wide
range of probabilistic logics and has influenced the design of
STORM. While not primarily modular, its modeling language
facilitates component-based specifications.

3) SAT/SMT-based frameworks: Modern SAT/SMT-based
model checkers leverage the efficiency of constraint solvers
to perform bounded or unbounded verification. Tools such as
CBMC and IC3-based solvers integrate abstraction-refinement
and compositional reasoning, making them suitable for modu-
lar concurrent software verification. Recent advances demon-
strate their scalability for verifying security protocols and
hardware blocks.

D. Domain-Specific and Hybrid Tools

Beyond general-purpose model checkers, a variety of
domain-specific and hybrid tools have been developed to ad-
dress the needs of particular application areas. These platforms
often combine multiple verification paradigms (explicit, sym-
bolic, probabilistic) and tailor them to specialized modeling
languages or industrial domains. They play a crucial role in
bridging the gap between theoretical advances and real-world
deployments, offering verification capabilities that are more
directly aligned with practitioner requirements. The following
parts survey representative tools in this category.

1) PAT (Process analysis toolkit): PAT [56] supports ver-
ification of process-algebraic models, combining CSP-style
semantics with state space reductions and refinement checking.
It provides explicit support for modular specifications and has
been applied to distributed protocols and workflow systems.

2) SDV (Static driver verifier): Microsoft’s Static Driver
Verifier (SDV) integrates symbolic model checking with static
analysis to automatically verify Windows device drivers [57]. It
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builds on the SLAM project and uses predicate abstraction with
refinement. Although domain-specific, SDV exemplifies how
verification pipelines can scale to real-world modular software
components.

3) Recent hybrid platforms (GPU, cloud): Recent tools
leverage GPUs and cloud infrastructures to accelerate verifi-
cation. Notably, distributed model checkers such as DiVinE-
cloud and GPU-accelerated statistical model checking frame-
works demonstrate promising results [46], [47]. These plat-
forms highlight the emerging trend of integrating heteroge-
neous computing into verification workflows.

4) SPORE: SPORE [58] is a recent stateless model checker
that combines partial-order reduction with symmetry reduction.
Its hybrid algorithm significantly reduces explored interleav-
ings, demonstrating orders-of-magnitude improvements over
classical POR. SPORE directly targets concurrency and is par-
ticularly relevant for modular distributed protocols. Although
some of these tools were introduced decades ago, they continue
to be actively maintained and widely applied in recent studies.

Table IV summarizes their core verification techniques,
supported models, relevance for modular/concurrent systems,
and illustrates their continued impact with recent references
and application domains.

While many of these tools were originally introduced more
than a decade ago, their sustained use in recent research
highlights the robustness of their foundational techniques. As
shown in Table IV, extensions such as GPU acceleration,
symbolic encodings, and domain-specific adaptations (e.g.
robotics, IoT, autonomous driving) ensure that these platforms
remain relevant for contemporary verification challenges. This
consolidated landscape provides the backdrop against which
we now situate our own contribution, focusing on the Reduced
Distributed State Space (RDSS) framework and its role in
addressing scalability in modular concurrent systems.

VI. RDSS: CONTRIBUTION, POSITIONING, AND FUTURE
DIRECTIONS

Building upon the surveyed techniques and tools, this sec-
tion introduces the Reduced Distributed State Space (RDSS)
framework as a novel approach to scalable verification of
modular and concurrent systems. RDSS directly addresses
the limitations identified in existing methods by providing a
modular structure that integrates reduction principles while
enabling verification at the level of individual modules. We
first outline the gaps in current approaches, then present the
RDSS framework and its key contributions, followed by a
discussion of its positioning within the literature and possible
future extensions.

A. Scope and Claims

Before detailing our framework, we explicitly clarify its
scope and novelty. The novel contribution of RDSS lies in
its ability to perform local model checking directly on per-
module meta-graphs, rather than requiring construction of
the entire global state space. This is achieved through two
key mechanisms: (i) 7-hiding of irrelevant synchronizations,
and (ii) meta-state fusion that preserves stuttering equiva-
lence. These innovations enable verification of module-specific

Vol. 16, No. 9, 2025

properties with strong theoretical guarantees. RDSS does not
reinvent prior reduction strategies; instead, it integrates and
benefits from established methods such as partial-order re-
duction, symmetry reduction, and abstraction, while remaining
compatible with distributed exploration. Finally, the property
classes supported are those expressible in the stutter-invariant
fragment of LTL (LTL \ X), including safety, liveness, and
local properties such as deadlock-freedom, home-space reach-
ability, and module-level liveness. By stating these boundaries,
we aim to separate our claims from the survey of existing work
and set clear expectations for the reader.

B. Identified Gaps in Existing Approaches

Despite the advancements in model checking and state
space reduction methods, current verification techniques for
modular and concurrent systems face significant scalability
challenges. Traditional approaches, such as POR, symmetry
reduction, and abstraction, address specific aspects of the state
space explosion problem. Unfortunately, they do not provide
comprehensive solutions for the complex nature of modern
systems.

First, POR helps reduce redundant interleavings by exploit-
ing the independence of actions. However, its effectiveness is
limited when the system’s concurrency is highly interdepen-
dent or exhibits complex synchronization. Symmetry reduction
identifies equivalent states that result from symmetric compo-
nents. Nevertheless, it fails to address cases where the symme-
try is less evident or dynamic. Similarly, abstraction techniques
can collapse large portions of the state space. However, they
risk oversimplifying behaviors, potentially missing critical
verification information. This is particularly problematic when
applied to modular systems with complex interactions between
components.

Moreover, these techniques, while effective individually,
fail to handle the full scope of challenges posed by highly
dynamic and modular systems, where components can interact
in unpredictable ways. These limitations motivate the need
for more integrated and scalable approaches, such as Reduced
Distributed State Space (RDSS), which tackles the scalability
problem in a modular and distributed context.

C. The RDSS Framework

The RDSS framework introduces a novel and scalable solu-
tion to the state explosion problem in modular and concurrent
systems. It builds upon the distributed state space structure
originally proposed in [80], extending it with formal guar-
antees such as stuttering equivalence, 7-hiding of irrelevant
synchronizations, and fusion of equivalent meta-states. This
part first presents the core principles of RDSS, followed by its
key contributions to scalable verification.

1) The RDSS principle: The RDSS framework addresses
the challenge of state explosion in modular systems by re-
ducing the global state space into smaller, manageable meta-
graphs formed of meta-states that represent the state space
of individual modules. The input of the RDSS consists of
the concurrent modular system specification being studied,
formalized in a Modular Petri Net structure. Each module in
the system constructs its local meta-graph, capturing only the
relevant transitions based on local and synchronized events.
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TABLE IV. SUMMARY OF REPRESENTATIVE VERIFICATION TOOLS, THEIR CORE TECHNIQUES, SUPPORTED MODELS, RELEVANCE FOR
MODULAR/CONCURRENT SYSTEMS, AND EVIDENCE OF CONTINUED USE IN RECENT DOMAINS

Tool Core Techniques Model Supported Relevance to Modu- Recent  Use Application Domain (Recent)
lar/Concurrent Systems (Refs.)

SPIN Explicit-state, POR, Bitstate Promela processes Asynchronous processes, [591, [60] IoT-based transport, abstracted
hashing distributed protocols IoT protocols

NuSMV Symbolic (BDD, SAT/SMT), SMV language, CTL/LTL Contract-based  reasoning  in [61], [62] Multi-agent systems, software
Bounded MC modular embedded systems product lines

UPPAAL Symbolic (timed automata, Networks of Timed Automata Real-time CPS and IoT verifica- [63], [64] Drone access control, contract
DBMs) tion automata runtime

LTSmin Symbolic DDs, POR, Dis- PNML, Promela, mCRL2 Modular Petri Nets and parame- [65], [66] GPU-based LTL MC,
tributed exploration terized models knowledge-based reductions

DiVinE Explicit distributed MC, Paral- DVE, PNML, Promela Cluster-based concurrency analy- [67], [68] C++ program verification, GPU
lel LTL checking sis POR

EDDY Multi-core symbolic BDDs Symbolic encodings (BDD- Shared-memory multi-core veri- [69], [70] HPC memory optimization, GPU

based) fication model training

STORM Symbolic + numerical proba- MDPs, CTMCs, Stochastic Quantitative  verification  of [71], [72] Robotic systems, MDP algorithm
bilistic engines PN stochastic modular systems selection

PRISM Symbolic (BDD, MTBDD), Probabilistic automata, MDP, Stochastic CPS, security proto- [73], [74] Symmetry reduction, model-
Probabilistic checking CTMC cols based frameworks

SPORE Stateless MC, POR + Symme- Concurrent C  programs, Concurrency, modular distributed [58] Benchmarks of concurrency pro-
try reduction message-passing protocols protocols grams

PAT Explicit + refinement checking, CSP-style models, workflows Modular process-based verifica- [75], [76] Federated learning, blockchain
POR tion smart contracts

SDV Predicate abstraction + CE- C code (Windows drivers) Modular verification of device [771, [78] Distributed BMC, autonomous
GAR (SLAM) drivers driving (ADS)

The interactions between modules in RDSS are captured
through synchronization points, which align the meta-graphs
of different modules during the construction process. This
modular approach avoids the need to explore redundant state
space information from non-relevant modules.

A key concept in RDSS is the use of 7 transitions, which
are used to hide irrelevant synchronizations between modules.
These transitions allow the system to focus on the core
behaviors, ignoring unnecessary synchronization events that do
not affect the properties being verified. During the construction
of the RDSS, equivalent meta-states are identified and merged
to reduce the overall state space. This process ensures that
only unique behaviors are captured, and redundant states that
exhibit identical or analogous transitions are eliminated.

This fusion is based on the principle that multiple states,
which share the same output behavior and synchronization
properties, can be represented by a single meta-state. By
merging these equivalent meta-states, RDSS maintains the
correctness of the verification while significantly reducing the
number of states that need to be explored [81].

The local meta-graphs are then used for verification, en-
abling the system to scale by performing module-specific
verification without requiring access to the entire global state
space [79].

Furthermore, RDSS ensures the stuttering equivalence of
the reduced state space. It has been formally proven that the
projection of the language generated by the graph of a module
on its own transitions is the same as the language generated
by the entire system’s global state space. This guarantees that
no critical behaviors are lost during the reduction process.

Fig. 7 demonstrates the modular decomposition and the use
of synchronization points in the RDSS framework.

Module B Module C

Module A

Fig. 7. Ilustration of RDSS corresponding to the Modular Petri Net of Fig.
4.

D. Soundness of Local Model Checking in RDSS

A central question for the Reduced Distributed State Space
(RDSS) framework is whether properties verified locally on
module-level meta-graphs are sound with respect to the origi-
nal Modular Petri net (MPnet). This subsection establishes the
formal basis of this claim by proving that RDSS preserves
stuttering equivalence with the original system, and that the
projection of behaviors on a given module coincides in both
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structures. As a result, LTL \ X properties can be checked
locally without loss of correctness.

1) Projection argument: Let X be the language generated
by the MPnet P over its set of transitions, and X /s the
projection of ¥ onto the transitions specific to module s. Let
3, be the language generated by the meta-graph of module s,
and X,/ its projection onto the transitions of s. We prove that
Z/ s = Zs/ s

Indeed, any infinite execution sequence o € X can be
written as

0= ((tl)*(tsynC)*T*)*v

where, ?; are local transitions, ¢4, are synchronized tran-
sitions, and 7 denotes hidden synchronizations. Projecting o
onto module s eliminates irrelevant synchronizations, yielding

*

o>/s = ((tl,s)*(tsync,S)*) € 2s.

Hence ¥/, C ¥,/,.

Conversely, every execution o € > is built from the local,
synchronized, and 7 transitions of module s, so

0= ((tl,s)*(tsyﬂcvs)*T*)*'

Projecting o on s removes the 7 transitions, giving

o/ = ((ts) (tsynes)™)” € B

Thus 3,5 C X ,;. Combining both inclusions yields:

Y5 =Xgs

2) Stuttering equivalence: From the above projection re-
sult, we conclude that the maximal paths of the MPnet and
those of the RDSS coincide modulo 7-hiding. This implies
that the two structures are stuttering-equivalent, and therefore
preserve all properties expressible in the stutter-invariant frag-
ment LTL \ X.

Theorem 1 (Stuttering Equivalence for RDSS): Let P be
an MPnet with P = (S,TF), and let R be its corresponding
RDSS defined as

R={RG, =N, A)|seS}

For any LTL \ X formula ¢ defined over T}, the set of
local and synchronized transitions of a module s, we have:

PEp < REp.
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3) Proof sketch: The projection argument shows that every
path of P restricted to module s corresponds to a path in R
and vice versa. Since LT L\ X properties are preserved under
stuttering equivalence, verifying ¢ on the module-level meta-
graph is sound and complete with respect to verifying it on the
global reachability graph. Detailed proofs and demonstrations
are available in our GitHub repository?.

4) Key contributions of RDSS: The RDSS framework offers
several groundbreaking contributions to the field of scalable
verification for modular concurrent systems:

5) Verification of individual modules: The core contribu-
tion of RDSS is its ability to verify properties of individual
modules using only the meta-graph of that specific module.
Unlike traditional methods that require access to the global
state space, RDSS is a pioneering approach that enables local
model checking. This approach drastically improves scalabil-
ity, as it allows the modules of large systems to be verified
efficiently. The benefits of this modular verification strategy
are further illustrated in Fig. 8, which compares the verification
times of RDSS with those of LTSmin. The results show that
RDSS achieves competitive or even superior performance,
particularly in systems where modules are not all synchronized
on the same transitions.

#77 LTSmin - Verified
NN Local MC - Verified
EEE LTSmin - Violated
B Local MC - Violated

0.014

0.012

o o o
o o o
S S =
=) =3 o

Verification Time (s)

0.004

0.002

) 'n

O\

A VAN
ERK1 Robot1

0.000 Philol

Fig. 8. Comparative performance of LTSmin and Local Model Checking in
verifying modular systems.

6) Integration of state space reduction techniques: Another
significant contribution of RDSS is its integration of various
state space reduction techniques into a modular framework.
Methods such as partial-order reduction (POR), symmetry
reduction, and abstraction are applied both at the global and
local levels. By combining these reductions, RDSS is a hybrid
method that optimizes the verification process, ensuring the
correctness of global properties while managing the complex-
ity of individual modules.

7) Flexibility in modular verification: RDSS introduces
a new level of flexibility in the verification of modular
systems, particularly for systems with dynamic interactions.
Unlike traditional verification methods that may struggle with
complex interdependencies between modules, RDSS can effi-
ciently handle systems where interactions evolve, leveraging its
module-specific meta-graphs. Moreover, the modular structure

Zhttps://github.com/chihebabid/DSS-Checker
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of RDSS is well-suited for distributed concurrent systems, as
it allows for efficient verification by focusing on individual
modules and their interactions, rather than constructing the
entire global state space.

8) State space size reduction: When compared with the flat
Petri net state space, RDSS delivers better results, particularly
for systems where not all modules are synchronized on the
same transitions. This reduction in state space is particularly
beneficial for verifying large-scale modular systems, as shown
in Fig. 9, which illustrates the performance improvement of
RDSS over traditional methods. The comparison between the
flat Petri net and RDSS in terms of transitions and markings
demonstrates the scalability advantages of the RDSS approach.

800
—e— Flat Petri Net - Transitions

RDSS - Local + Sync Arcs
700 —m— Flat Petri Net - Markings

—m— RDSS - Markings

ERK1 Philo3 Robotl
Model

Fig. 9. Comparison of Flat Petri Net and RDSS. The figure illustrates the
performance improvement of RDSS in terms of state space size reduction,
particularly in systems with unsynchronized modules.

9) Model checking focus: A key strength of RDSS lies in
its model checking capabilities. By focusing on module-level
verification, RDSS allows for the verification of properties
such as deadlock, liveness, and reachability directly within
each module, using its associated meta-graph. This localized
model checking significantly reduces the computational burden
compared to traditional approaches that require the construc-
tion and exploration of the entire global state space.

Fig. 10 illustrates the RDSS model checking process,
highlighting how the meta-graph of each module is used for
verification. This diagram emphasizes the modular decomposi-
tion of the verification process, showcasing the RDSS’s ability
to verify individual components without needing to consider
the full system’s state space.

10) Worked example: To illustrate the process, consider
the Modular Petri Net (MPN) in Fig. 4 and its corresponding
RDSS in Fig. 7.

We aim to verify the following LTL \ X property on
module A:

v = G(sync; = Fty1) A G(ﬂ(tal — Ftag)).

Instead of constructing the global state space, verification
is restricted to the meta-graph RG 4 of module A (Fig. 11).
The procedure follows the automata-theoretic model checking
approach:
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LTL property Modular Model of the system

Generation of the correspondant
RDSS
LTL Translation ‘

Generation of the negation ’ ‘

Retrieving the relevant ’

meta-graph RG:

Generation of the associated

property automaton A“Q Automaton A res

Synchronized product

ArG:® AQ

Emptyness Check

Counter example

Fig. 10. The RDSS local model checking workflow.

e  Negate the property ¢ to obtain —p.
o  Construct the Biichi automaton A-, (Fig. 12).

e  Build the automaton A, from the module’s meta-
graph.

e  Compute the synchronous product Arg, ® A-, (Fig.
13 and Fig. 14.

Initially, both automata start in their respective initial states.
During the first synchronization step (Fig. 13), when the tran-
sition syncl is activated in the meta-graph of module A, the
automaton of —y fires !¢,1, moving to state 1. Subsequently,
as illustrated in Fig. 14, the cycle in the component’s strongly
connected component (SCC) allows repeated firings of ¢,5.%,3,
which are matched by the “true” loop in the automaton of —¢.

In this case, the product automaton is not empty. The
counterexample execution is:

syncy - (tq1 ta2)™,

showing that ¢ is violated.

This example demonstrates concretely how RDSS enables
local model checking by verifying properties using only the
meta-graph of the concerned module, thus avoiding the explo-
sion of the global state space.

These contributions, particularly the ability to perform local
model checking and reduce the global state space, mark RDSS
as a highly effective and scalable solution for verifying large,
modular systems.
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Module A

wB3C,T

Fig. 11. Meta-graph of module A.

tal A 'ta2 True

0 ltal v ta2

Fig. 12. Automaton of —p.

tal A Ita2 True

I .
o ltal v ta2 @

Fig. 13. First step of the synchronized product construction.

tal A Ita2 True

(3
° ltal V ta2 @

Fig. 14. Second step of the synchronized product construction.

11) Experimental setup and reproducibility: To ensure
reproducibility of the reported results, we now provide addi-
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tional details on the benchmarks, environment, and properties
considered.

a) Benchmarks: The experiments were carried out on
Modular Petri Net models representative of the case stud-
ies discussed in this paper. These include 1) an IoT-based
monitoring scenario with modular communication between
devices and gateways, and 2) a multi-robot patrolling system
with synchronized alert transitions. For each model, different
parameterizations were used to vary the number of modules
and the degree of synchronization between them.

b) Verification properties: The properties evaluated in-
clude locally generic ones such as deadlock-freedom, home-
space reachability, and liveness, as well as temporal proper-
ties expressed in the stutter-invariant fragment LTL\X (e.g.
G —error and GF request — F grant). These properties were
selected to cover both safety and liveness aspects.

c) Environment: All experiments were executed on a
workstation running Ubuntu 22.04 LTS, equipped with an Intel
Core i7 processor and 16 GB of RAM. The RDSS prototype
was implemented in C++/ROS2, while LTSmin and SPIN were
used as comparative tools. Each verification run was subject
to a timeout of 30 minutes.

d) Replication: The RDSS implementation, benchmark
models, and property specifications are publicly available at
https://github.com/chihebabid/ros2dss, enabling replication of
the results presented in this paper.

E. Positioning RDSS within the Literature

The Reduced Distributed State Space (RDSS) framework
introduces a modular approach to overcome state explosion,
going beyond traditional reductions by exploiting meta-graphs
of individual modules. We briefly position RDSS against
classical techniques and widely used tools, and highlight its
application domains.

1) Reduction techniques: Compared to Partial-Order Re-
duction (POR), RDSS avoids redundant global interleavings
by applying reductions locally at the module level. Unlike
Symmetry Reduction (SR), which assumes static symmetries,
RDSS flexibly combines SR with 7-hiding and meta-state
fusion. In contrast to coarse-grained abstractions, RDSS pre-
serves stuttering equivalence, ensuring correctness of LTL\ X
properties.

2) Verification tools: NuSMV is effective for small sym-
bolic systems but does not scale to modular decomposition.
LTSmin supports large state spaces yet lacks modular re-
duction; RDSS achieves competitive performance with lower
memory needs (Fig. 8). SPIN remains powerful for explicit-
state checking but does not provide modular verification like
RDSS, which verifies module-specific properties directly.

3) Application domains: RDSS is particularly well-suited
for distributed concurrent systems, where modules interact
through synchronization but maintain partial independence.
This includes multi-robot systems, 10T platforms, and cyber-
physical infrastructures, where global state construction is in-
feasible. For example, in [82], RDSS was successfully applied
to an IoT-based case study, showing that local model checking
can verify safety and liveness properties efficiently without
exploring the full global state space.
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4) Summary: Overall, RDSS integrates the principles of
POR, SR, and abstraction while overcoming their modularity
limitations. By focusing on module-specific properties, RDSS
positions itself as a scalable solution for distributed concurrent
systems, with promising applications in robotics, IoT, and
large-scale modular infrastructures. As highlighted in Table V,
RDSS complements existing techniques and tools by enabling
local model checking with reduced state space construction,
offering clear advantages in modular and dynamic settings.

F. Limits Under Dense Synchronization

While RDSS demonstrates clear advantages when modules
retain partial independence, a pathological case arises when
the system exhibits dense synchronization, i.e. when most or
all transitions are shared among modules (case of ERK1). In
this scenario, the benefits of modular decomposition diminish,
since local meta-graphs must frequently synchronize, reduc-
ing the reduction opportunities from 7-hiding and meta-state
fusion.

Compared to classical techniques, RDSS in this setting
behaves closer to a flat global exploration, as synchronization
dominates the structure of the meta-graphs. Partial-order re-
duction (POR) or stubborn sets may then achieve comparable
or even better pruning, since they exploit independence at the
transition level rather than structural modularity. Symmetry
reduction may also remain beneficial if replicated modules
synchronize in a uniform manner, collapsing symmetric syn-
chronization patterns.

These observations suggest that RDSS is most advanta-
geous in systems where:

e  Modules contain a significant proportion of local tran-
sitions relative to their synchronized ones,

e  Synchronization points are sparse or limited to subsets
of modules, and

e  Property checking targets module-specific behaviors
(e.g. local deadlock, local liveness, LTL\ X properties
tied to one module).

In contrast, in systems with dense synchronization, hybrid
approaches that combine RDSS with stubborn sets or sym-
bolic encodings may be more appropriate, ensuring that both
structural and transition-level redundancies are exploited.

G. Future Directions and Extensions

While the RDSS framework already provides a scalable
and modular verification approach, several promising research
directions remain open. These extensions aim to further en-
hance scalability, applicability, and integration with modern
verification practices.

1) Distributed implementations with ROS2: One natural
extension of RDSS is its deployment in distributed verifi-
cation environments. A first step in this direction has been
demonstrated through a prototype implementation based on
ROS2, where modules act as independent nodes commu-
nicating through publish/subscribe services. This distributed
construction of the RDSS allows verification tasks to be exe-
cuted concurrently across multiple workers, offering increased
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scalability for large systems with heterogeneous components.’
Future work can explore optimizations in communication
overhead and dynamic load balancing.

2) Al-driven heuristics for reduction: The construction of
RDSS relies on reduction techniques, such as partial-order
reduction, symmetry, and abstraction. Integrating artificial in-
telligence, particularly reinforcement learning and machine
learning heuristics, could guide the selection of reduction
strategies dynamically. For instance, Al agents may learn to
prioritize transitions, identify symmetries, or detect redundant
synchronizations, thereby reducing exploration costs while
preserving correctness. Such integration would pave the way
for adaptive and context-aware verification pipelines.

3) Hybrid reduction strategies: Another promising direc-
tion is the design of hybrid approaches that combine RDSS
with other established reduction frameworks. This includes
integrating counterexample-guided abstraction refinement (CE-
GAR), advanced stubborn sets, or symbolic encodings with
the modular meta-graph construction of RDSS. Such hybrids
would allow leveraging the strengths of different techniques to
achieve stronger reductions without sacrificing property preser-
vation, particularly for LTL\ X and branching-time logics.

4) Application to emerging domains: RDSS is naturally
suited for concurrent and modular architectures such as multi-
robot coordination, IoT ecosystems, and cloud-native dis-
tributed systems. Extending RDSS to these domains can pro-
vide realistic benchmarks that highlight its advantages over
state-of-the-art tools. For example, in the loT-based agri-
culture use case [82], RDSS enabled local model checking
without requiring the full global state. Similar extensions to
autonomous vehicles, cyber-physical systems, and large-scale
cloud infrastructures would consolidate RDSS as a practical
solution to real-world scalability challenges.

5) From local to global verification: While RDSS focuses
primarily on enabling local model checking at the module
level, an important extension is to move toward global ver-
ification within the same modular framework. The key idea
is that a global property can often be decomposed into a
set of local properties, each verifiable on the corresponding
module’s meta-graph. By invoking local model checking for
each component property and then combining the results, one
can infer the truth of the global property.

This modular synthesis of verification outcomes effectively
reconstructs global correctness from local evidence, avoiding
the need to explore the full global state space. Such an
approach bridges local and global reasoning, and can be
viewed as a form of modular controller synthesis, where global
guarantees emerge from the coordinated satisfaction of local
obligations.

The verification of modular concurrent systems is no longer
an abstract academic pursuit but a practical necessity for the
safe deployment of autonomous platforms, IoT infrastructures,
and large-scale distributed software. Ensuring correctness at
scale requires techniques that tame the state explosion problem
without sacrificing soundness.

3Prototype implementation available at: https://github.com/chihebabid/
ros2dss
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TABLE V. POSITIONING RDSS WITH RESPECT TO CLASSICAL TECHNIQUES AND TOOLS

Approach / Tool

Main Principle

Limitations

RDSS Perspective

Partial-Order Reduction (POR)

Prunes redundant interleavings by ex-
ploiting independence of concurrent
transitions

Less effective with synchronous transi-
tions across modules

Applied locally at module level to avoid
global blow-up

Symmetry Reduction (SR)

Collapses symmetric states from repli-
cated components

Assumes static symmetry; weak for dy-
namic or partial symmetries

Combined with 7-hiding and meta-state
fusion to preserve behaviors

checking

Abstraction Groups concrete states into abstract rep- Risk of oversimplification; may lose Balanced with stuttering equivalence,
resentatives (predicate/counter abstrac- critical distinctions ensuring correctness of LTL\ X
tion)

NuSMV Symbolic  model  checking  with Limited scalability for modular decom- RDSS avoids global symbolic encoding,
BDD/SAT position scales better for Modular Petri Nets

LTSmin Symbolic state-space exploration Handles large systems, but lacks modu- RDSS achieves competitive verification

lar reductions times with lower memory usage (see
Fig. 8)
SPIN Explicit-state  temporal logic model | No modular decomposition; explores | RDSS verifies module-specific proper-

entire global space

ties directly using local meta-graphs

In this survey, we have examined the landscape of tech-
niques for scalable verification, including state space reduction,
abstraction, compositional reasoning, symbolic methods, and
distributed verification. Within this context, we have intro-
duced and positioned the Reduced Distributed State Space
(RDSS) framework as a novel and effective contribution.
RDSS reduces the global state space into modular meta-graphs,
enforces stuttering equivalence, and supports verification at the
module level. This enables properties to be checked locally,
a capability not offered by existing approaches. Our experi-
mental comparisons against powerful tools such as LTSmin
demonstrate the scalability gains of RDSS, particularly when
modules are not all synchronized on the same transitions.
Furthermore, we have shown that RDSS integrates naturally
with techniques such as partial-order reduction, symmetry
reduction, and abstraction, achieving strong reductions while
maintaining correctness.

Beyond these contributions, the RDSS framework has
been extended through a distributed prototype built on ROS2,
opening the way to practical deployment in real-world modular
systems. Its modular structure makes it especially suitable for
verifying concurrent and distributed systems, ranging from
multi-robot applications to cloud-based infrastructures.

While challenges such as state explosion and synchro-
nization overhead remain, the trajectory of research indicates
a strong movement toward hybrid approaches, combining
symbolic encodings, distributed infrastructures, and reduction-
based methods. The synergy between theoretical foundations
and real-world applications promises a future where scalable
verification becomes a standard component of the engineering
of next-generation systems. RDSS contributes to this vision
by providing a modular, scalable, and extensible verification
framework that addresses both academic challenges and indus-
trial needs.

VII. THREATS TO VALIDITY

As with any empirical and methodological contribution, our
evaluation and claims are subject to certain threats to validity.
We outline the most relevant ones below.

A. Model Representativeness

The benchmarks used (e.g. ERKI1, Philo3, Robotl, IoT
case studies) are drawn from widely used academic examples

of modular and concurrent systems. However, they may not
capture the full diversity of industrial-scale systems, espe-
cially those with heterogeneous architectures or non-Petri net
formalisms. Future work should incorporate larger and more
varied case studies to ensure broader coverage.

B. Property Selection Bias

Our focus on stuttering-invariant LTL \ X properties,
such as deadlock-freedom, local liveness, and reachability,
reflects the classes of properties naturally supported by RDSS.
Nevertheless, this may bias the evaluation, as other properties
(e.g. CTL, fairness, or real-time constraints) are not currently
addressed. Extending RDSS to these classes remains an im-
portant direction.

C. Tool Configuration Bias

Comparisons with state-of-the-art tools such as LTSmin
or SPIN depend on configuration choices (e.g. symbolic en-
codings, partial-order options, memory allocation). While we
sought fair defaults, alternative configurations might yield dif-
ferent relative performance. A more exhaustive benchmarking
campaign would provide stronger evidence.

D. Generality Across Formalisms

RDSS is defined over Modular Petri Nets (MPNs), which
provide a natural and expressive formalism for concurrent
systems. This focus raises a validity threat regarding general-
ity: it remains to be shown to what extent RDSS principles
carry over to other formalisms, such as process algebras,
timed automata, or hardware verification languages. Initial
indications are promising, but further formalization is required.

Overall, these threats highlight the need for additional
validation, both empirically (through more benchmarks and
diverse case studies) and theoretically (by extending RDSS to
broader classes of systems and properties). We report them
here to provide a transparent account of the current scope and
limitations of our contribution.

VIII. CONCLUSION

The verification of modular concurrent systems is no longer
an abstract academic pursuit but a practical necessity for the
safe deployment of autonomous platforms, IoT infrastructures,
and large-scale distributed software. Ensuring correctness at
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scale requires techniques that tame the state explosion problem
without sacrificing soundness.

In this survey, we have examined the landscape of tech-
niques for scalable verification, including state space reduction,
abstraction, compositional reasoning, symbolic methods, and
distributed verification. Within this context, we have intro-
duced and positioned the Reduced Distributed State Space
(RDSS) framework as a novel and effective contribution.
RDSS reduces the global state space into modular meta-graphs,
enforces stuttering equivalence, and supports verification at the
module level. This enables properties to be checked locally,
a capability not offered by existing approaches. Our experi-
mental comparisons against powerful tools such as LTSmin
demonstrate the scalability gains of RDSS, particularly when
modules are not all synchronized on the same transitions.
Furthermore, we have shown that RDSS integrates naturally
with techniques such as partial-order reduction, symmetry
reduction, and abstraction, achieving strong reductions while
maintaining correctness.

Beyond these contributions, the RDSS framework has
been extended through a distributed prototype built on ROS2,
opening the way to practical deployment in real-world modular
systems. Its modular structure makes it especially suitable for
verifying concurrent and distributed systems, ranging from
multi-robot applications to cloud-based infrastructures.

Nevertheless, several challenges remain open. Scalability
limits may reappear when dealing with extremely large or
highly interconnected modular systems, where synchronization
overhead can dampen the benefits of reduction. Moreover,
while RDSS preserves stuttering equivalence, there are trade-
offs between accuracy and efficiency, particularly when aggres-
sive fusion of meta-states or 7-hiding strategies are applied.
Another promising direction lies in complementing RDSS with
Al-driven heuristics that guide exploration or with hybrid
reductions that combine symbolic encodings and distributed
infrastructures. Such extensions would strengthen the adapt-
ability of RDSS across diverse system classes and push its
applicability to industrial-scale deployments.

The synergy between theoretical foundations and real-
world applications promises a future where scalable veri-
fication becomes a standard component of the engineering
of next-generation systems. RDSS contributes to this vision
by providing a modular, scalable, and extensible verification
framework that addresses both academic challenges and in-
dustrial needs, while opening avenues for innovation in hybrid
and Al-augmented verification methods.
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