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Abstract—Recommender systems have become critical tools in
reducing information overload by providing personalized recom-
mendations across several application domains including com-
merce, industry, education, academic research, etc. Clustering-
based recommender systems, which use the clustering technique
to group similar users or items to generate suggestions, have
shown high accuracy and efficiency. However, conventional clus-
tering methods often fail to address several challenges such as
ignoring the possibility that a user may have different item
preferences, limited interpretability of generated suggestions, and
the inability to tailor recommendation list sizes to individual user
needs. To address all these issues, we propose in this work a
new recommender system based on Overlapping Co-clustering
and Modularity Maximisation (OCCMM). The proposed method
allows to take into account that users may have several item
preferences by building overlapping clusters rather than the
conventional non-overlapping model. Also, the proposed method
adopts a simultaneous clustering of items and users to facilitate
the generation and interpretation of suggestions through using
the co-clustering technique. Furthermore, OCCMM enables an
adjustment of recommendation list sizes based on an easy tunning
parameter J. Experiments conducted in three real-world datasets
demonstrated the effectiveness of OCCMM in achieving better
performance in terms of accuracy and interpretability compared
to conventional existing methods.

Keywords—Clustering-based recommender systems; modu-
larity maximization; overlapping co-clustering; multiple-user-
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I. INTRODUCTION

Recommender systems play a vital role in addressing the
challenge of information overload and providing personalized
recommendations in various domains. These systems have
become valuable tools for companies to deliver targeted infor-
mation to users or customers. The implementation of a high-
performance recommender system is usually based on various
machine-learning methods and techniques such as clustering
which allows for the grouping of similar users or items into
the same cluster. The generation of recommendations is based
on similar items or users belonging to the same cluster. Such
Clustering-based recommender systems are usually charac-
terized by an improved running time with high accuracy of
recommendations [1].

Typically, clustering methods used in recommender sys-
tems have focused on either user-based or item-based recom-
mendations. User-based recommendations focus on similarities
between users where recommendations are generated based
on the preferences and behavior of similar users. This rec-
ommendation approach is relatively simple to implement as

it only requires user-item interaction data. However, it faces
challenges when dealing with new users who have limited
data or when recommending items with limited user feedback,
which leads to less accurate recommendations. On the other
side, item-based recommendations focus on similar items
rather than users and tend to be more stable as item preferences
are less likely to change compared to user preferences. Item-
based recommendations allow to effectively handle new items
since similar item characteristics can be used to recommend
them. However, this approach may lead to less personalized
recommendations since it focuses on item-item similarities and
ignores user preferences.

To take advantage of both user-based and item-based
approaches, the co-clustering technique can be used rather
than using the clustering technique. The Co-clustering allows
for simultaneous grouping of users and items allowing recom-
mendations to be based on both characteristics simultaneously
[2] [3]. However, most existing co-clustering methods assume
non-overlapping co-clusters and do not allow overlaps between
groups. Nevertheless, in real-life applications, users may have
multiple preferences and items can satisfy multiple user needs
resulting in overlapping co-clusters. Overlapping co-clustering
can yield more accurate recommendation results by capturing
all user’s preferences and item needs. Additionally, a shortcom-
ing with existing clustering-based recommendation methods is
the absence of options for regulating the size of the recommen-
dation list. This lack of control hampers the flexibility of the
recommendation system, making it challenging to customize
the number of recommendations according to user preferences.

To address all these challenges, this paper proposes a
dual contribution at both the theoretical and practical levels.
From a theoretical perspective, it advances the literature on
recommender systems by introducing a novel formulation of
the Overlapping Co-Clustering with Modular Maximization
(OCCMM) framework. Unlike existing works, the proposed
model integrates 1) an enhanced algorithmic formulation that
optimizes modularity while supporting overlapping user—item
clusters, 2) an explicit interpretability mechanism that allows
practitioners to understand why certain recommendations are
generated, and 3) a tunable list sizing strategy that adapts
dynamically to users’ contextual needs. From a practical
perspective, the framework proposes explainable recommen-
dations in domains where transparency is critical, such as e-
commerce, tourism, and educational platforms. We will show
the ability of the proposed OCCMM model not only to
generate explanations that are transferable and generalizable
to other application areas.
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The rest of the paper is organized as follows: Section II
presents the fundamental concepts of recommender systems.
Section III discusses the challenges addressed by the proposed
approach. Section IV provides a detailed theoretical framework
for the overlapping co-clustering method based on modularity
maximization. Section V presents the experimental results and
evaluates the performance of our approach using real-world
datasets. Finally, Section VI concludes the paper and outlines
directions for future research.

II. FUNDAMENTAL CONCEPTS OF RECOMMENDER
SYSTEMS

With the exponential growth of available information
across databases, web pages, and social networks, the task
of extracting valuable information for users has become in-
creasingly challenging. Users often struggle to quickly and
easily find items of interest in this huge amount of available
data. To address this issue, automatic recommendation tools,
known as Recommender Systems (RS), have been developed.
The primary objective of these systems is to minimize the
time of searching and providing personalized suggestions. By
analyzing extensive amounts of data through a variety of
techniques and algorithms [4], these computing-based systems
try to generate personalized recommendations for products
or services based on individual user preferences [5]. These
recommendations can span a wide range of categories, such
as articles to read, products to purchase, music to listen to,
movies to watch, or web pages to visit.

The effectiveness of recommendations and suggestions
mainly rely on the system input data types which can be cat-
egorized into two main types: Explicit and Implicit Feedback
Data. Explicit feedback data refers to information provided
by users in a clear and detailed manner, typically in the
form of ratings given to a set of products. This type of
data directly expresses the user’s preferences. On the other
hand, implicit feedback data is automatically collected based
on user behavior and then transformed into user preferences.
Examples of implicit feedback data include clicks on links,
browsing history, the number of times a song is played, or the
percentage of a web page scrolled. These data are collected,
converted into user preferences, and then utilized to generate
recommendations.

The collected data are often represented on a scale to
indicate the level of interest in a particular item. It can
take various forms, such as continuous values, as seen in
the Jester joke recommendation engine [6], where jokes are
rated on a scale from —10 to 10. Data can also be modeled
using intervals, where the lowest value represents a strong
dislike and the highest indicates a strong liking for an item.
Another approach is to model ratings as ordered categorical
values, enabling the extraction of all possible user ratings.
The commonly used set of categories includes “Strongly Dis-
agree”, “Disagree”, “Neutral”, “Agree” and “Strongly Agree”.
Ratings can also be represented as binary data, where users
express their preferences as either liking or disliking an item.
Additionally, a specific data type known as unary rating data
can be used in recommender systems, where users only have
the option to define a like for an item without the ability to
specify a disliking. All these different types of data play a vital
role in building accurate and effective recommender systems,
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allowing for the generation of personalized recommendations
tailored to individual user preferences.

A. Recommender System Approaches

The definition and the building of recommender systems
can be based on several approaches. Three main approaches
can be identified: Collaborative filtering, Content-based fil-
tering, and Knowledge-based filtering. The first approach,
collaborative filtering, operates on the assumption that users
with similar interests may have the same item preferences.
Collaborative filtering methods can be roughly divided into two
categories : User-based and Item-based collaborative filtering.
The User-based collaborative filtering identifies an ensemble of
users who are similar to a target user (i.e. n neighbors). Based
on the neighbor’s ratings, it predicts the possible rating(s) to
a list of products not yet purchased (i.e. product(s) to be
recommended) or the top N-recommended products. In this
technique, similarity functions are calculated between rows
of rating matrix to extract similar users [4]. The second
collaborative filtering category, Item-based, tries to extract the
highly correlated items (similar items) to the ones that target
users are interested in. The extracted items are considered
as recommendations. In this category, similarity functions are
computed between the columns of the rating matrix, rather
than rows, to discover similar items [4].

Concerning the second recommender systems approach,
Content-based filtering, both user ratings and item properties
are used to build recommendations. In this approach, the
similarity is calculated based on item features (i.e. product
content). Recommended items consist of the filtered list of
similar products to those a target user shows high interest.
Such type of filter does not suppose that other users must
make recommendations for the target user. Based only on
what the target user likes, the algorithm will simply pick
items with similar contents and recommend them to that user.
A content-based filtering system recommends items based
on the correlation between the content of the items. This
approach is different from the collaborative filtering approach
which recommends items based on the correlation between
users/items with similar preferences [7].

The third recommender systems approach, knowledge-
based, aims to provide recommendations based on product
properties, issued by the user, instead of using the history of
users’ preferences. This approach allows users to explicitly ex-
press their desires or explicitly indicate their item preferences
before the generation of recommendations. A recommender
system is considered “knowledge-based” when it prompts the
user to give a series of rules or guidelines on what the results
should look like or an example of an item. Then, the system
searches through its database of items and returns similar
results [8].

B. Related Works: Clustering-Based Recommender Systems

Clustering has been used as a significant technique in the
design and the implementation of scalable and efficient rec-
ommender systems, known as clustering-based recommender
systems. Such systems are based on clustering algorithms to
group users or items based on shared preferences or behaviors.
The built segments of items or users allow for the recom-
mendation system to focus on specific group characteristics
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to improve the computational efficiency and to address data
sparsity challenges and cold start problem [9]. For instance,
the authors in [10], [11] and [12] used clustering to efficiently
recommend news articles based on user interests. The author
in [13] leveraged clustering in smart grid applications to
enhance recommendations. Ahuja et al. [14] built a Movie rec-
ommender system using K-Means clustering and K-Nearest
Neighbor. The authors in [15], [16] and [17] utilized clustering
in tourism recommendation to group users with similar travel
interests.

Recent advancements in clustering-based recommendation
systems explore various clustering algorithms and approaches
to optimize system performance, user satisfaction, and compu-
tational efficiency. Existing methods can be grouped into three
main approaches: user-based, item-based, and hybrid.

The first, user-based, groups users with similar behaviors
in the same cluster and then recommendations are generated
based on local preferences within each cluster. For instance,
Yu et al. [18] proposed ClusterFedMet [18], a recommendation
algorithm that addresses the challenges of recommendations
in federated learning environments. ClusterFedMet improves
recommendation accuracy and personalization while keeping
data privacy. Additionally, Hosen et al. [19] proposed an op-
timized recommender system, using PSO-optimized K-means
clustering, able to create patient-specific diet recommendations
based on historical health data. The proposed system ensures
rapid and relevant dietary suggestions for thyroid patients.

On the other hand, the second approach, item-based, allows
to group similar items having shared attributes or similar user-
interactions[20]. Zhang and Wu [21] developed an e-commerce
recommendation model that integrates K-means with a genetic
algorithm to enhance recommendation accuracy and speed.
The proposed model has a significant boost in item relevance
and user satisfaction compared to existing ones. Rather than
using a simple clustering method, Airen and Agrawal [22]
applied the co-clustering technique in movie recommendations.
The fine-tuning of user and movie neighborhood parameters
allowed to increase recommendation quality. Their model
showed notable improvements in accuracy by leveraging a
partitioned clustering approach within large movie datasets.

Concerning the third approach, hybrid clustering, it com-
bines both user and item clustering to simultaneously capture
user preferences and item characteristics, leading to a compre-
hensive recommendation strategy with improved suggestions
accuracy and relevance. A recent example of hybrid systems
proposed by Wang et al. [23] for tourism recommendation
combines multiple recommendation methods, including col-
laborative filtering and neural networks, to suggest different
and relevant tourist spots. A multi-objective approach is used
to suggest recommendations that allows to enhance users travel
experience. Another hybrid approach, proposed by Iftikhar
et al. [24] use bi-clustering within a reinforcement learning
framework to adapt recommendations to changing user prefer-
ences. This model allows to capture local patterns in user-item
interactions by combining bi-clustering with Markov Decision
Processes which makes it effective for dynamic recommen-
dation scenarios. Furthermore, another system proposed by
Forouzandeh et al. [25], referred to as RESCHet, embeds
spectral clustering in heterogeneous networks to analyze rela-
tionships in complex item-user networks. The use of spectral
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clustering to group item-user interactions made it ideal for
large datasets where traditional clustering methods may fall
short.

All these presented approaches were based on common
Clustering algorithms including k-means, hierarchical cluster-
ing, density based and Gaussian Mixture Models. The choice
of the clustering technique and also the choice of the similarity
metric are usually based data characteristics and application re-
quirements. For example, when dealing with sparse datasets, k-
means++ or DBSCAN may be favored due to their robustness
against sparse data [26]. A good choice of these techniques
has a direct impact on the accuracy of the system. Although
the effective application of clustering techniques in recom-
mendation systems, conventional techniques may oversimplify
the complexity of user preferences by assigning each user or
item to a single cluster. However, in real life applications,
a more flexible approach is mandatory since users or items
may have several preferences and then may belong to multiple
clusters. For example, when recommending movies, a user may
have interests in both “romantic” and “action” genres of films.
This reflects the multifaceted nature of user preferences and
the necessity to use more sophisticated and flexible clustering
models.

As a solution for the multifaceted nature of user preference,
Overlapping clustering methods have proven to be particularly
useful in capturing these diverse preferences [27], [28], [20].
Recent works illustrate the advantages of overlapping cluster-
ing in various domains. For instance, Heckel and Vlachos [27]
introduced a matrix factorization-based approach to identify
overlapping co-clusters of clients and products. This method
emphasizes interpretability by recommending items that are
members of multiple co-clusters. Effectiveness is shown es-
pecially in large datasets making it ideal for business-to-
business applications. Besides, Vlachos et al. [28] expand the
overlapping co-clustering concept to address cold-start prob-
lems in matrix factorization. Flexibility of recommendations
is improved by allowing users and items to participate in
multiple clusters. This flexibility ensures that new users or
items are matched effectively which avoids the limitations of
traditional clustering methods. Rezghi and Baratnezhad [2]
also proposed fuzzy co-clustering methods using non-negative
matrix factorization. Overlapping clustering is used to improve
the quality of recommendations by reflecting users’ diverse
preferences. The proposed approach achieved better sparcity
reduction and accuracy compared to non-overlapping methods.
Iftikhar et al. [24] also employed overlapping co-clustering
within a reinforcement learning framework. By allowing users
and items to belong to multiple bi-clusters, the proposed model
allowed to effectively capture local patterns and dynamic
preferences compared to static collaborative filtering methods,
especially in dynamic environments where user preferences
may evolve over time. Furthermore, the authors in [29] ex-
plored fairness improvement in recommender systems using
overlapping clustering. They propose grouping users based on
interactions and sensitive attributes, such as age or gender,
to provide equitable recommendations across diverse user
groups. Overlapping clustering have lead to more balanced
outcomes and improved fairness metrics. In the same way,
the authors [30] leveraged overlapping clustering to optimize
recommendation diversity and novelty. By allowing overlaps,
users can explore new items while maintaining access to
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familiar favorites. This design has significantly enhanced the
diversity of recommendations without compromising precision.

III. MOTIVATION AND RESEARCH GAP

The design of effective clustering-based recommender sys-
tems remains a major research challenge given that these
systems must simultaneously ensure accuracy, diversity, in-
terpretability, and computational efficiency. While numerous
clustering methods have been proposed, their application to
recommender systems still suffer from fundamental limitations
that restrict their theoretical and practical contributions.

A first challenge relates to the treatment of user and
item clusters as mutually exclusive. Existing clustering-based
approaches assume that a user or an item belongs to a single
homogeneous group. However, in real-world applications, user
preferences are often heterogeneous and multidimensional.
For instance, a movie enthusiast may simultaneously enjoy
action, drama, and comedy genres, while a book reader may
have overlapping interests in historical fiction, biographies,
and mystery. Ignoring such overlaps leads to rigid partitions
that fail to capture the nuanced and overlapping structures of
user preferences. An overlapping co-clustering approach, by
contrast, can represent these multifaceted relationships more
faithfully and can lead to more personalized recommendations.

A second critical issue concerns interpretability. Recom-
mender systems users usually demand greater transparency
regarding the rationale behind generated recommendations.
Existing clustering-based methods typically optimize predic-
tive accuracy but fall short in providing explainable justifica-
tions for their outputs, particularly when overlapping user—item
relationships are involved. Co-clustering offers a promising
solution by jointly segmenting users and items. Co-clustering
makes it possible to explain recommendations in terms of
shared membership across multiple co-clusters which directly
improves trust, accountability, and user acceptance.

A third methodological gap concerns the tailoring of
recommendation list sizes. Current systems frequently adopt
fixed-length recommendation lists, overlooking the dynamic
and context-dependent nature of user needs. This “one-size-
fits-all” strategy reduces the relevance of recommendations. It
becomes possible to adapt list sizes dynamically by integrating
the degree of overlap in user—item co-clusters. Such flexibility
enables the system to remain context-aware and user-centric,
thereby enhancing recommendation utility.

Despite recent advances, existing approaches still exhibit
significant limitations. Conventional hard-partition methods
remain insufficient to capture multi-faceted user preferences,
while soft-clustering approaches provide smoother decision
boundaries but lack the structured dual segmentation of co-
clustering. Moreover, current methods rarely balance the trade-
off between interpretability and predictive performance; most
prioritize one dimension at the expense of the other. Finally,
although prior studies have begun to explore dynamic list
adaptation [2], [30], there is no comprehensive framework that
unifies overlap-based co-clustering with modularity maximiza-
tion, interpretability mechanisms, and personalized list sizing.

To address these gaps, this paper proposes an Overlapping
Co-Clustering approach with Modularity Maximization. The
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framework contributes novel theoretical and practical advance-
ments by: 1) capturing complex overlapping structures of
user—item interactions, 2) integrating interpretability into the
clustering process to support explainable recommendations,
and 3) dynamically adapting list sizes to user contexts. This
approach directly responds to the discussed challenges and
establishes a more accurate, interpretable, and adaptable rec-
ommender system.

IV. PROPOSED METHOD: RECOMMENDATION BASED ON
OVERLAPPING CO-CLUSTERING AND MODULARITY
MAXIMIZATION

The proposed method, called Overlapping Co-clustering
with Modularity Maximization (OCCMM), is designed to
provide overlapping co-clusters based on modularity maxi-
mization using implicit feedback data. The overlapping co-
clusters will be then explored to generate flexible and easily in-
terpretable recommendations. The proposed OCCMM method
begins by representing the data of the recommender system
as a bipartite graph, where users and items are represented as
distinct types of vertices. The edges of the graph correspond
to the positive feedback given by users on the items. To
illustrate the designed OCCMM recommendation process, we
have schematized the main steps in Fig. 1. Our proposed
method consists of three key steps. First, it begins by building
a binary matrix from the bipartite graph. Next, it focuses on
creating an ensemble of co-clusters, which will be utilized in
the final step to generate recommendations. In the following
subsections, we provide a detailed breakdown of the tasks
involved in each step of the OCCMM process.

A. Step 1: Data Preprocessing

The data preprocessing step has the objective of effectively
transforming the input bipartite graphs of the recommender
system into a binary adjacency matrix. Let G = (N, M, E)
be the input bipartite graph, where N represents the set of
user nodes, M the set of item nodes and E represents the
set of edges. The objective is to transform the bipartite Graph
G into a binary adjacency matrix D = (N x M). The value
dnm = 1 indicates the existence of a relationship (edge in
the graph GG) between the user node n and the item node m.
The adjacency matrix D encompasses all relationships between
users and items, serving as implicit feedback data that will
be automatically segmented into k£ overlapping co-clusters to
detect similarities between items and users simultaneously.
Fig. 1 shows an example of transforming a bipartite graph
containing N = 6 users and M = 4 items into an adjacency
matrix D = (6 x 4) where entries d,,,,, = 1 represents the
existence of an edge between user n and item m. For instance,
the edge between user; (n = 1) and item; (m = 1) indicates
that user; bought itemy, prefers it, or any other relevant
connection between user; and item; resulting in dy; = 1.

B. Step 2: Generation of Co-Clusters

Given the implicit feedback data matrix D = (N x M)
obtained from the previous step, the objective of the second
step is to look for optimal k co-clusters of users U(N x k)
and items I(M X k) simultaneously based on an iterative
modularity-maximization-based process. As described in the
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Fig. 1. The designed recommendations steps via the proposed OCCMM method. Step 1 : Data preprocessing, Step 2: generation of co-clusters, Step 3:
Generating recommendations using Co-clusters.

works of [27] that uses a modularity maximization of a net-
work for building optimal co-clusters, we define the following
modularity objective function for the feedback data:

N k M k
- § § Unc log Unc § § Zbmc lOg tmec
n=1c=1 m=1c=1

where, |D| = >° > d,m, represents the total number
of edges in the network, d,, € {0,1} is an element of
the feedback matrix equal to one when a positive feedback

. . M
of the user m on item m exists, d, = >, _; dny and
dm = 2521 dnm represent the degree of user node n and the
degree of item node m respectively. The values u,. € [0, 1]
and ,,. € [0,1] indicate the fuzzy membership degrees that
user n and item m belong to cluster c, resg)ectively. The
N k M . .

values Zn:l Zc:l Unc 1Og Une and Zm:l Zc:l tme log tme
denote the separate entropy regularizing users and items
membership degree functions separately. The minimization of
these two values corresponds to maximizing the fuzzy entropy

— Zf:;l Zle Upe log Uy and — an\le Zle Tome 108 Time.

The maximization problem of the objective function @)
respecting to optimal matrices (U) and (/) can be described
follows:

max

QU,I)
2)
subject to
SN tpe=1, up.€0,1, ¥n=1,...,N (3
SM ime=1, ime€[0,1], Ym=1,...,M (4)

This problem can be solved through the application of
the Lagrange method, involving the utilization of Lagrange
multipliers (, and 7, corresponding to constraints (3) and (4)
respectively. Eq. (1) can be expressed as:

dndm ) .
unczmc

1 N M
QU =1y 32 325 (dan -

n=1m=1c=1 |D|
N k M k
- Z Z Une log Une — Z Z imc log Z‘TrLc
n=1c=1 m=1c=1
N k M k
+Z<n Zunc_l +an Z:Z.mc_1
n=1 c=1 m=1 c=1 (5)

By deriving (@) with respect to (U) and () and setting the
gradient to zero, the following expressions are obtained:
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Eq. (6) and (7) refer to the fuzzy membership of user n to
co-cluster ¢ and the fuzzy membership of item m to co-cluster
¢, respectively. When the membership degrees of user n and
item m surpass a threshold 6 defined in Eq. (8), u,. and iy,
are set to 1, signaling the membership of user n and item m

to co-cluster c.
1 1
0_(k+6xk) ®)

where, k denotes the number of co-clusters and § €]1, +oo[
represents a user-defined parameter introducing flexibility in
recommendations. A higher value of ¢ yields a more extensive
list of recommendations, while a lower value restricts the
recommendations.

To look for optimal overlapping co-clusters that maximize
the overall modularity function, the optimization process starts
with random initializations of matrices U and I and an initial
modularity score (Jg. Subsequently, a series of operations are
iterated by computing new optimal values for user cluster
memberships u,. and item cluster memberships %,,. using
Eq. (6) and (7), respectively. Following this, a new modularity
score (U, I) at iteration ¢ is recalculated based on these up-
dated memberships. This iterative procedure continues until the
modularity score remains unchanged or a maximum iteration
limit is reached, offering a systematic approach to organizing
users and items into fuzzy co-clusters. The final overlapping
co-clusters are then built by assigning users and items to
similar co-clusters if their membership probabilities surpass a
predefined threshold 6. A pseudo-code of the Overlapping Co-
clustering via Modularity Maximization algorithm is described
in Algorithm 1.

In the context of clustering, modularity allows to measure
how well a network is divided into clusters by comparing the
actual connections to a randomly connected network. In our
context, we aim to find co-clusters of users and items that
maximize a certain modularity that ensures users in the same
cluster interact with similar items more frequently than a ran-
domly expected one. Based on the adjacency matrix D(N x M)
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of users U and items I, the modularity function Q(U,I)
evaluates how well users and items are grouped into overlap-
ping co-clusters while maintaining statistical significance. The
term d,, — drgr captures the difference between the actual
interactions and the expected random interactions, ensuring
that clusters a better meaningful relationships. Entropy terms
(log functions) encourage fuzzy membership, indicating that
users and items can belong to multiple co-clusters rather than
a strict one-to-one assignment.

Algorithm 1 Overlapping Co-clustering via Modularity Max-
imization

Input: D= Original data matrix, k= number of co-cluster, §:
recommendation flexibility parameter, IterationLimit: Number
of maximal iterations
Output: Co-clusters
1

matrices U and

Random initialization of U and I
repeat
Compute . according to Formula (6)
Compute %,,. according to Formula (7)
Compute Q(U, I) using Formula (1) based on u,,. and
tme
until Unchanged Q(U,I) or IterationLimit
for n=1to N do
for c=1to k do
if u,,. > 6 then
Assign the user n to the co-cluster ¢
end if
end for
end for
for m=1to M do
for c=1tok do
if i,,. > 6 then
Assign the item m to the co-cluster ¢
end if
end for
end for

End

C. Step 3: Generating Recommendations using Co-Clusters

The third step is devoted to building recommendations
based on the obtained overlapping co-clusters. This step is
based on the hypothesis that users and items within the
same co-cluster exhibit a strong correlation. By leveraging
the relationships identified in the co-clusters, the algorithm
generates personalized recommendations for users based on
items they have not yet purchased but are correlated within the
same co-cluster. An item becomes a potential recommendation
for a user when both the user and the item are grouped in the
same co-cluster but lack a direct link (e.g. a purchase).

The pseudo-code of generating recommendations using
overlapping co-clustering is described in Algorithm 2. Given
the input data matrix D and the overlapping co-clusters U and
1, the recommendation algorithm examines each user-item pair
in the dataset. In cases where the user has not interacted with
the item (d,,, = 0), the algorithm checks if that user and
that item belongs to the same co-cluster. If this condition is
satisfied, the item is included in the recommendation list for
that user.
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In Fig. 1, colored squares within co-clusters represent pos-
itive or implicit examples, while white squares inside the co-
clusters signify recommendations. Analogous to graph theory,
the task consists in predicting probable edges in the graph
G(N, M, E) for near nodes. The predicted edges, shown as
red dotted lines in the G(N, M, E) graph, correspond to user
recommendations.

Algorithm 2 Recommendation using Overlapping Co-Clusters

Input: D: Original data matrix, U, I: Overlapping Co-clusters
Output: Users recommendation
lists

for n=1to N do
for m=1to M do
if d,,,,,=0 then
{The user n has not yet purchased the item m}
for c=1tok do
if u,. =1 and i,,. = 1 then
{Item m and user n are in the same co-
cluster}
n-RecommendedList <— m
end if
end for
end if
end for
end for

End

D. Computational Effectiveness

The OCCMM computational complexity can be evaluated
through the computational complexity of its three main steps:
data preprocessing, generation of overlapping co-clusters, and
recommendation generation. The computational complexity of
the first step, data preprocessing, involves constructing a binary
adjacency matrix from the bipartite graph G(N, M, E) and re-
quires iterating over the edges. The computational complexity
of this step is approximated by O(E). The second step, co-
cluster generation, is the most computationally consuming as
it involves iteratively optimizing the user-item matrix based on
the proposed modularity-maximization process. The computa-
tional complexity of the modularity function requires O(NM)
operations per iteration, and updating the membership ma-
trices involves summing over all users and items, leading
to a complexity of O(kKNM) per iteration, where k is the
number of co-clusters. Given that this process is repeated until
convergence with a maximal iteration number of ¢, the total
computational complexity of the second step can be evaluated
by O(TkNM). Concerning the third step, recommendation
generation, involves checking all user-item pairs to determine
potential recommendations based on co-cluster memberships,
which is approximated by O(kNM). Summing all the com-
putational costs across the three steps, the overall OCCMM
computational complexity is evaluated by O(TkNM). In
practical applications, this computational complexity can be
considered efficient. In real-world applications, the number of
iterations 1" required for convergence is generally small, and
the number of co-clusters k is significantly smaller than N and
M, which largely reduces excessive computational demands.
Consequently, OCCMM can be approximated by O(NM)
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making it effective even with large-scale recommender sys-
tems.

V. EXPERIMENTS AND EMPIRICAL RESULTS
A. Datasets Description

To assess the effectiveness of our method, we employed
three real-world datasets, each offering distinct types of im-
plicit feedback. The first dataset, from the CiteULike website!,
contains user-curated collections of scientific articles. This
dataset comprises 5,551 users and 16,980 articles, and the
goal is to generate new article recommendations based on
these positive examples. In this dataset, recommendations are
only based on binary implicit feedback, where each user’s
collection of articles is treated as positive examples. The data
is represented as a binary matrix D = N x M, where d,,,,, = 1
indicates that user n has added article m to their collection,
and d,,,,, = 0 indicates the absence of that article.

The second dataset is a subset of the Last.fm dataset?,
which captures listeners’ preferences for artists in a binary
form. This dataset consists of 1,226 listeners and 285 artists
and the recommendation task consists of recommending likely
preferred artists for each listener based on their implicit
feedback. In this dataset, the input matrix D = N X M has
dpm = 1 if listener n has shown interest in artist m, and
dpm = 0 otherwise.

The third dataset is the Movielens dataset which contains
100, 000 movie ratings from 671 users on 9, 066 movies. Users
rate movies on a scale of 1 to 5 stars, and we follow the
convention from previous research [31], [32] by considering
ratings of 3 or higher as positive feedback and ignoring lower
ratings. This dataset is also transformed into a binary matrix,
with ratings of 3 or above taking a value of 1. The task is
to generate movie recommendations based on these positive
ratings. Across all datasets, the recommendation problem is
modeled as generating new suggestions using implicit feed-
back, represented consistently in binary matrix form.

Table I summarizes the description of used datasets by
giving the number of users, the number of items, and the
recommendation task for each dataset.

TABLE I. DATASETS DESCRIPTION

Datasets Users  Items Rec dation Objective
CiteUlike 5551 16980 Article recommendation
LastFm 1226 285 Music recommendation
Movielens 671 9066 Movie recommendation

The selected datasets were chosen to validate different
aspects of our model, including its robustness, ability to model
complex user preferences, and performance across varying
levels of data density. The CiteULike dataset was chosen
for its high sparsity making it a challenging scenario to test
OCCMM’s ability to handle sparse academic interactions.
CiteULike contains approximately 5500 users, 17000 articles,

"Launched in October 2004 at the University of Manchester and closed
permanently on March 30, 2019.
Zhttps://www.last.fm/
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and 200000 interactions. The LastFm dataset, containing 1900
users, 17600 artists, and 92800 interactions, was selected due
to its representation of diverse musical preferences and multi-
genre listening behaviors, allowing for assessing OCCMM’s
capability to capture overlapping user interests. Finally, we
included the Movielens dataset, a relatively denser dataset that
enables us to evaluate the scalability and generalizability of
OCCMM in less sparse settings.

B. Evaluation Methodology

We assessed the efficacy of the recommendations by
measuring Recall and Precision [33]. Fig. 2 schematizes the
different steps to calculate Precision and Recall measures to
evaluate generated recommendations. The dataset is split into
training and testing sets by removing a portion of interactions
for each user, simulating unseen data. For instance, with a test
set ratio of 0.2, if a user had 10 interactions, 8 were allocated
to training, and 2 were reserved for testing. Subsequently,
the training data was fed into the OCCMM algorithm to
form co-clusters. These co-clusters were then used to generate
recommendations. Finally, the test set was utilized to evaluate
the recommendation outcomes based on Precision and Recall
metrics.

The Precision metric quantifies the ratio of relevant items
among the retrieved items, aiming to gauge the proportion of
recommended items that are pertinent. It is calculated in Eq.
(9) as:

{m : dpm =1} N {my,...,mz}|
{m,...,mz}

®)

Precision (n) =

where: |{m : d,,,,, = 1}| denotes the list of relevant items,
[{my1,...,mz}| represents the list of recommended items, and
H{m : dpm = 1} N {m,...,mz}| represents the list of
recommended items that are relevant.

Then, the Recall measure assesses the fraction of relevant
items that have been retrieved out of the total relevant items.
It measures the proportion of relevant items recommended by
the system and is calculated in Eq. (10) as:

{m : dpm =1} N0 {mq,...,mz}
{m : dpm = 1}]

Recall (n) = | (10)

To provide a single balanced score, we build the
F_Measure, described in Eq. (11), by computing the harmonic
mean of Precision and Recall as follows:

Precision x Recall
F M =2 11
~Measure(n) % Precision + Recall an

As for precision and Recall, a higher F_Measure value
indicates a superior recommendation system. The maximum
attainable value for the F_Measure is 1, reflecting perfect
precision and recall alignment, while the minimum score is
0, indicating a lack of precision and recall balance.
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Furthermore, we assess the Average Recommendation met-
ric (Eq. (12)) that calculates the percentage of recommenda-
tions provided for each user, crucial for evaluating recom-
mendations generated from overlapping co-clusters. A high
recommendation rate is considered when this value exceeds
50%, indicating that each user receives over half of the
recommendations and is computed as:

SN {ma,m}
N

1
Average_Recommendation = X i (12)

where, N and M are respectively the total numbers of users
and items and 271:/:1{7”17 ...,m } represents the total number
of recommended items.

C. Number of Co-Clusters and Number of Iterations Parame-
ters

The quality of co-clusters and the convergence of the
OCCMM method relies significantly on the pre-determined
parameters : size of co-clusters K and the number of iterations.
A successful determination of these two parameters can lead to
enhanced recommendation quality [27]. Concerning the choice
of the optimal number of co-clusters K, we determined this
value across various evaluations of co-clusters and modularity
values. Fig. 3 gives the obtained scores of modularity by
considering different values of co-clusters evaluated on all the
three datasets. The plot illustrates distinct modularity patterns
across the three datasets (CiteUlike, LastFm, and Movielens)
as the number of co-clusters varies. For CiteUlike, the mod-
ularity peaks at 0.570 with 22 co-clusters, but it declines
beyond this point which suggests overfitting as additional co-
clusters are introduced. LastFm shows a more gradual trend,
with a peak modularity of 0.312 obtained with 16 co-clusters.
Movielens peaks at 0.398 with only 5 co-clusters suggesting
that this dataset has fewer distinct clusters. Its modularity de-
creases rapidly as more co-clusters are added which indicates
that the dataset may have a simpler structure and is more
sensitive to over-segmentation. All these obtained scores show
that all three datasets exhibit a clear peak modularity followed
by a decline, reflecting a tendency toward overfitting when
the number of co-clusters becomes too large. However, the
variation in peak modularity and the number of co-clusters
across the datasets highlights differences in their inherent
complexity. CiteUlike requires a higher number of co-clusters
to capture its structure, whereas Movielens has a much simpler
grouping, as indicated by its peak with only 5 co-clusters. This
emphasizes the importance of dataset-specific tuning when
applying co-clustering methods to maximize modularity.

As for co-clusters, we also studied the influence of the
number of iterations parameters in the convergence of the
proposed OCCMM method. This study involved evaluating
OCCMM modularity across varying number of iterations for
CiteUlike, Lastfm, and Movielens datasets. Fig. 4 illustrates
the convergence behavior of OCCMM for each dataset over
multiple number of iterations. For CiteUlike, the modular-
ity starts close to zero and rapidly increases in the first
10 iterations, with minimal further improvements beyond 10
iterations. For LastFm, the modularity starts similarly near
zero but increases more gradually than CiteUlike, eventually
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Fig. 2. Evaluation methodology and calculation of evaluation measure based on training and testing datasets.

22 Co-clusters for CiteUlike (0.570)
16 Co-clusters for LastFm (0.312)
5 Co-clusters for Movielens (0.398)

stabilized. This indicates that the dataset has a clear clustering
structure that OCCMM quickly identifies good partitionnings,
but the co-clustering quality is not as high as in CiteUlike.

—— CiteUlike
= LastFm
0.5 —— Movielens
0.4
=
& 0.3 4
32 L
3
=
0.2
0.1
oo4 4

Fig. 3. Maximum modularity values for the CiteUlike, LastFm, and
Movielens datasets obtained with OCCMM across varying numbers of

co-clusters. The figure shows the optimal number of co-clusters identified
for each dataset, along with the corresponding maximum modularity values.

Across all datasets, we observe that most of the improvement
in modularity occurs within the first 10 to 15 iterations, after
which the algorithm stabilizes with minimal further gains. For
this reason, we set the iterationLimit parameter to 20 for all
the further described experiments.

VI. OBTAINED EMPIRICAL RESULTS

We evaluated the effectiveness of the proposed OCCMM

50

100

150 200
Number of co-clusters

250 method in building effective recommendations compared to

existing methods in the literature based on precision, recall,
FMeasure, and Average_Recommendation metrics. Tables II,
III, and IV report the obtained values for these measures across
different datasets and various methods, including Bayesian
Personalized Ranking (BPR), Fuzzy Co-clustering Modularity
Maximization (MMFCC), and Co-clustering via Modularity
Maximization (COCLUS). These methods are compared with
a varying number of co-clusters: K = 5, K = 10, K = 16,

stabilizing around a modularity of 0.3 after 15 iterations.
This behavior indicates that OCCMM method finds a good
clustering solution earlier with fewer defined or less well-
separated clusters compared to CiteUlike, and that additional
iterations do not improve the modularity. For Movielens, the
modularity rises to about 0.4 after around 18 iterations to be

and K = 22. For our proposed OCCMM method, we report
results for different values of &, specifically 6§ = 1, § = 102,
and 6 = 103.

Concerning CiteUlike dataset, obtained results in Ta-
ble IT show that the proposed OCCMM method consistently
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TABLE II. OBTAINED PRECISION, RECALL, AND FMEASURE OF OCCMM OF BPR Vs MMFCC Vs COCLUS Vs OCCMM, CITEULIKE DATASET

Datasets  Algorithms § value Precision Recall F_Measure Avg_Recommendation
BPR 0.014 0.054 0.022 0.058
MMFCC 0.180 0.755 0.290 0.214
K=5 COCLUS 0.116 0.709 0.199 0.199
- OCCMM 1 0.193 0.754 0.307 0.212
102 0.171 0.802 0.281 0.243
108 0.171 0.802 0.281 0.244
BPR 0.014 0.056 0.022 0.058
MMEFCC 0.141 0.683 0.233 0.123
K =10 COCLUS 0.135 0.632 0.222 0.129
- OCCMM 1 0.141 0.720 0.235 0.136
102 0.134 0.777 0.228 0.172
106 0.132 0.778 0.225 0.178
BPR 0.014 0.057 0.022 0.058
MMFCC 0.112 0.664 0.191 0.110
K =16 COCLUS 0.129 0.630 0.214 0.106
- OCCMM 1 0.149 0.722 0.247 0.130
102 0.136 0.785 0.231 0.170
108 0.135 0.786 0.230 0.171
BPR 0.014 0.058 0.022 0.058
MMEFCC 0.110 0.713 0.190 0.128
K — 29 COCLUS 0.117 0.559 0.193 0.067
- OCCMM 1 0.201 0.761 0.318 0.138
102 0.195 0.826 0.315 0.188
108 0.162 0.827 0.270 0.189
all K values, indicating that only 5.8% of relevant items
06 are recommended. However, overlapping methods including
. MMECC and COCLUS reach better recall values close to 0.7
meaning that these methods can recommend approximately
04 70% of relevant items.
b
503 Precision values generally range from 0.10 to 0.20 for all
8 methods except BPR, suggesting that, on average, about 10-20
- o2 % of recommendations are relevant to the user. Although
. . CiteUlike OCCMM'’s precision is comparable to MMFCC and COCLUS,
—— LastFm its superior recall and FMeasure values indicate a better overall
0.0 1 —— Movielens balance, especially with smaller & values. The § parameter in
0 10 20 30 40 50 OCCMM also allows for customization of the recommendation

Iterations

Fig. 4. Maximum modularity values for the CiteUlike, LastFm, and
Movielens datasets obtained with OCCMM across varying numbers of
iterations. The figure illustrates how the modularity stabilizes after a certain
number of iterations for each dataset.

achieves the highest FMeasure values across all K values when
0 = 1, highlighting its effectiveness in generating accurate
recommendations. For instance, with K = 22 and 6 = 1,
OCCMM achieves an FMeasure of 0.318, largely outper-
forming both MMFCC and COCLUS having an FMeasure
values of 0.190 and 0.193 respectively. This result demon-
strates OCCMM superior capability in balancing precision and
recall. In terms of recall, OCCMM also performs strongly,
especially with larger § values. With K = 22 and § = 10,
OCCMM achieves a recall of 0.827, meaning that 82.7% of
relevant items are successfully recommended—significantly
higher than the recall rates of the other methods. The BPR
method achives the loest result eit a recall around 0.058 across

list size. For example, with K = 22 and § = 1, OCCMM
yields an AverageRecommendation value of 0.138. However,
if users prefer a larger recommendation list, setting & to
106 increases the AverageRecommendation to around 0.2,
providing more options at the cost of a slight reduction in
precision.

For the second dataset, LastFm, the reported results in
Table III highlight the competitive performance of OCCMM
compared to BPR, MMFCC, and COCLUS in terms of FMea-
sure and recall metrics across different co-cluster sizes (K = 5,
K =10, K = 16, and K = 22). OCCMM achieves the highest
FMeasure scores (0.365 and 0.401) for K = 10 and K = 16
with 6 = 102. This improvement in FMeasure is driven by
a significant increase in recall. OCCMM reaches its highest
recall values of 0.628 and 0.729 for K = 16 and K = 22
with § = 102, indicating that OCCMM can recommend around
70% of relevant items. Additionally, the results demonstrate
OCCMM’s flexibility in adjusting the recommendation list size
based on the configured ¢ parameter. As ¢ increases, OCCMM
provides larger Average_Recommendation values, reflecting its
ability to increase the overlap degree and consequently enlarge
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TABLE III. EVALUATION METRICS RESULTS OF BPR Vs MMFCC Vs COCLUS vs OCCMM, LASTFM DATASET

Datasets  Algorithms § value Precision Recall F_Measure Avg_Recommendation
BPR 0.012 0.242 0.160 0.175
MMEFCC 0.275 0.481 0.349 0.184
K—5 COCLUS 0.227 0.485 0.309 0.194
OCCMM 1 0.265 0.457 0.335 0.160
102 0.267 0.556 0.360 0.236
106 0.267 0.556 0.360 0.237
BPR 0.013 0.254 0.024 0.175
MMEFCC 0.132 0.413 0.200 0.083
K =10 COCLUS 0.134 0.315 0.188 0.096
OCCMM 1 0.289 0.440 0.348 0.152
102 0.277 0.535 0.365 0.222
106 0.277 0.536 0.365 0.223
BPR 0.013 0.286 0.024 0.175
MMEFCC 0.210 0.552 0.304 0.015
K =16 COCLUS 0.134 0.362 0.195 0.118
OCCMM 1 0.247 0.398 0.304 0.185
102 0.295 0.626 0.401 0.333
106 0.282 0.638 0.391 0.345
BPR 0.014 0.315 0.026 0.175
MMFCC 0.163 0.727 0.266 0.459
K =99 COCLUS 0.141 0.244 0.178 0.074
OCCMM 1 0.163 0.727 0.266 0.459
102 0.163 0.727 0.266 0.459
108 0.116 0.759 0.201 0.493

the recommended list of items.

Concerning the Movielens dataset, the results in Table IV
illustrate the performance of BPR, MMFCC, COCLUS, and
OCCMM across different co-cluster sizes (X = 5, K = 10,
K = 16, and K = 22). OCCMM consistently demon-
strates strong performance in terms of FMeasure, especially
for higher values of §. For instance, OCCMM achieves the
highest FMeasure scores of 0.288 and 0.263 for K = 22
with § = 1 and § = 102, respectively. This is attributed to
the method’s ability to increase recall while maintaining a
competitive precision. Notably, OCCMM achieves a recall of
0.639 for K = 22 with § = 10? indicating that it can retrieve
approximately 64% of relevant items in the recommendation
list. The results also reveal OCCMM flexibility in adapting
the recommendation list size based on the J parameter. As
0 increases, the Average Recommendation metric also rises
which reflects its ability to adjust the overlap degree and thus
increase the number of items recommended to users. This
adaptability effectively allows OCCMM to balance precision
and recall and offers customizable recommendation lists based
on user preference.

Fig. 5 provides insights into the average of users and items
within each co-cluster across varying numbers of co-clusters K
for three datasets CiteUlike, LastFm, and Movielens obtained
using OCCMM with § = 100. These visualizations reveal
distinct patterns in each dataset, which helps understand the
optimal number of co-clusters for an effective recommenda-
tion. For CiteUlike Dataset which contains 5551 users and
16980 items, Fig. 5(a) shows that obtained results exhibit a
large item-to-user ratio per co-cluster at lower values of K. As
K increases, this ratio decreases, leading to a more balanced
distribution of users and items across co-clusters. According to

Table II, partitioning CiteUlike with K = 22 achieves a higher
FMeasure (0.318) than with £k =5, K = 10 and k& = 16. This
suggests that K' = 22 provides an optimal balance between the
size of user-item groups and recommendation accuracy. Higher
K values help refine co-clusters, focusing more specifically
on user-item interactions which can improve recommendation
quality by ensuring neither too large nor too small co-clusters.
Concerning the LastFm dataset which has 1226 users and 285
items, we observe a different distribution pattern due to the
higher density of users compared to items. Based on Table III,
the optimal partitioning for LastFm is at K = 16, yielding
the highest FMeasure (0.401) among the configurations. This
suggests that K = 16 strikes a good balance, avoiding ex-
cessively large or small co-clusters and providing an effective
clustering granularity that enhances recommendation accuracy.
For the third dataset, Movielens, which contains 671 users and
9066 items, Fig. 5(c) shows a large item-to-user ratio per co-
cluster, similar to CiteUlike. Although the highest FMeasure
(0.263) is achieved with K = 22, as shown in Table IV, a
more suitable choice is K = 5, where co-clusters provide a
balance of neither too dense nor sparse user-item interactions.
K = 5 ensures sufficient group density while maintaining
recommendation quality, avoiding the sparsity that can occur
with higher K values.

VII. CONCLUSIONS AND FUTURE WORKS

We proposed in this paper a novel recommender system
framework called Overlapping Co-Clustering with Modularity
Maximization, designed to address three persistent challenges
in clustering-based recommendations: capturing multifaceted
user preferences, enhancing interpretability, and adapting rec-
ommendation list sizes to individual contexts. The OCCMM
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TABLE IV. EVALUATION METRICS RESULTS OF BPR vSs MMFCC vs COCLUS vs OCCMM, MOVIELENS DATASET

Datasets  Algorithms § value Precision Recall F_Measure Avg_Recommendation
BPR 0.041 0.271 0.070 0.110
MMEFCC 0.107 0.506 0.176 0.125
K=5 COCLUS 0.102 0.503 0.169 0.143
OCCMM 1 0.110 0.492 0.179 0.078
102 0.106 0.566 0.178 0.168
106 0.106 0.566 0.178 0.169
BPR 0.139 0.244 0.177 0.175
MMEFCC 0.098 0.485 0.163 0.119
K =10 COCLUS 0.117 0.455 0.186 0.085
OCCMM 1 0.115 0.504 0.187 0.084
102 0.112 0.579 0.187 0.179
106 0.112 0.581 0.187 0.180
BPR 0.013 0.231 0.024 0.175
MMFCC 0.192 0.456 0.304 0.103
K =16 COCLUS 0.194 0.410 0.263 0.067
OCCMM 1 0.173 0.506 0.257 0.088
102 0.156 0.598 0.247 0.178
108 0.150 0.598 0.239 0.180
BPR 0.013 0.231 0.024 0.175
MMEFCC 0.170 0.528 0.257 0.130
K =92 COCLUS 0.195 0.401 0.262 0.065
OCCMM 1 0.194 0.562 0.288 0.117
102 0.166 0.639 0.263 0.198
108 0.166 0.639 0.263 0.198
I Users I Users 16004 W Users
3500 1 = ftems 300 4 N ftems N ftems
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3000 A 2504
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Fig. 5. Average number of Users and Items per Co-cluster across varying K obtained with OCCMM with § = 100 on: (a) CiteUlike dataset (b) LastFm
dataset (c) Movielens dataset.

approach operates in three key steps: 1) implicit data pre-
processing, 2) construction of overlapping co-clusters through
modularity maximization, and 3) recommendation generation
based on these co-clusters. This design effectively balances
accuracy, interpretability, and adaptability. By modeling over-
lapping user—item relationships, OCCMM allows for capturing
complex and realistic preference structures. Additionally, it
provides transparent rationales for recommendations by using
co-clusters rather than simple clusters and also ensures respon-
siveness to diverse user needs through dynamically adjusting
list sizes. Experimental results on real-world datasets con-
firmed that OCCMM outperforms existing methods in terms

of both accuracy and personalization.

While OCCMM demonstrates strong empirical perfor-
mance, several limitations should be acknowledged. First, the
current framework does not explicitly integrate continuous user
feedback (implicit or explicit), which may limit its ability to
iteratively refine recommendations. Second, the scalability of
OCCMM under very large-scale datasets remains an open chal-
lenge. Computational complexity could be mitigated through
advanced optimization or parallelization strategies. Third, the
model is currently evaluated in static environments, whereas
many real-world systems require realtime adaptation to dy-
namic user behaviors. Finally, although OCCMM balances
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interpretability and accuracy, its explainability mechanisms
are limited to cluster-level reasoning, which may not always
capture fine-grained user justifications.

The effectiveness of OCCMM can be improved in future
works by investigating other techniques to address critical
issues related to recommendation systems. First, the incorpora-
tion of explicit and implicit user feedback into the co-clustering
process may enable the system to refine recommendations
based on user interactions. In addition, optimization techniques
can be investigated to improve the scalability of OCCMM
when handling large-scale datasets. One can also investi-
gate the integration of OCCMM with other recommendation
techniques, such as deep learning or collaborative filtering,
to further improve accuracy and robustness. Furthermore, a
promising direction to improve the accuracy and robustness
of OCCMM is to integrate deep learning-based clustering
which can give more accurate results. One can investigate
the implementation of real-time recommendation mechanisms
within OCCMM to ensure instant adaptation to evolving user
behaviors and preferences in live environments.
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