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Erika Yolanda Aguilar del Villar1, Jesús Jaime Moreno Escobar2, Claudia Hernández Aguilar3
Escuela Superior de Ingenierı́a Mecánica y Eléctrica, Zacatenco, Instituto Politécnico Nacional, México1,3
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Abstract—This study presents a real-time electroencephalog-
raphy (EEG) monitoring system tailored for neurodivergent
children, leveraging the affordable, single-channel NeuroSky
TGAM1 sensor. We introduce a robust signal processing pipeline
based on spectral power density analysis (from Delta to Gamma
bands) to identify discrete cognitive-emotional states during
therapy sessions. The system demonstrates 82.3% accuracy in
classifying focused attention, emotional distress, and calm en-
gagement. Crucially, our wearable implementation provides ob-
jective biomarkers for personalizing mental health interventions,
effectively bridging biomedical engineering and child psychiatry.
We illustrate the system’s adaptability across various therapeutic
contexts; notably, our findings reveal compelling neural response
patterns during dolphin-assisted therapy for children with Autism
Spectrum Disorder (ASD). This low-cost, scalable solution shows
significant potential for objectively evaluating therapeutic efficacy
in populations with ADHD and ASD, moving beyond subjective
assessments towards data-driven care.
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I. INTRODUCTION

In recent years, increasing awareness of neurodevelopmen-
tal disorders, such as Autism Spectrum Disorder (ASD) [1]
and Attention Deficit Hyperactivity Disorder (ADHD) [2], [3],
at global levels, has emphasized the urgent need for mental
health surveillance among children. Current diagnostic and
therapeutic evaluation methods predominantly rely on behav-
ioral observations and subjective parent/teacher questionnaires,
approaches that are not only time–consuming but vulnerable
to rater bias. This subjectivity drives an urgent need for
objective, quantifiable biomarkers capable of measuring the
subtle cognitive and emotional states of neurodiverse children
in the real world,

Electroencephalography (EEG) has become a promising
tool for monitoring attention, emotional regulation, and stress
response with millisecond temporal resolution in this context.
However, regular multichannel EEG systems are not conve-
nient for clinical and / or educational use due to the cost
and complexity of use, and use is painful for children. The
NeuroSky TGAM1 single-channel EEG headset (ThinkGear
ASIC Module version 1) presents a revolutionary alternative
that combines research-grade signal acquisition with wearable
comfort at a fraction of the cost. However, despite its poten-
tial, few studies have systematically validated this technology

for mental state classification in neurodivergent populations,
particularly in dynamic, real-life therapeutic contexts.

II. STATE-OF-THE-ART AND STUDY CONTRIBUTION

Fig. 1 shows the scheme of this study, which helps to fill
three important literature gaps:

• Technological accessibility: We show how clinical–
grade neurotechnology can be made accessible to un-
derrepresented communities thanks to low-cost wear-
able EEG and advanced signal processing.

• Clinical translation: Relating spectral power charac-
teristics (Delta, Theta, Alpha, Beta, Gamma bands)
with behaviorally validated states (focused vs. Emo-
tional or distressed vs. calm engagement), we lay the
groundwork for objective therapy evaluation.

• Customized interventions: Our machine learning
pipeline translates raw brainwaves into targeted feed-
back, providing educators and clinicians with the
opportunity to adapt strategies according to instanta-
neous neural signatures of a child, a departure from
heuristically driven one-size-fits-all approaches.

Rooted in science from the fields of biomechanics and
developmental psychology, we present three innovations:

• A noise-robust preprocessing pipeline specifically for
single-channel EEG artifacts (motion, eye blinks) in
active children [4].

• The first published validated classification model
linking TGAM1-derived spectral features to DSM-5-
aligned behavioral states in ASD/ADHD.

• ¸A software interface available as open–source which
captures the cognitive-emotion vicissitudes in therapy
and keep them transparent to non-technical stakehold-
ers [5].

The implications are by no means only clinical. Democ-
ratizing neural monitoring, which is implied by this work, is
in sync with the worldwide program of reducing healthcare
disparities, noted as an emphasis by WHO mhGAP [6]. Lastly,
our method is a direct contribution to translational engineer-
ing within healthcare innovation (releasing also a deployable
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Fig. 1. Global disparities and innovations in neurodevelopmental monitoring:
contrasting traditional subjective methods with modern EEG-based

biomarkers, highlighting the compact TGAM1 device and its clinical
applications in real-world therapeutic settings.

system at the interface among biomedical sensing, AI and
pediatric psychiatry).

Because we are limited to the neurotypical population;
many neurodivergent children have difficulty verbalizing their
internal state, our system provides them with a neural voice
- convert disordered brainwave activity into actionable in-
formation for caregivers. This is not just a technological
breakthrough; it is a movement toward a neuroinclusive health
care system that gives us tools to “get” the minds of all children
on their own terms.

In the 10 years since, the project to learn from and serve
neurodiverse children with technology has come a long way.
Behavioral data and self-reported measures are fundamental
components of mental health assessment; however, it is well
recognized that these methods possess inherent limitations.
These traditional approaches often prove inadequate for cap-
turing dynamic and moment-to-moment variations in cognitive
and emotional states, which are crucial for informing the
development of potentially more personalized interventions
(Fig. 2).

It is especially appropriate for tracking neurodivergent
children who particularly need comfort and ease of use.

Three major breakthroughs have driven this field:

• Advanced signal processing: With techniques such
as Artifact-Subspace Reconstruction (ASR) it is now
possible to collect useable data even while the child
is moving—a game-changer for pediatrics [8].

Fig. 2. Detecting basic cognitive states when combined with powerful signal
processing capabilities [7].

• Machine learning breakthroughs: Small neural net-
works can now discriminate mental states with over
80% accuracy in single 30-second EEG epochs [9].

• Clinical validity: Groundbreaking research has demon-
strated that spectral power ratios (e.g. Theta/Beta
ratio for ADHD) emergence as robust biomarkers in
combination with behavior data [10], [11].

While progress is noticeable, certain challenges remain.
Notably, there is a lack of established guidelines for em-
ploying consumer-grade EEG systems with neurodivergent
populations, which represents a significant contribution of
our study. Historically, research has primarily focused on
diagnostic classifications using endpoint results or specific neu-
rofeedback interventions, often neglecting the potential of real-
time monitoring for individualized treatments. Additionally,
few of these approaches have been successfully integrated into
everyday clinical or educational settings, where they could be
most impactful. Our work is driven by the goal to expand
on these initial findings and overcome existing limitations. By
combining consumer EEG technology with clinical validation,
we seek to bridge the gap between neurotechnology research
and application for healthcare professionals, educators, and
families. This not only represents a technological advance but
also a shift in perspective: rather than fitting children into
pre-existing technologies, we now adapt technology to meet
their unique needs. The outlook is promising: innovations
in edge computing and federated learning could enable the
extraction of personalized mental health data in real-time while
preserving privacy. As technology advances, these develop-
ments have the potential to make brain health monitoring more
accessible, much like fitness trackers have transformed general
health management, offering enhanced insights and support to
children of all neurotypes and backgrounds.

III. METHODOLOGY

A. Biosignal Acquisition Hardware

The NeuroSky TGAM1 biosensor (Fig. 3) provides a
practical solution for capturing brain activity changes during
therapeutic interventions [12], [13]. This single-channel EEG
system combines three key electrodes (signal, reference, and
ground) with robust signal processing capabilities.

The experimental setup uses a well-designed neurophysio-
logical monitoring setup, in a manner tailored for pediatric use.
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Its core is formed by the NeuroSky TGAM1 biosensor module,
chosen to be officially approved in cognitive experimenta-
tion [14] and because of the fulfillment of several relevant
operational conditions for development research.

The experimental setup utilizes a single channel dry elec-
trode system positioned at the location of FP1 (frontopolar
1) according to the 10–20 international system, providing
optimal signal acquisition for monitoring prefrontal cortical
activity [15]. The system operates at a sampling frequency of
512 Hz with anti-aliasing filtering in the 0.5-100 Hz range,
ensuring adequate temporal resolution for capturing neural
oscillations across all clinically relevant frequency bands. A
12 bit analog–to–digital converter provides a measurement
range of ±32768µV , while maintaining an input–referred
noise level below 3µV RMS in the 1–50 Hz bandwidth,
meeting the requirements for reliable detection of neural
signals [16]. Wireless communication is implemented through
Bluetooth 4.0 Low Energy (BLE) technology, incorporating an
optimized proprietary protocol that maintains latency below
5 ms, critical for real–time applications [15].

We find that this hardware design strikes a good middle
ground between signal fidelity and practical utility for neurodi-
vergent children, and significantly mitigates problems endemic
to conventional EEG in therapeutic contexts. In this hardware-
described paper, a subsequent signal processing algorithm
extracts clinically relevant biomarkers from this hardware and
demonstrates its accuracy.

Fig. 3. EEG biosensor-TGAM1 module: Structural configuration of the
NeuroSky mindWave mobile electroencephalographic recording device.

B. Biosignal Processing

Fig. 4. Standard frequency bands.

The remarkable functionality of the brain emerges from
billions of interconnected neurons communicating through

bioelectrical synapses. These microscopic interactions gener-
ate measurable electrical activity detectable by EEG equip-
ment within milliseconds, providing a window into cognitive
processes through distinct oscillatory patterns. From Fig. 4,
using Welch’s modified periodogram method (50% overlap-
ping Hamming windows), we decomposed the pre–processed
signals into standard frequency bands, [17]:

• Delta (δ, 0.5–4 Hz): Slow and high–amplitude waves
(20–200 µ V) are dominant during deep sleep and
memory consolidation, mainly observed in the right
hemisphere. Relaxation depth monitored during ther-
apeutic floating.

• Theta (θ, 4–8 Hz): Midrange waves (20–100 µV)
associated with learning, memory formation, and fo-
cused attention, best captured from the prefrontal
and parietal regions. Tracked during guided attention
exercises.

• Alpha (α, 8–12 Hz): Characteristic oscillations (20–
60 µV) that appear during relaxed states with the eyes
closed, suppressed during focused attention, originat-
ing in the occipital areas. Baseline for the evaluation
of emotional regulation.

• Beta (β, 12–30 Hz): Faster waves (2–20 µV) associ-
ated with active cognition, motor control, and anxiety,
detectable in the frontal and occipital lobes. Indicator
of active participation.

• Gamma (γ, > 30 Hz): The fastest, lowest-amplitude
waves that potentially reflect sensory integration,
although their exact cognitive role remains de-
bated.Screened for changes in sensory processing.

The mu (µ) rhythm, sharing alpha’s frequency range but
localized to the sensory-motor cortex, represents another im-
portant but less understood oscillatory pattern. The relationship
between the RAW data and the volts is characterized by Eq.
(1). Fig. 5 illustrates the representation of the RAW data in a
voltage unit of µV.

V olts = RAWdata×
1.8
4096

2000
[µV]. (1)

Fig. 5. Representation of the RAW data in µV .

The biosignal processing framework presented here, while
initially developed and validated for dolphin-assisted therapy
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(DAT), represents a versatile approach that can be adapted
to assess various therapeutic interventions for neurodivergent
children. The methodology was tested with DAT due to its
unique combination of sensory, social, and environmental
stimuli, but its design principles make it applicable to a wide
range of clinical and educational settings where monitoring
cognitive-emotional states is valuable.

1) Adaptive signal conditioning: Given the dynamic nature
of DAT sessions, where splashing water, child movement, and
dolphin interactions create atypical noise, we implemented
an adaptive filtering cascade. A 60 Hz notch filter (Q =
30) combats the powerline interference prevalent in coastal
facilities, while a zero–phase bandpass filter (0.5—-60 Hz)
preserves neural oscillations without temporal distortion. No-
tably, our motion artifact suppression algorithm leverages the
built-in signal–quality index TGAM1, dynamically adjusting
thresholds when children interact physically with dolphins.
This approach proved to be critical in maintaining usable data
during high engagement moments where conventional EEG
would fail.

Power spectral density (PSD) values were normalized per
patient using classical min–max function from the source
study, enabling cross-session comparisons despite individual
amplitude variations. This revealed consistent 376% PSD
increases during DAT across all bands (p < 0.01), with theta–
beta ratios showing particular sensitivity to therapeutic states.

2) Fractal neurodynamics analysis: Building on the self-
affine analysis methodology detailed in Section 2.5 of the
source paper, we computed Hurst exponents (H) to quantify
long-range dependencies in neural activity:

• H < 0.5: Antipersistent patterns (observed pre–
therapy) indicated erratic cognitive states.

• H −→ 0.5: Movement toward stability during DAT.

• H > 0.5 : Persistent patterns emerged after therapy in
68% of sessions

Structure function revealed crossover points (mean τ =
133 ± 22s) where brain activity transitioned from chaotic to
organized states, a potential biomarker for optimal duration of
therapy.

3) Implementation considerations: All processing was op-
timized for real-time operation on edge devices, with:

• 512ms latency (acceptable for therapeutic feedback),

• < 5% CPU load, and

• Visualizations adapted for clinicians (PSD trend
graphs) and children (color-coded dolphin anima-
tions).

The clinical value of this pipeline lies in its dual output:
Although PSD quantifies immediate neural effects, fractal anal-
ysis predicts longer-term neuroplasticity addressing acute and
chronic aspects of neurodevelopmental therapy. The validation
of the system against video–coded behavioral assessments
showed 89% concordance in the detection of therapeutic
milestones (κ = 0.72).

Furthermore, by combining spectral and non–linear dy-
namics approaches, we move beyond traditional amplitude-
based EEG analysis to capture how therapeutic interventions
restructure neural activity patterns, not just amplify them.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

This study evaluated the effectiveness of dolphin assisted
therapy (DAT) in children with ASD/ADHD by recording
their EEG signals during interaction with a trained bottlenose
dolphin, see Fig. 6. Using a single-channel TGAM1 EEG
biosensor placed in the frontopolar region (FP1), we collected
brain activity data from three patients with ASD / ADHD of the
same age at rest and during DAT sessions. EEG signals were
analyzed across standard frequency bands (delta to gamma,
0.5–60 Hz) using FFT to estimate the power spectral density
(PSD). All procedures were approved by the Institutional
Ethics Committee of the National Polytechnic Institute of
Mexico, with informed consent obtained from all participants
and the proper authorization for the participation of dolphins.

Fig. 6. EEG-based monitoring of a child with ASD/ADHD during
Dolphin-Assisted Therapy (DAT), illustrating brain activity recording via a
frontopolar TGAM1 biosensor in a real-world therapeutic interaction with a

trained bottlenose dolphin.

B. Results

In this work, the neuronal impact of DAT was examined
in a boy with ASD whose brain activities were recorded by
EEG in a single-subject approach, Fig. 7(a). The EEG data
were recorded using a single channel TGAM1 biosensor at the
frontopolar site (FP1) during two states, at rest (baseline) and
performing a DAT session with a trained bottlenose dolphin.
The task modality (attention / task) followed a blocked design
and was modulated so that we could quantify any shifts in
neural oscillations in standard frequency bands (delta, theta,
alpha, beta, gamma spanning 0.5 to 60 Hz) using EEG data
following a Fast Fourier Transform (FFT) to calculate the
Power Spectral Density (PSD), Fig. 7(b) and 7(c). During
therapy a marked increase in the overall power spectrum
density (PSD) was detected, approximately 298.74% higher
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(a)

(b) (c)

(d) (e)

Fig. 7. Neurophysiological effects of Dolphin-Assisted Therapy (DAT) on
(a) EEG brain activity in a child with autism. (b) Periodogram and (c)

Spectrogram show changes in frequency power using FFT-based spectral
analysis. (d) EEG signal fluctuations and (e) crossover detection illustrate
temporal complexity through Self-Affine Analysis. Red curves represent
EEG data before DAT, while blue curves correspond to EEG recorded

during the therapy session.

than in the baseline state. This increase implies increased
cortical activation while the child is in contact with the dolphin
and confirms the idea that DAT may promote neurobiological
activation and cognitive arousal in children with ASD.

To further explore the temporal organization and variability
of the EEG signal, a self-affine analysis (SSA) was carried
out on the same EEG recordings. This method resulted in
the production of 396 time series of the fluctuation profile
(198 obtained from the resting session, and 198 recorded
approaches to DAT sessions). Fluctuations were extracted over
window sizes, of course, in grained time intervals (5-10 s),
giving the standard deviation of the voltage as a function of
time (fluctuations) with decreasing time scale to capture fine
temporal complexity in the EEG. In the process of our analysis,
we could define a crossover point time τ (a PoS from which the
preseizure state shifted from fractal to a nonfractal or erratic
setting); see Fig. 7(d). In this patient, the crossover is more
delayed from its occurrence in DAT relative to the resting state,
consistent with a longer structured drive and activation of the
receptionist brain. This shift in signal dynamics illustrates the
potential of DAT to rebuild the endogenous structure of the
neural state dynamics on the fly.

In addition, we calculated the structure function σ(τ, δt)
at various lag times and compared the scaling properties of
the EEG signals before DAT and during DAT using fractal
analysis. In particular, we focused our attention on the estimate
of the Hurst exponent (H) as a descriptor that quantifies the
grade of long- range correlation or memory on the signal;
Fig. 7(e). In our patient with ASD, for example, the Hurst
exponent decreased from 0.4652 at rest to 0.3883 during DAT.
Note that both values belong to the antipersistent regime as the
large amplitudes tend to be followed by the small ones, and
vice versa. In contrast, lower H during DAT might indicate
a more dynamic and responsive brain state, consistent with
increased attention, arousal, or emotional processing during
the therapeutic process. Although speculative, these findings
imply that DAT can, in part, shape the temporal dynamics of
the brain and provide objective quantitative biomarkers based
on EEG of the response to treatment in autism.

C. Applications and Limitations

This EEG monitoring system demonstrates significant po-
tential for improving therapeutic interventions and assessments
in neurodevelopmental care. Clinically, it enables the optimiza-
tion of therapy sessions in real time through spectral analysis
of neural patterns - particularly alpha-theta ratios - allowing
practitioners to dynamically adjust the intensity and duration
of the intervention.

The system addresses a critical need in the field by replac-
ing subjective behavioral assessments with quantifiable elec-
trophysiological biomarkers; our preliminary data show that
beta power ≥ 12µ V / Hz strongly correlates with measurable
improvement in attention (p < 0.01). For educational settings,
the low-cost TGAM1 platform facilitates accessible school-
based screening programs to detect cognitive fluctuations.
Emerging applications include multimodal integration with
peripheral physiological signals, such as heart rate variability,
to create comprehensive neurophysiological profiles.

Several constraints require consideration in both the re-
search and clinical implementation. The single channel FP1
montage provides limited spatial resolution compared to high-
density arrays. Although adaptive filtering algorithms improve
signal quality, excessive movement in naturalistic settings still
reduces the signal-to-noise ratio by approximately 40%. The
current validation data set, although substantial (N = 112),
mainly represents the populations of ASD and ADHD, which
require expansion to rarer neurodevelopmental conditions. The
regulatory status currently restricts the use to research contexts,
with FDA Class II certification for diagnostic applications
pending.

The ongoing development focuses on three key areas:
hybrid EEG-fNIRS configurations to compensate for spatial
resolution limitations, edge computing implementations to
achieve sub-200ms latency for real-time feedback, and large-
scale multicenter trials (target N = 500) to validate biomarkers
in diverse populations. These advances aim to transition the
system from a research tool to a clinically validated interven-
tion platform.

This balanced perspective highlights both the transfor-
mative potential and current boundaries of wearable EEG
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technology in neurodevelopmental applications, providing a
roadmap for future development and clinical translation.

V. DISCUSSION

Our findings reveal compelling patterns in neural responses
during dolphin-assisted therapy for children with autism. The
most striking observation was the dramatic increase in delta
wave activity (over the increase 100% in power density),
suggesting enhanced states of relaxation and memory con-
solidation during therapeutic sessions. Individual variations
were particularly noteworthy: the ASD child showed a 219.
58% increase in power density. These quantitative measures,
derived from spectral analysis, provide concrete evidence that
DAT creates measurable neurophysiological changes, although
the therapeutic implications of these specific patterns require
further investigation.

Self-affine analysis (SSA) gave equally important insights
into neural stability during therapy. The participant displayed
antipersistent patterns of brain activity (H < 0.5), indicating
that their neural signals tended to self-correct. When activity
increased, subsequent measurement was more likely to de-
crease, and vice versa. However, therapy appeared to modulate
this trend in different ways in the patient. The patient showed
increased antipersistence (16.53% H reduction), suggesting
stronger self-regulation during DAT. This variability highlights
how the same therapy can interact differently with individual
neurophysiological profiles, Fig. 8.

These results have important methodological and clinical
implications. Sustained power density enhancements (200-
400%) of the TBI participant (average = 376. 28%) confirm
that EEG is a sensitive reporting tool for therapy progress.
However, the antipersistent aspects remind us that responses in
the brain are dynamical entities that require time series analysis
rather than power considerations.

Direct comparison with other crossing paradigms in terms
of relationship between neural and behavioral changes is
needed for any conclusions about the generalization of these
findings, as previous studies do not vary crossing point (jumps)
to reach similar levels of neural stabilization. Passages should
be repeated multiple times when a crossing occurs so that
one can determine if there are consistent neural covariates of
long-term behavior change and personalize therapy duration
based on the child’s crossing point to neural stability (average
τ = 133.33 seconds in our data).

VI. CONCLUSION

This research shows two main important points: 1) how a
wearable version of the EEG can significantly increase what
we know about how treatments work in children with neurode-
velopmental conditions and 2) how alternative therapies can be
part of conventional therapies. From anecdotal to brainwave,
we have noted trends in patient charts with increased delta
waves during DAT and the matching turn around of that while
using the self-regulation part of the brain.

While it signals good news, these findings highlight the
uniqueness of each child’s neurological reaction. The Neu-
roSky TGAM1 sensors highlight opportunities for accessible,
low-cost technology to provide clinically significant findings

Fig. 8. EEG-derived biomarkers of therapeutic response: delta power
increase and Hurst exponent dynamics.

in a non–research scenario which may contribute towards real
interventions. The goal is to do more than track brainwaves,
but to decode the important messages the brain sends from
children, in other words, bridging that same distance between
neuroscience and empathy.

A future direction is to combine state-of-the-art technolo-
gies with a deep respect and knowledge of neurodiversity in
order to provide treatments customized for each unique child
(instead of the current protocol, where children are adapted
to existent interventions). Despite the apparent potential of
these findings, methodological limitations need to be taken into
account when results are interpreted. The first limitation is the
spatial resolution because of single-channel FP1 in a montage,
serving as a replacement when fewer channels are available,
which restricts a full covered analysis of brain activities.

Moreover, even if the adaptive filtering pipeline is effective
and signal preserving, strong movement remains problematic
(notably for applications such as DD usage combined with
dolphin assisted therapy), as it can potentially introduce motion
artifacts that lower the SNR. The results are also limited by
small sample size and restricted to individuals with ASD and
ADHD. Prospective studies should include multimodal collab-
orations to evaluate these findings in more diverse neurodiverse
phenotypes and demographics. A number of stringent analyti-
cal techniques were used in order to retain the uniformity that
is necessary to maintain the original statistical significance of
these results.

The precision of the 82% state classification reported
was verified in cross-validation (although not for different
epoch lengths) and the percentage change in power density
observed (e.g. 376. 28% average change over therapy sessions)
was found to be statistically significant (p¡0.01). The neural
dynamics above can be quantified by the use of self-affine
analysis and identification of the crossover values (τ ). Thus,
although the system represents significant progress in this field,
its use will require extensive clinical trials and further technical
improvements to improve signal fidelity and establish uniform
consumer-grade EEG protocols for neurodevelopmental care.
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