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Abstract—This paper presents a weakly supervised Multiple
Instance Learning (MIL) framework for fake news detection
in social media, leveraging propagation tree analysis to model
the spread of misinformation across online networks. Unlike
traditional text-based or graph-based methods, our approach
captures fine-grained post-level stances (support, denial, question,
comment) and aggregates them to infer news veracity using
a novel hierarchical attention mechanism. The framework in-
corporates social network dynamics of information diffusion,
offering deeper insights into how user interactions amplify or
suppress misinformation. We evaluate our model on benchmark
datasets, including PolitiFact and GossipCop from FakeNewsNet,
comprising over 23,000 news articles and hundreds of thousands
of user engagements, as well as on the SemEval-8 dataset for
binary classification of true vs. fake news. Our method achieves
up to 94.3% accuracy and 91.7% F1-score, outperforming state-
of-the-art machine learning and deep learning baselines. Ablation
studies further validate the contribution of stance aggregation and
attention-based propagation modeling. These results highlight
the effectiveness of integrating stance detection, propagation
structures, and weakly supervised learning for scalable and
interpretable fake news verification in online environments.

Keywords—Identifying fake news; social network analysis; post
stance detection; deep learning; information retrieval; multiple
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I. INTRODUCTION

Misinformation, commonly known as fake news, has been
characterized as low-quality news in various studies [1], [2],
[3], [4]. Fake news, by definition, refers to a news article
that is verifiably and intentionally false, with the potential
to mislead readers [2]. Fake news verification or detection,
a critical endeavor in today’s information age, is dedicated
to assessing the accuracy of news articles on various subject
matters [5]. Traditional fake news detection methods rely
heavily on supervised learning using handcrafted features [6],
which can be labor-intensive and lack adaptability. To address
these limitations, researchers have adopted neural approaches
such as CNNs and RNNs [7], [8], as well as transformer-based
models [9].

In addition to neural methods, kernel learning algorithms
have been introduced as a means of comparing propagation
trees [10]. Propagation tree, which represents the dissemi-
nation of information across social networks, plays a crucial
role in understanding the dynamics of fake news propagation.
Kernel learning allows for the capture of complex propagation
patterns, providing a more refined perspective on how mis-
information spreads and infiltrates various online platforms.
This approach takes into account not only the content of the

news but also the intricate network structure of replying posts
through which it circulates [9].

A. Main Contribution

Prior studies have shown that posts expressing skepticism,
like doubts or questions, play a crucial role in assessing
the credibility of information [11], [12], [13]. These critical
user responses act as informal fact-checking and help slow
the spread of misinformation by encouraging more thoughtful
engagement. The proposed approach centers on the structure
of news dissemination, known as the propagation structure [5].
This structure maps how users share and reply to posts,
forming a tree-like network of interactions. As illustrated in
Fig. 1 and 2, each post can be traced back to a source article,
and replies create chains that reflect evolving opinions [13].
Importantly, users often reply to the most recent post rather
than the original news, which shapes how discussions unfold.
For instance, denial posts about fake news typically receive
supportive replies that reinforce the denial, while denial of
real news tends to spark counter-replies, creating a dynamic
debate. These interaction patterns within the propagation trees
offer valuable insights for distinguishing between true and false
news. Fake news generally triggers more denying responses,
resulting in denser and more complex reply chains. This
feedback loop demonstrates how user reactions can amplify or
suppress information spread, making it essential to understand
these dynamics for effective misinformation detection.

Building on this framework, we propose a novel, weakly
supervised method to detect fake news by leveraging Multiple
Instance Learning (MIL) [14]. Unlike traditional MIL methods
that require labels for individual sentences, our approach
uses only document-level veracity annotations, which is more
practical for large-scale data. A key challenge is linking these
overall news labels to the finer details found in individual
sentences and posts within the propagation tree. To address
this, we uniquely utilize the propagation trees themselves
as the foundational structures for learning stance and ve-
racity patterns from the social media post interactions [15].
To manage the complexity of classifying multiple news and
stance types, we decompose the problem into several binary
classification tasks. We designate real news and denial stances
as “positive” classes at their respective levels, with all other
classes treated as “negative.” This formulation allows us to
train separate MIL models for each veracity-stance pair, ef-
fectively capturing the diverse nature of misinformation and
user responses. Finally, we introduce a novel hierarchical
attention mechanism to integrate the binary model outputs
into a coherent multi-class prediction. This mechanism weighs
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and combines stance predictions across all MIL models to
infer the overall truthfulness of news articles. Additionally,
we incorporate a weighted strategy that prioritizes critical
sentences during news-level classification, further enhancing
prediction accuracy. Altogether, this is the first application
of propagation trees within a MIL framework for fake news
verification, offering a scalable and insightful approach to
understanding and combating misinformation.

The remainder of this paper is organized as follows. Section
II reviews related work on fake news detection, including
machine learning, deep learning, and social network analysis
approaches. Section III defines the problem statement and
introduces the formal notations used in our study. Section
IV presents the proposed weakly supervised Multiple In-
stance Learning framework with propagation tree modeling
and stance aggregation. Section V describes the construction
of the news-post propagation tree and its role in capturing
information diffusion. Section VI reports the experimental
setup, datasets, evaluation metrics, and results, followed by ab-
lation and component studies. Section VII provides a detailed
discussion and interpretation of the findings. Finally, Section
VIII concludes the paper and outlines potential directions for
future research.

II. RELATED WORK

Fake news detection (FND) research spans three main
domains: Machine Learning (ML), Deep Learning (DL), and
Social Network Analysis (SNA). ML and DL methods have
shown strong performance in identifying fake news through
content and user behavior features, while SNA leverages net-
work structures to analyze how misinformation spreads [16].
However, approaches explicitly incorporating social-context
models remain limited, highlighting a gap our work addresses.
ML techniques typically rely on supervised classifiers like
Support Vector Machines (SVM) and Decision Trees (DT).
SVMs, using syntactic and lexical features, have achieved
F-measures up to 0.87 [17], [18], while DTs and Ran-
dom Forests (RF) effectively combine content and contextual
features, yielding accuracies around 0.86 [19], [20]. Semi-
supervised graph-based ML approaches also show promise
in detecting fake user accounts spreading misinformation on
Twitter, achieving over 90% accuracy [21]. DL methods
overcome the manual feature engineering bottleneck of ML
by learning hierarchical representations directly from data.
Models such as Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) have been successfully
applied to FND tasks, with hybrid architectures reaching
accuracies above 0.8 on benchmark datasets [22], [23], [24].
Geometric deep learning and propagation-based frameworks
further capture the relational structure of information diffu-
sion [25]. Comprehensive evaluations demonstrate that ML
and DL methods both contribute effectively to fake news
detection [26], [27]. SNA approaches analyze the diffusion
and interaction patterns within social networks. Large-scale
studies leveraging millions of tweets have employed algo-
rithms like Collective Influence to identify super-spreaders
of misinformation [28], [29]. Network-based pattern-driven
methods [30] and Graph Neural Networks (GNNs) [31]
utilize topological and behavioral features to enhance detection
accuracy. Knowledge graph techniques enable fact-checking
through entity relationships [32], while diffusion network

analyses reveal that fake news spreads faster and deeper than
truth, amplified by echo chambers and bots [33].

Our approach differs from these prior works by explicitly
modeling the social-contextual dynamics of fake news propa-
gation through a novel propagation tree framework that cap-
tures user reactions—such as support, doubt, and denial—and
their influence on misinformation spread [15]. Unlike con-
ventional ML/DL models focused primarily on content or
user-level features, our method leverages weakly supervised
Multiple Instance Learning on propagation trees, enabling
efficient learning from article-level labels while incorporating
the complex interaction patterns inherent in social media
discussions. Moreover, we introduce a hierarchical attention
mechanism to integrate multi-level stance predictions, improv-
ing interpretability and detection accuracy. This social-context-
centric approach fills the identified gap in existing research,
providing a more holistic understanding and detection of fake
news in online networks.

III. PROBLEM STATEMENT

Our strategy for identifying fake news relies on a well-
organized dataset denoted as G. Each instance within this
dataset, represented by gi, is a triplet comprising gi =
{di, Cdi , Ldi} contains the following items:

• News Item (di): The central object of investigation,
represented as a news article, post, or similar textual
content suspected of being fake.

• Replying Posts Set on di (Cdi
): A chronologically

ordered sequence of users’ posts on di. This sequence
captures the surrounding discussion and engagement,
providing contextual information for analysis.

• Veracity Label (Ldi
): A binary label indicating the

truthfulness of the news. Ldi
= 0 signifies verified

truth, while Ldi
= 1 denotes confirmed falsity.

While Cdi
contains all the posts on di in temporal order, a

crucial aspect lies in acknowledging the explicit connections,
such as reply-to and share relationships, that exist between
them [34]. We represent each news di through a news-
post propagation tree (newsPostTree) [15]. The newsPostTree
depicts the potential spread of the news from its origin to
its wider audience. Edges in this tree follow the direction of
potential dissemination. The proposed approach investigates
the veracity of fake news on the basis of stances of replying
posts on the news. Having stated this, the proposed approach
identifies the veracity of fake news on the basis of the
following two tasks.

1) Stance detection: Given a post ci discussing the veracity
of a news item di, predict the post’s overall stance Lci on the
news’s accuracy. Possible stances include: Support: The post
expresses agreement with the news’s truthfulness. Deny: The
post disagrees with the news’s accuracy. Question: The post
raises doubts or seeks clarification about the news’s validity.
Comment: The post focuses on aspects unrelated to the news’s
veracity.

2) Fake news verification: For each news article di, this
task aims to determine its overall veracity as either real or fake.
We hypothesize that the news article’s veracity can be modeled
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as a weighted collective assumption based on the stances of
its associated posts, similar to the Multiple-Instance Learning
(MIL) framework [14]. In our approach, the news article’s label
is predicted based on the most likely stance category among
the stances expressed in the associated posts, considering their
distribution within a newsPostTree.

Fig. 1. An example fake news and replying posts on the news.

Fig. 2. An example real news and replying post on the news.

IV. PROPOSED APPROACH

Traditionally, fake news verification has often been tackled
as a single, multi-class classification problem [6]. However,
this approach overlooks the intricate interplay between the fine-
grained nuances of post stances (e.g. support, deny, question,
comment) and the multifaceted nature of news article veracity
(e.g. real or fake). To unlock the full potential of this rich
information, we propose a novel extension to the Multiple-
Instance Learning (MIL) framework. We recognize that a
single, multi-class approach might miss the subtle interactions
between stance and veracity. Therefore, we decompose the
problem into a multitude of binary classification tasks, each
focusing on a specific veracity-stance pairing. Let S be the
number of stance classes of posts, and let E be the number
of veracity classes for news. Given E and S, there exist
H = E ∗ S potential veracity-stance target class pairs, each
requiring the training of an individual binary classifier for weak
supervision in the task of detecting false information. This
granularization allows each model to hone its expertise on a

precise combination, capturing the subtle details that might be
obscured in a global approach.

While individual binary models provide valuable insights,
we need to unite their findings to paint a complete picture.
This is where the strength of the MIL framework shines. We
strategically aggregate the predictions of the individual models,
leveraging their collective knowledge to arrive at a robust
verdict on the overall news article’s veracity.

Fig. 3. An architecture of post encoding and binary stance classification of
posts.

A. Encoding Replying Posts

To analyze the content of each post and its stance towards
news veracity, we leverage powerful neural networks. Each
post is first transformed into a sequence of terms Tci =
{t1, t2, t3, ..., t[ci]}, a linguistic fingerprint captured by pre-
trained term embeddings. These embeddings translate each
term ti into an n-dimensional vector ti ∈ V n, encapsulating
its meaning and relationships to other terms. Next, we utilize
a specialized neural network called a Gated Recurrent Unit
(GRU) [35] to understand the flow of information within
the post. The GRU processes the term sequence one by
one, effectively capturing the context and sentiment woven
through the terms. This results in a fixed-size hidden vector
that summarizes the essence of the entire post. Finally, to
assess the overall stance towards the news article’s veracity,
we employ two separate GRU-based encoders [36]. These
encoders act like dedicated detectives, each scrutinizing the
post from a different angle. Their analyses are then condensed
into two vectors, capturing the key aspects of the stance of
post Lci and the associated news di. In simpler terms, given
a number of terms (Tci = {t1, t2, t3, ..., t[ci]}) in the post ci,
the approach breaks down the post into its building blocks
(terms) and analyzes how they flow together in a standard
GRU transition equation GRU(), extracting key aspects of its
message (encoders) to ultimately understand its stance towards
the news’s trustworthiness.

Vdi
= V|di| (1)

V|di| = GRU
(
t|di|, V|di|−1,∆di

)
(2)

Vci = V|ci| (3)
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V|ci| = GRU
(
t|ci|, V|ci|−1,∆ci

)
(4)

V|di|−1 and V|ci|−1 serve as hidden units capturing informa-
tion about the preceding terms in news item di and associated
post ci. ∆di and ∆ci encapsulate the entirety of the news and
post encoder parameters.

V. NEWS POST PROPAGATION TREE (NEWSPOSTTREE)

Given a news item di, to identify whether di is fake news,
the proposed approach utilizes the hierarchical tree structure of
the replying posts Cdi

= {c1, c2, c3, ..., c|Cdi
|} on di, capturing

intricate propagation patterns essential for classification (see
Fig. 3). Imagine a complex web of online posts, where
some spread truth and others spin yarns of misinformation.
One such news-post pattern is the “support-comment-support”
sequence. Imagine some replying posts on a news support the
news. Others chime in with questions or comments, and if
the evidence in a supporting post holds up, we might see
further support emerge. This cyclical pattern tends to be more
prevalent in true news, where credible replying posts attract
validation and build momentum [15]. On the other hand, fake
news often struggle to generate sustained support. They might
trigger initial curiosity or even controversy, but without a solid
foundation, they tend to fizzle out, lacking the magnetism to
attract lasting support.

This model acts like a skilled investigator, navigating
this web through the proposed newsPostTree structure. Unlike
models who focus on individual posts, this model investigates
the entire path information takes, starting at the source (root
node) and moving down each branch. Each post (node of
the tree) can be considered a piece of evidence. This model
gathers clues (called “features”) from each post, like suspicious
language or biased references, and strengthens them based on
the path they took. If a post agrees with its parent’s denial
of the original news, the evidence against both strengthens
as the model travels down the branch. This “evidence boost”
happens for each non-leaf node, building a stronger case
against potential misinformation. Now, what makes this model
special? Unlike models who start at the leaf nodes and piece
things together (bottom-up), this model starts at the news (root
node) and builds the information tree level by level. Each post’s
“evidence file” combines its own clues with those from its
parent, creating a richer picture with each step down the tree.
It’s like a team of sub-models, each adding their findings to
the case news, building a more comprehensive picture with
every level [15].

Consider a scenario where the hidden information within
a non-leaf node can be seamlessly transmitted to all its child
nodes simultaneously, ensuring no loss occurs in the process.
In such a context, the determination of the hidden state Vci
for a given node ci involves a computation that combines the
existing hidden state VParent(ci) of its parent node Parent(ci)
with the input vector specific to the node itself. This integration
process allows the formulation of transition equations for node
ci, presenting them in a manner consistent with the principles
of a standard Gated Recurrent Unit (GRU).

Ṽci = VciΓ (5)

uci = ϕ
(
ZuṼci +ΥuVParent(ci)

)
(6)

xci = ϕ
(
Zci Ṽci +ΥxVParent(ci)

)
(7)

V̂ci = tanh
(
ZV Ṽci +ΥV

(
VParent(ci) ⊙ uci

))
(8)

Vci = (1− xci)⊙ hParent(ci) + xci ⊙ V̂ci (9)

In this context, ci represents a post, and Γ represents the
parameter matrix responsible for transforming this input post.
The transformed representation of ci is denoted as Ṽ ci, and Z
and Υ signify the weight connections within the GRU (Gated
Recurrent Unit). V ci refers to the hidden state of ci, and
V̂ ci represents the candidate activation of the hidden state of
the current node. Similar to the standard GRU, ⊙ indicates
element-wise multiplication. The reset gate uci determines
how to combine the current input Ṽ ci with the memory of
children, while the update gate xci defines the extent to which
memory from the children is incorporated into the current
node.

The approach recursively explores the tree, gathering infor-
mation and “learning” about the data point. This information
gets condensed into a hidden vector for each leaf. However,
the problem is that trees can have different numbers of leaves!
This means we can’t directly stick those hidden vectors into a
neural network with a fixed number of inputs. To solve this,
we use a special layer called “max pooling” (see Fig. 3). This
layer scans all the leaf vectors and picks the highest value
for each dimension. This way, we capture the most important
features that were highlighted during the walk down the tree,
regardless of how many leaves there are. Finally, it considers
the best-of-the-best information and feeds it into another layer
called “softmax.” This layer analyzes the pooled features and
makes a prediction about the data point’s category. In essence,
it takes all the insights gathered from the top-down journey
through the tree and uses them to make a confident call.
This approach allows us to analyze variable-length trees and
effectively leverage the learned features for accurate prediction,
even when the journey down the tree can take different paths.

Ldi
= Softmax

(
WVCdi

+ β
)

(10)

The parameter VCdi
represents the pooling vector over all

leaf nodes, while the parameters W (weight) and β (bias) are
instrumental in shaping the output layer.

Our initial investigation explored the feasibility of bottom-
up propagation as an alternative information flow mechanism
within the model. However, empirical evaluations revealed a
substantial decrease in model performance. Analysis identified
the overreliance on the root node’s representation as the
primary culprit for this information loss. This limitation stems
from the inherent nature of bottom-up propagation, where
information from lower levels aggregates towards the apex,
potentially discarding refined features accumulated on diverse
propagation paths.
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A. Identifying Stance of Posts

Our goal for stance classification is to automatically iden-
tify the stance expressed in a social media post, whether it
be an opinion or attitude. We can visualize this process as
information diffusing through a tree-like structure, with each
node representing a component of the post, such as words,
phrases, or sentences. Now, think of information flowing down
this tree. We assume this diffusion happens perfectly and
simultaneously, ensuring all children receive the stance features
of their parent. This allows us to build a representation of the
overall stance within each “binary classifier” H = E × S,
which are essentially decision-making units at each leaf node.
To achieve this, we used the newsPostTree representation
learning approach [37]. This approach works like a translator,
converting a node’s raw information (including its own content
and the stance received from its parent) into a “context vector.”
This vector captures the gist of the stance expressed at that spe-
cific point. Imagine a node ci, by combining the information
from its parent node Parent(ci) and with its own content,
ci gets translated into a new context vector named V̂ci . This
process repeats recursively as we travel down the tree, with
each node’s context vector building on the accumulated stance
information from its ancestors. In essence, this newsPostTree
approach allows us to understand the overall stance of a post
by considering not just its individual parts but also the broader
context and relationships built up through the hierarchical
structure. This information-rich representation empowers the
binary classifiers at each leaf node to make more accurate and
refined decisions about the specific stance expressed in that
part of the text.

V̂ h
ci = R̂NN

(
V h
ci , V

h
Parent(ci)

, αh
)

(11)

In the context of our model, ̂RNN() signifies the RNN
transition function based on top-down processing [37] of
the newsPostTree, with αh encompassing all associated pa-
rameters. Subsequently, a fully-connected softmax layer is
employed to forecast the stance probability of ci concerning
the news vector V h

di
in relation to classifier h:

phci = softmax
(
δh1 V̂

h
ci + δh2V

h
di

+ ωh
)

(12)

In this formulation, δh1 , δh2 , and ωh denote the weights and
bias of the prediction layer. Subsequent to this, the stance prob-
ability for each individual post phci within the newsPostTree can
be calculated using a methodology akin to that described in
the above equation.

B. Post-Stance Aggregation

In our quest to assess fake news veracity, not all pieces
of evidence hold equal weight. Consequently, it’s crucial to
selectively amplify the contributions of those pieces of evi-
dence – the binary classifiers within the tree – that demonstrate
the strongest correlation between the expressed stances and
the actual news veracity. To achieve this, we enlist the power
of an “attention mechanism” [38]. It carefully scans all the
binary classifiers within the tree, analyzing their individual
capabilities in capturing the link between stance and news

veracity. Those classifiers exhibiting a stronger correlation
indicate greater reliability as evidence sources. Conversely,
classifiers with weaker correlations fade into the background,
their contributions minimized.

Va = GRU
(
t|di|, V|di|−1,∆a

)
(13)

Λh =
exp

(
Va · V h⊤

di

)
∑

h exp
(
Va · V h⊤

di

) (14)

∆a symbolizes the internal configuration of the GRU
encoder. V h

ci represents the news encoded by the h-th classifier.
To understand the different stances, our model relies on
a collection of specialized “binary stance classifiers,” each
focusing on a particular stance type. We aggregate all binary
stance classifiers targeting the same stance type into a single
set K(S), where s ∈ S can be support, deny, comment, or
question. So, while they’re all investigating the same type
of news, they each have a unique perspective based on their
specific training data. The final probability for that stance type
is then computed using:

p̂ci,S =
∑

h∈K(S)

Λh · phci (15)

To assess the overall stance landscape, let K(S) represent
a team of classifiers focusing on a specific stance type S ∈
{deny, support, comment, question}. Each classifier within
K(S) outputs a prediction (phci ) the probability that the post
ci expresses the target stance S through the stance classifier
h. Consequently, pci,S denotes the probability that post ci is
categorized as stance S, taking into account the significance of
the corresponding classifiers with S as the target class. Despite
addressing the same stance, these classifiers vary because
each concentrates on a distinct veracity label of the news. By
accumulating the weighted predictions for the specific stance
S, we obtain the final probability distribution p̂ci . This process
repeats for all possible stance types in S, ultimately painting
a comprehensive picture of the different opinions and their
relative strengths within the post.

Fig. 4. An architecture of identifying fake news.
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C. Identifying Fake News

In the context of verifying news authenticity, simply taking
the overall sentiment of a discussion about the news might not
be enough. We need to delve deeper, analyzing the individual
stances expressed at different replying posts in the conversation
and prioritizing those carrying greater evidential weight. To
achieve this, we propose a “newsPostTree Attention Mecha-
nism” that selectively aggregates stance information through-
out the discussion tree (see Fig. 4). Think of the discussion as
a branching tree, where each node represents a stance towards
the news. Our model focuses on attending to specific nodes
within each branch – the ones offering strong evidence for or
against the news’s veracity. We call these “evidential stance
nodes.” Formally, let’s call a path βl through the tree from its
root di (news) to a leaf node ci. The set of all nodes along that
path is denoted by Cβl

. To determine the overall aggregated
stance for the path βl, our model accomplishes this in two
steps:

1) Selective attention: For each path, the model focuses
on the evidential stance nodes. It assigns attention scores
to each node, essentially highlighting the ones carrying the
most significant evidence for or against the news’s veracity.
This selective attention mechanism ensures that the aggregated
stance doesn’t get diluted by less informative opinions.

2) Aggregation: Once the attention scores are calculated,
the model combines the information from the evidential stance
nodes for the path. This aggregation, using the attention scores
as weights, produces a single “aggregated stance” for the path.
This stance reflects the dominant sentiment, filtered through
the lens of the most valuable pieces of evidence identified
along the path.

Θh
ci =

exp
(
V̂ h
ci · V

h⊤

di

)
∑

i∈Cβl
exp

(
Ṽ h
di

· V h⊤
di

) (16)

phβl
=

∑
n∈Cβl

Θh
cn · phcn (17)

The symbol Θh
ci denotes the attention coefficient assigned

to each node along the path βl, while phβl
represents the

aggregated probability of stances from leaf nodes along the
propagation path βl. The symbiotic relationship between Θh

ci
and phβl

is pivotal, as it quantifies attention given to individual
nodes and determines the collective stance probability of leaf
nodes along the specific propagation path.

To capture the overall sentiment surrounding the news, we
need to further aggregate information across different paths.
Here’s where the second stage of our Tree Attention Mecha-
nism starts its work, focusing on informative path selection.
Imagine each possible discussion about the news (a path
through the tree) as a potential piece of evidence. We want
to pick the paths that offer the most valuable insights into the
news’s veracity. To do this, we leverage the hidden vectors V k

l
embedded in the leaf nodes of each path (βl). These vectors,
generated in the first stage, encapsulate the accumulated stance
information at the end of each branch.

Formally, let Ĉdi
represent the set of all leaf nodes within

the entire tree, with its root being the news itself. We now
employ the Tree Attention Mechanism again, but this time
on the set Ĉdi

. This second-stage attention assigns scores to
each individual path based on the informativeness of its leaf
node’s hidden vector. Paths with stronger evidence, reflected
in their leaf node representation, receive higher scores and
are ultimately weighted more heavily in the final aggregation.
This weighted aggregation, considering the attention scores for
each path, culminates in an “aggregated path stance.” This
stance represents the collective opinion about the news, filtered
through the lens of the most informative paths identified by
the second-stage attention mechanism. By prioritizing paths
conveying robust evidence, we ensure that our final verdict on
the news’s veracity is not swayed by less insightful discussions
or irrelevant tangents.

Θh
βl

=
exp

(
V̂ h
βl

· hh⊤

di

)
∑

βl∈Ĉdi
exp

(
V̂ h
βl

·hh⊤
di

) (18)

p̂hdi
=

∑
βl∈Ĉdi

Θh
βl

· phβl
(19)

The Θh
βl

signifies the attention coefficient for each individ-

ual leaf node, while p̂hdi
encapsulates the probability associated

with fake news veracity, derived from aggregating stances
along various paths.

D. Aggregating Fake News Classifiers

Instead of analyzing each fake-news veracity classifier
individually, our model employs a clever strategy to leverage
their collective wisdom. Similar to stance classifiers aggrega-
tion, we gather all classifiers targeting the same “fake news
class label” into a single set. Within each set, the members,
which are individual binary veracity classifiers, provide their
own assessments of the news’s truthfulness. To combine these
diverse insights, we utilize a “weighted sum” approach.

We used an indicator set K(eo) to group binary classifiers
targeting the same veracity class efake, ereal in E. Each classi-
fier within K(eo) provides a binary veracity prediction (fake or
real) for the news item di, representing the probability phdi

of it
belonging to veracity class eo through the classifier h. Notably,
although they share the same veracity target, classifiers in
K(eo) differ in their assigned “target stance classes.” These
stance classes represent specific sentiment or opinion types
they analyze within the news. This differentiation leads to
diverse stance probability predictions across classifiers, even
for the same veracity class. By aggregating these stance-
informed predictions, we obtain a richer representation of the
news item’s veracity. The final probability distribution over
all veracity classes, denoted by p̂di

= [ ̂pdi,fake, ̂pdi,real],
captures the combined insights from each classifier’s unique
perspective.
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E. Training and Optimizing the Learning Model

To train our model using multiple binary classifiers, we
convert the fine-grained veracity and stance annotations into
binary labels. Each classifier targets a specific veracity-stance
pair, where the veracity label of a news article di is mapped
to either the target class or others (non-matching cases). Simi-
larly, each post’s stance is modeled as a probability distribution
over the target stance class. This label transformation is applied
uniformly across all classifiers, enabling them to distinguish
between a specific veracity-stance combination and all other
instances. While stance predictions are utilized during training,
the ground truth for fake news verification focuses solely on
the veracity of the news article, as post-level stance annotations
are often sparse and potentially unreliable.

1) Training binary MIL-based classifiers: Our model
hinges on the negative log likelihood (NLL) as the key metric
for measuring prediction accuracy.

M = −
H∑

h=1

D∑
di=1

Ldi
∗log p̂hdi

+(1− Ldi
)∗log

(
1− p̂hdi

)
(20)

For each news item di, let Ldi
represent the ground truth.

phdi
, on the other hand, signifies the predicted probability

generated by classifier h for the news item di. This equation
takes into account all D news items and H binary classifiers
in the model, making it a powerful tool for evaluating how
well predicted probabilities align with actual outcomes across
the entire dataset.

2) Training aggregation model: To guide our aggregation
model towards optimal performance, we leverage a powerful
training technique called the “negative log-likelihood loss
function.”

M̂ = −
F∑

f=1

E∑
e=1

Lf,e ∗ log p̂f,e + (1− Lf,e) ∗ log (1− p̂f,e)

(21)

The model produces a “predicted probability” (pf,e) of the
f news belonging to a specific veracity class e ∈ E. In this
context, Lf,e represents a binary value that signifies whether
the veracity class of the f-th news, based on groundtruth, is
e. Finally, E signifies the total number of possible veracity
classes.

The negative log-likelihood loss function then steps in with
its rigorous assessment. It calculates a penalty based on the
discrepancy between the model’s prediction and the actual
truth. If the model confidently predicts the wrong class, the
penalty is severe, urging it to adjust its reasoning. Conversely,
a confident and accurate prediction earns minimal punishment.
As the model processes numerous news items, it undergoes
a continuous learning process guided by the penalties. It
refines its ability to interpret and weigh the individual stance
information, gradually honing its skill in predicting the overall
veracity of the news with increasing accuracy. By minimizing
the negative log-likelihood over countless news samples, the
model effectively learns to distinguish fake news news from
real news within the chosen framework of veracity classes.

To fine-tuning We used “back-propagation” [39], which
meticulously analyzes the model’s output and works back-
wards to optimize the model. To guide this optimization
process, we leverage the “Adam” optimizer [40]. which ma-
neuvering the learning rate (the pace of adjustments) to en-
sure the model progresses efficiently without getting stuck in
overfitting or underfitting traps. We set the initial learning
rate at 0.001, and it can dynamically adapt based on the
model’s performance. To infuse our model with rich linguistic
understanding, we pre-train its word embedding layer using
pre-trained “GloVe Wikipedia 6B word embeddings” [41].
These pre-trained vectors offer an initial advantage, enabling
the model to swiftly understand the intricacies of language
within the news it analyzes. The training process persists until
two crucial conditions are satisfied:

• Convergence of the loss value: We monitor the “loss
function,” a metric that quantifies the model’s errors.
When the loss stabilizes and stops decreasing signif-
icantly, it indicates that the model has likely reached
its optimal performance.

• Maximum epoch number reached: In case the loss
doesn’t converge perfectly, we also set a pre-defined
maximum number of training iterations (“epochs”) as
a safety net. This ensures the training process doesn’t
run indefinitely and allows us to evaluate the model’s
performance at various stages.

At the end the model applies the “weighted aggregation
model,” which combines the insights from all individual clas-
sifiers to deliver a unified verdict on the news item’s overall
veracity.

VI. EXPERIMENTS

For investigating the impact of news propagation pat-
terns on fake news detection, we used the FakeNewsNet
datasets [42], which are integral to understanding the dynamics
of misinformation in online spaces. These datasets encompass
source news that has undergone fact-checking by reputable
sources such as PolitiFact and GossipCop, along with the
associated tweets and social engagement data of users. The
PolitiFact dataset comprises a total of 1,056 news articles,
including 432 identified as fake news and 624 classified as real
news articles. Similarly, the GossipCop dataset encompasses a
total of 22,140 news articles, with 5,323 categorized as fake
news and 16,817 as real news articles. Regarding the social
context, PolitiFact observed 95,553 users posting tweets about
fake news and 249,887 users posting tweets about real news.
In the case of GossipCop, fake news generated 265,155 user
tweets, while real news garnered 80,137 user tweets. The user
social data is comprehensive, involving the crawling of user
attributes and user-following relations, providing insights into
how individuals interact with and disseminate information.
The labels within the dataset categorize news as either “real
news” or “fake news”. To ensure a focused analysis, retweets
are filtered out from the datasets, allowing a more clear
examination of the primary propagation patterns.

We trained and tested our model on the SemEval-8
dataset [43]. SemEval-8 offers a rich tapestry of data, with
each news item meticulously labeled as either “true,” “fake,”
or “unverified-fake.” We consider the samples only labeled
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as either “true” or “fake”. This veracity labeling goes be-
yond a simple binary classification, offering valuable insights
into the spectrum of information trustworthiness. Moreover,
each news item is accompanied by user posts categorized
by their expressed stance: “support,” “deny,” “question,” or
“comment.” While prior research on SemEval-8 often focused
on a holistic understanding of rumor detection and stance
prediction, our investigation took a more granular approach.
We focused exclusively on news items categorized as true
or fake, effectively framing the task as a binary veracity
classification. This decision allowed us to hone in on the
core challenge of distinguishing factually accurate news from
misinformation. Furthermore, instead of simply predicting the
overall stance category for each post, we opted for a more
fine-grained analysis. We trained eight individual binary stance
classifiers, one for each possible stance-veracity combination.

To optimize our model’s performance, we held out 20
percent of the test data as a validation set. This allowed us
to adjust hyperparameters precisely, ensuring the best possible
performance. We further employed a rigorous set of evaluation
metrics, including Accuracy, Precision, Recall, and F1 score
(F1). These metrics, taken together, offer a comprehensive
picture of how effectively our models distinguish real and fake
news, while also capturing the fine details of stance detection.
Furthermore, we built all our neural networks using the well-
regarded PyTorch framework [44]. This ensured consistency
and reliability throughout the computational aspects of the
study.

A. Results

To evaluate the efficacy of any novel model demands
a rigorous testing ground. For the proposed approach, we
constructed a two-pronged evaluation strategy. First, we com-
pare the performance of our proposed approach (FnTS)
against several baseline approaches: TextCNN [45], HAN [46],
BERT [47], ALBERT [48], TextGCN [49], GraphSage [50],
and UPFD [51]. Second, we armed ourselves with a quartet of
robust evaluation metrics: Accuracy, Precision, Recall, and F1-
score (F1). These metrics collectively paint a clear picture of
how effectively FnTS discerns real from fake news, capturing
both its overall success rate and its ability to avoid both false
positives and negatives.

According to Fig. 5, results on both datasets show that the
proposed approach (FnTS) achieves the optimal score on all
four metrics. This consistent performance across metrics and
datasets underscores the strength of our approach, suggesting
that considering the stance of posts truly makes a difference in
the war against misinformation. Further investigation unveils
the secret sauce behind FnTS’s success: its top-down explo-
ration of social networking posts. By delving deeper into the
intricacies of social connections, the newsPostTree hierarchy
exploration captures a richer tapestry of information compared
to baseline methods. Specifically, the attention mechanism, a
built-in spotlight highlighting vital post-stances, plays a crucial
role in identifying and extracting distinctive user signals. These
signals ultimately empower FnTS to make more informed and
accurate fake news detection decisions.

Graph models, which utilize both textual and structural
information, consistently surpass their counterparts that focus

(a) Politifact.

(b) Gossipcop.

Fig. 5. Effectiveness of the proposed approach (FnTS) and baseline
approaches on two benchmark datasets.

solely on text. Notably, GraphSage [50], powered by a cus-
tomized news propagation graph, consistently demonstrates
outstanding performance, outperforming all text-based meth-
ods. On the other hand, UPFD [51], another strong competitor,
also uses user information as a tool. However, its reliance on
historical data makes its performance vulnerable to fluctuations
specific to the dataset, unlike the steadfast accuracy displayed
by FnTS. To conclude, the comprehensive evaluation of FnTs
paints a compelling picture of its effectiveness. Not only does
it outperform or closely match baseline approaches, but it also
sheds light on the power of incorporating user connections into
fake news detection models. These findings pave the way for
further advancements in leveraging social network dynamics
to combat the ever-evolving landscape of misinformation.

B. Component Study

To understand how each components of our proposed
approach contributes to its success in fighting fake news, we
conducted an experiment called an “ablation study” on FnTS
with four modifications.
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(a) Politifact.

(b) Gossipcop.

Fig. 6. Component studies of the proposed approach.

• FnTS-1: In this modification, we kept the tree-based
attention mechanism but replaced the “post encoder”
with non-structured post encoder.

• FnTS-2: We replaced the “newsPostTree attention
mechanism” with a more common one (dot product)
for stance aggregation.

• FnTS-3: In this modification we remove the recursive
tree-based stance aggregation.

• FnTS-4: In this modification we remove the tree-based
attention mechanism and replace the tree-based post
encoder with a non-structural post encoder.

The results, shown in Fig. 6, indicate that FnTS-3 performs
the worst, showing that the tree structure in both post encoding
and stance aggregation is crucial. Without it, the model’s
ability to spot fake news drops significantly. FnTS-4 also
stands out with the lowest performance scores, displaying
substantial declines in accuracy, precision, recall, and F1 score
for fake news verification. Changes to the tree-based attention
mechanism (FnTS-2/FnTS-4) also hurt performance the most.

This tells us that how the model focuses on its relevant parts
while understanding their relationships through their tree struc-
ture is critical for its accuracy. In simpler terms, our experiment
reveals that both the tree structure and the special way the
model pays attention to different parts of the posts are essential
for its success in detecting fake news. By understanding these
key components, we can further improve our model and keep
up with the ever-evolving world of misinformation.

TABLE I. ATTENTION SCORES OF BRANCHES OF NEWS-POST
PROPAGATION TREE FOR CLASSIFYING FAKE NEWS

Branch Attention
Score

News− >Support− >Query− >Support 0.12
News− >Support− >Query− >Comment 0.07
News− >Support− >Support 0.46
News− >Deny− >Deny 0.20
News− >Comment− >Support− >Support 0.21
News− >Comment− >Comment 0.02
News− >Comment− >Support 0.04
News− >Query− >Comment 0.03
News− >Query− >Deny 0.02

TABLE II. ATTENTION SCORES OF BRANCHES OF NEWS-POST
PROPAGATION TREE FOR CLASSIFYING REAL NEWS

Branch Attention
Score

News− >Comment− >Deny− >Support 0.12
News− >Comment 0.02
News− >Comment− >Deny 0.09
News− >Comment− >Deny− >Support 0.15
News− >Query− >Deny 0.09
News− >Deny− >Support 0.43
News− >Deny− >Support− >Comment 0.23

VII. DISCUSSION ON THE PROPOSED APPROACH

To peek into the inner workings of the proposed ap-
proach, we designed an experiment using the FakeNewsNet
datasets [42]. We selected two trees from this dataset, one
where the source news is “Real” and another where it’s
“Fake.” Table I and Table II show how our model analyzes the
comments and replies associated with each news, represented
as branches and leaves in the “trees.” The bold paths highlight
the tree branches that are deemed most relevant for determining
whether the news is actually true or false. By looking at
the attention scores assigned to each post, we can uncover
fascinating patterns:

1) Fake news: When the source news is labeled “Fake,”
the model focuses heavily on comments that deny the news
and then support it (branches with “deny-support” and “deny-
support-comment”). This “doubling back” behavior suggests
the model identifies these conflicting stances as suspicious
clues.

2) Real news: On the other hand, for “Real” news, the
model prioritizes comments that consistently support the news
or deny the deny post (branches with “support-support,”
“deny-deny,” and “comment-support-support”). This aligns
with our intuition that consistent stances reinforce the legit-
imacy of the news.
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3) Deny vs. Support: Interestingly, comments expressing
denial play a more significant role when the news is classified
as “Fake” (higher attention scores on denial branches). Con-
versely, support comments hold greater weight when the news
is deemed “Real.”

4) Propagation paths: The branches trace the pathways
through the trees that the model deems most influential in
reaching its verdict. This highlights the importance of consid-
ering the structure of the discussion along with the individual
comments themselves.

These observations confirm our belief that the “tree propa-
gation structure” is vital for accurately recognizing fake news.
By analyzing the relationships between comments and their
stances, the proposed approach builds a nuanced understanding
of online discourse, ultimately separating fact from fiction in
the ever-evolving world of information.

VIII. CONCLUSION

This research presents a novel weakly supervised propaga-
tion model built upon the Multiple Instance Learning (MIL)
framework. The proposed model is designed to tackle the dual
challenge of simultaneously verifying the authenticity of fake
news and identifying the stances expressed in associated posts.
Crucially, our model achieves this feat using only bag-level
annotations, specifically fake news veracity labels, demonstrat-
ing its ability to effectively learn from limited supervision.
This unique approach empowers the model to collectively
infer both the truthfulness of news and the previously un-
seen stance labels for individual posts within the associated
propagation tree. The distinct tree-based stance aggregation
mechanisms, deployed using newsPostTree configurations, are
a key innovation of our work. This mechanism has yielded
demonstrably superior performance for fake news identifica-
tion tasks, surpassing the benchmarks established by state-of-
the-art supervised and unsupervised models. The significance
of our findings resides in the successful application of weakly
supervised learning to significantly enhance the accuracy and
efficiency of fake news verification in social media settings.
The proposed framework opens several avenues for future
work. One promising direction is extending the model to
handle multi-modal data by incorporating images, videos,
and metadata alongside textual and propagation features. An-
other important line of research is applying the framework
to emerging real-time scenarios, such as early detection of
misinformation during breaking news events. Additionally,
improving interpretability through explainable AI techniques
would make the system more transparent and valuable for
journalists, fact-checkers, and policymakers.
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