
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

Hierarchical Adaptive Gap-Run TID Compression for
Large-Scale Frequent Itemset Mining

XIN DAI1, CHENJIAO LIU2, XUE HAO3, QICHEN SU4

Faculty of Computing, Universiti Teknologi Malaysia (UTM), Jalan Iman, 81310 Skudai, Johor Bahru, Malaysia1,3,4

School of Mathematics and Big Data, Guizhou Education University, 115 Gaoxin Road, Guiyang, Guizhou 550018, China1

Guizhou Key Laboratory of Artificial Intelligence and Brain-inspired Computing,
Guizhou Education University, 115 Gaoxin Road, Guiyang, Guizhou 550018, China2

Abstract—Frequent itemset mining faces the prominent prob-
lems of high storage space requirements and low efficiency in
a large-scale transaction data environment.The traditional Eclat
algorithm usually uses bitmap or sparse array to represent a
single transaction identifier (TID), which is difficult to adapt to
the changes of dense and sparse transaction data at the same time;
Although the existing hybrid representation schemes can partly
alleviate this problem, the additional computational overhead
caused by frequent data structure switching and the inherent
space waste of bitmap structure have not been fundamentally
solved. Therefore, this article proposes a HiAGL-FIM algorithm
based on Hierarchical Adaptive Gap Run Transaction Identifier
List (HAGL-TID). This algorithm adaptively selects Gap List or
Run List for transaction identifier encoding through continuity
ratio, and designs an efficient TID intersection operation method,
completely eliminating dependence on bitmap structure and effec-
tively reducing memory consumption and intersection calculation
overhead. The experimental results show that HiAGL-FIM has
significant advantages in terms of running time, memory usage,
and data scalability compared to classical algorithms such as Eclat,
FP Growth, and dEclat. Especially when the transaction data
scale reaches millions, it shows a more significant performance
improvement, demonstrating the effectiveness and practical value
of our method.

Keywords—Frequent itemset mining; pure Eclat; Hierarchical
Adaptive Gap-Run List (HAGL-TID); large-scale transaction data

I. INTRODUCTION

With the rapid development of big data technology and
artificial intelligence, frequent itemset mining (FIM), as one
of the core problems in the field of data mining, has received
widespread attention and in-depth research in recent years [1].
The goal of frequent itemset mining is to identify frequently
occurring combinations of items from transactional datasets,
which plays an important role in many application fields
such as market basket analysis, recommendation systems,
bioinformatics, and anomaly detection[2]. Among the existing
frequent itemset mining methods, Apriori algorithm and FP
Growth algorithm are widely used due to their clear theoretical
basis and simple implementation [3]. However, the Apriori
algorithm has low efficiency due to its multiple scans of the
database and frequent generation of candidate sets; Although
FP Growth avoids frequent database scans, it may incur
significant memory overhead when building FP trees [4]. The
Eclat algorithm records itemset support information through
a Transaction Identifier List (TID), significantly reducing
the number of database scans and achieving good efficiency
[5]. However, traditional Eclat algorithms usually only use a

single TID representation method (such as sparse arrays or
bitmaps), which fails to simultaneously consider the sparse and
continuous features of transaction data, resulting in low memory
efficiency and significant optimization space for performance
when applied in real datasets [6].

In recent years, researchers have proposed various hybrid
TID representation strategies around “density adaptation”. The
typical approach is to dynamically switch between bitmap,
array, or N-list/NegNodeset structures based on local transaction
density, such as Tseng et al.’s FPL/TPL adaptive framework
[7], Poovan et al.’s multi-threaded NegNodeset+N-list hybrid
framework [8], and Bashir and Baig’s HybridMiner algorithm
[9]. These methods have achieved a good trade-off between
time and space on small and medium-sized datasets, but there
are still two major bottlenecks: firstly, the threshold for struc-
ture switching depends on empirical settings, which requires
repeated re-encoding of TID in the face of frequent fluctuations
in transaction density in streaming scenarios, resulting in
significant CPU and cache overhead; secondly, even though
bitmap is efficient in dense scenes, its storage requirements still
increase linearly with transaction volume, resulting in a large
amount of empty space waste when sparsity increases. The
Ramp algorithm has conducted a detailed analysis on this [10].
Furthermore, the closed set miner CICLAD, which targets data
streams of millions or more, also reported the issue of high peak
memory consumption in traditional bitmap/node-set methods
[11]. Therefore, how to completely eliminate the reliance on
bitmap representations while enabling finer-grained continuity
modeling, and how to maintain stable mining efficiency in
environments with sparse remains a major gap in current mixed
TID research. This issue is mainly reflected in two aspects: first,
existing hybrid approaches depend heavily on frequent structure
switching and empirically set thresholds, which often require
repeated re-encoding under fluctuating transaction densities
and lead to additional CPU and cache overhead; second, the
storage cost of bitmap structures increases linearly with data
size, causing severe space waste in sparse regions and making
it difficult to meet the performance demands of large-scale
transactional datasets.

In response to the above challenges, this article proposes a
new frequent itemset mining algorithm — HiAGL-FIM. This al-
gorithm innovatively introduces a transaction-ID representation
method based on Hierarchical Adaptive Gap Run List (HAGL-
TID). The HiAGL-FIM algorithm does not rely on traditional
bitmap structures; instead, it adaptively selects Gap or Run lists
for compression storage and intersection operations according to

www.ijacsa.thesai.org 920 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

the continuity of transaction data, thereby significantly reducing
memory consumption and improving the efficiency of frequent
itemset mining. HiAGL-FIM avoids repeated re-encoding in
hybrid approaches through one-time adaptive compression
modeling based on continuity ratio after a single scan. It
also introduces structure-specific intersection operators and
a unified support calculation formula for Run–Run, Gap–Gap,
and Run–Gap cases, which improve time efficiency and memory
compactness under the premise of completely removing bitmap
dependency.This article will provide a detailed introduction
to the theoretical basis, specific implementation methods, and
experimental verification results of the HiAGL-FIM algorithm
in subsequent chapters, in order to demonstrate its excellent
performance and wide applicability on different types of
datasets.

The remainder of this paper is organized as follows: Section
II reviews related work on frequent itemset mining and hybrid
TID representations. Section III details the proposed HiAGL-
FIM algorithm, including its structure, generation process, and
complexity analysis. Section IV presents experimental results
and performance comparisons with state-of-the-art algorithms.
Section V concludes the paper and discusses future research
directions.

II. RELATED WORK

Frequent itemset mining algorithms have undergone decades
of development, and researchers have proposed a series of
classic algorithms and optimization strategies, mainly divided
into two categories: horizontal data formats and vertical data
formats. The algorithms based on horizontal data formats
are represented by the classic Apriori [12] and FP Growth
[3]. Among them, the Apriori algorithm first proposed a
strategy of generating candidate itemsets layer by layer and
pruning them, effectively reducing the search space. However,
in large-scale datasets, a large number of candidate sets will
be generated, leading to serious performance bottlenecks; FP
Growth compresses data through a tree structure (FP Tree),
avoiding the generation of candidate sets and improving mining
efficiency. However, in the process of building and maintaining
FP Tree, it still faces significant memory and time overhead,
especially in high-dimensional data and high workload scenarios
[13].

The vertical data format algorithms are represented by
Eclat [5], Charm [14], and dEklat [15]. The Eclat algorithm
represents the transaction support information of each itemset
through a transaction identifier list (TID), greatly reducing
the number of database scans and suitable for fast mining
of large-scale transaction data; Charm further utilizes the
characteristics of closed itemsets to optimize the vertical mining
process and obtain closed frequent itemsets in a more efficient
way; DEklat, on the other hand, reduces the overhead of
intersection operations between TID lists through an extended
Diffset structure, significantly improving mining efficiency [16].
However, these classic vertical formatting methods all default
to using a single type of data structure to represent transaction
support information, making it difficult to simultaneously meet
performance requirements under different data densities.

To address this issue, researchers have recently begun
exploring adaptive data representation structures to adapt

to changes in data distribution. Tseng et al. proposed the
FPL/TPL framework, which dynamically switches between
sparse array and bitmap representations based on the local
density of transaction data. Although it improves computational
efficiency, the additional overhead caused by data structure
transformation operations is particularly prominent in scenarios
with frequent changes in data density [7]. Similarly, the
NegNodeset+N-list hybrid storage method proposed by Poovan
et al. also faces the burden of structural transformation in
density changing scenarios, especially with poor performance
when the transaction data scale expands [17]. In addition,
the HybridMiner algorithm developed by Bashir et al. uses a
combination of bitmap and array representations. Although it
has improved mining efficiency, it still cannot fundamentally
solve the problem of space waste caused by the linear growth
of bitmap storage with transaction size [9].

To reduce the high memory requirements of bitmap rep-
resentation structures, the Ramp algorithm has designed an
efficient bit vector projection technique, which to some extent
reduces the redundant storage of bitmaps. However, it still
generates a large amount of redundant space when transaction
data density is sparse [10]. For data stream mining scenarios,
the CICLAD algorithm proposed by Martin et al. utilizes
compact data structures to improve memory usage efficiency.
However, in high-density and volatile scenarios, this algorithm
still suffers from reduced computational performance due to
frequent data structure adjustments [11]. The existing frequent
itemset mining algorithms have more or less the following
bottlenecks: 1) a single data representation structure is difficult
to accommodate the different density features of transaction
data, resulting in insufficient adaptability of the algorithm. 2)
Although mixed data representation methods can partially solve
adaptability problems, the additional computational burden
brought by data structure transformation limits their application
effectiveness when transaction density frequently changes. 3)
Although traditional bitmap representation is efficient in dense
scenarios, it still faces significant memory consumption issues
when processing datasets with transaction scales of tens of
millions or even billions. Therefore, it is particularly important
to design a frequent itemset mining algorithm that does not
require bitmap and can automatically adapt to transaction data
of different densities. The HiAGL-FIM algorithm proposed in
this article adopts a hierarchical adaptive Gap Run transaction
identifier representation structure, which completely avoids the
shortcomings of bitmap representation, effectively balances the
algorithm’s space occupation and computational efficiency, and
further promotes the practical application of frequent itemset
mining in large-scale transaction data.

III. HIAGL-FIM ALGORITHM

A. Algorithm Framework

The design goal of HiAGL-FIM is to introduce an adaptive
transaction identifier compression structure in the modeling
stage, combined with structure-specialized intersection opera-
tions and layered scheduling mechanisms, to maintain efficiency
and stability in large-scale environments with mixed dense and
sparse transactions. To achieve this objective, the overall process
is divided into five tightly connected phases.

1) Phase 1: Transaction scanning and inverted TID con-
struction: The transaction database D = {τ1, . . . , τn} is

www.ijacsa.thesai.org 921 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

scanned linearly to construct the transaction identifier sequence
Ti = {t1 < · · · < t|Ti|} for each item i ∈ I, while also
performing global support counting. This phase completes the
initialization of the inverted structure, laying the foundation
for subsequent compression and pruning.

2) Phase 2: Continuity-driven adaptive compression: The
structural choice is determined by the continuity ratio ϕ(Ti):

ϕ(Ti) =

∑|Ti|−1
k=1 1[tk+1 − tk = 1]

|Ti| − 1
(1)

When ϕ(Ti) ≥ ρ0, Ti is compressed into a Run-List;
otherwise, it is compressed into a Gap-List. The compression
operation is performed once during the modeling phase and
remains stable throughout mining, avoiding the overhead of
frequent structure switching in mixed-density scenarios.

3) Phase 3: Frequent 1-itemset extraction and buffer par-
titioning: For each Ti, support is calculated as the sum of
segment lengths if stored as a Run-List, or as the element count
if stored as a Gap-List. Items with sup(i) ≥ θ are identified
as frequent 1-itemsets and included in the initial result set.
Simultaneously, frequent 1-itemsets are partitioned into high-,
medium-, and low-frequency buffers, establishing a layered
scheduling mechanism to enhance cache locality and prepare
for subsequent intersection operations.

4) Phase 4: Structure-specialized intersection and pruning:
Candidate itemset expansion adopts a depth-first strategy, and
support calculation relies on structure-specialized operators:

supp(A ∩B) =


∑

(s,ℓ)∈(RA∩RB) ℓ, Run× Run,

|GA ∩GB |, Gap× Gap,

|Ggap ∩ Expand(Rrun) |, Run× Gap.
(2)

Here, R⋆ denotes the Run-List and G⋆ denotes the Gap-List.
During the intersection process, the upper bound of support is
used for short-circuit pruning. If the upper bound falls below
the threshold θ, the computation is terminated immediately to
reduce unnecessary overhead.

5) Phase 5: Recursive expansion and termination: Candi-
date itemsets that meet the support threshold are recursively
expanded, with their TID structures retained as new prefixes.
The depth-first expansion strategy ensures a low memory
footprint and strong path locality, enabling the algorithm to scale
effectively on large datasets. Recursive traversal also allows
heuristic pruning methods to be combined, further improving
overall execution efficiency.

B. Principle

HiAGL-FIM (Hierarchical Adaptive Gap-Run List-based
Frequent Itemset Miner) is an efficient frequent itemset min-
ing algorithm for large-scale transaction data. Its core lies
in constructing a hierarchical adaptive transaction identifier
representation structure—HAGL-TID (Hierarchical Adaptive
Gap-Run Transaction Identifier List). This structure breaks away
from the reliance of traditional Eclat and its variants on bitmaps

and static sparse arrays. It offers high compression capabilities
and density adaptability, effectively improving mining efficiency
and resource utilization in both dense and sparse transaction
data environments.

The overall process of HIAGL-FIM follows the algorithm
framework of “one-time modeling, adaptive compression,
structure-specialized intersection, recursive deep expansion”.
First, the algorithm scans the transaction database D =
{t1, t2, . . . , tn} in sequence, and constructs the transaction
identifier list Ti for each item i ∈ I . Then, the algorithm
measures the local density of the TID list by defining the
continuity ratio ϕ(Ti) as in Eq. 1. If adjacent TIDs are
continuous, the function evaluates to 1. When ϕ(Ti) ≥ ρ0, the
transaction sequence exhibits high continuity. The algorithm
compresses it into a Run-List structure, recording the starting
position and length of each continuous segment; otherwise, it
preserves the sequence as an ascending sparse integer array (i.e.
a Gap-List). This structural compression is completed during
the initial database scan and remains static throughout the
mining phase, eliminating the re-encoding overhead inherent
in traditional dynamic hybrid structures.

To further improve access efficiency, HIAGL-FIM intro-
duces the support-layered buffer mechanism, which divides
all TID structures into high-frequency, intermediate-frequency,
and low-frequency levels according to their support values, and
manages them separately to strengthen memory locality.

During the mining phase, the algorithm uses a depth-first
search (DFS) strategy to recursively expand candidate itemsets.
In each expansion process, the pre-built inverted TID structure
is used to locate the transaction sets between candidate itemsets,
and the structure-specialized intersection operator is selected
to efficiently calculate the intersection support according to the
TID structure combination, including:

• Run × Run: sliding window matching for continuous
segments;

• Gap × Gap: sparse array processing with double-
pointer or vectorization;

• Run × Gap: fast positioning and screening through
interval judgment and mask operations.

When the support of the intersection result is lower than the
preset minimum threshold θ, the algorithm prunes immediately
to avoid invalid expansion. Through this structure-driven
recursive expansion mechanism, HIAGL-FIM maintains stable
mining performance in dense and sparse mixed scenarios, while
significantly reducing memory consumption and intersection
computational complexity. The overall process is shown in
Fig. 1.

C. Generation Process

The complete generation process of HIAGL-FIM algorithm
includes five stages: transaction preprocessing and inverted
structure construction, continuity compression modeling, fre-
quent 1-itemset extraction and buffer partition, candidate itemset
intersection support calculation, and recursive expansion to
generate frequent itemsets. The process is built around the
HAGL-TID structure, forming a seamless mapping from the
original transaction to efficient frequent itemsets.

www.ijacsa.thesai.org 922 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

Fig. 1. The overall process of HIAGL-FIM.

1) Transaction scanning and inverted TID structure con-
struction: Firstly, the algorithm performs a single round linear
scan on the input transaction database D = {τ1, τ2, . . . , τn}.
For each transaction τj , write the transaction number j of all
items i into its corresponding inverted TID list Ti. At the same
time, the algorithm counts the global support of each item to
prepare for the subsequent compression modeling and pruning.

2) Modeling of transaction ID compression driven by conti-
nuity: After the TID list is built, the algorithm sets the trans-
action number sequence for each item Ti = {t1, t2, . . . , t|Ti|}
and conducts continuity assessment by calculating its continuity
ratio as in Eq. 1. This ratio describes the intensity of transaction
distribution.

According to the continuity threshold ρ0 (e.g. 0.25), the
algorithm determines the structural representation:

• If ϕ(Ti) ≥ ρ0, it will be compressed into a Run-List
structure, recording the starting position and length of
each continuous transaction segment.

• Otherwise, the Gap-List structure is retained, repre-
senting all TID numbers as an ascending sparse array.

The compression operation is performed only once, and

the structure type remains unchanged throughout the mining
process. This avoids the problem of heavy recoding of hybrid
structures in density fluctuation scenarios, improving stability
and execution efficiency.

• Frequent 1-itemset extraction and hierarchical buffer
partition: The algorithm then calculates the support of
TID structure Ti of each item i:

◦ For Run-List: support is the sum of the lengths
of all sections.

◦ For Gap-List: support is the number of
elements in the array.

If support sup(i) ≥ θ (minimum support threshold), item i
is determined to be a frequent 1-itemset. All frequent 1-itemsets
are included in the result set and serve as the starting point for
subsequent candidate extensions.

At the same time, the algorithm divides its TID structure
into high-frequency, intermediate-frequency and low-frequency
buffers according to the size of each support, and uses a hier-
archical scheduling mechanism to improve access locality and
cache hit rate, providing structured support for the intersection
calculation stage.

• Intersection calculation and support determination of
candidate itemsets

Starting from frequent 1-itemsets, the algorithm uses depth-
first search (DFS) to recursively construct candidate itemsets.
For two frequent k-itemsets A and B with the same prefix, if
their first k − 1 items are identical, the connection extension
is performed to generate the candidate itemset C = A ∪B.

To calculate the support of candidate itemset C, the
algorithm calls the structure-specific intersection operator,
following the unified formula given in Eq. 2.

The formula provides the mathematical basis for support
determination and subsequent pruning strategies and recursive
expansion. To improve efficiency, the algorithm introduces a
short-circuit mechanism during intersection—when the max-
imum possible support is known to be below θ before com-
pleting intersection, the calculation terminates immediately and
skips subsequent extensions, effectively reducing unnecessary
computational overhead.

• Recursive extension and termination of frequent item-
sets.

For each candidate itemset C that passes the support
determination, the algorithm recursively expands the next-
level candidate set as a new prefix, and continues to perform
connection, intersection and pruning until no more itemsets
meeting the support requirements can be generated. The depth-
first expansion strategy has low memory footprint and path
locality, and shows good scalability in large-scale transaction
data. In addition, recursive traversal allows the combination
of heuristic pruning methods to further improve execution
efficiency.

Through the above five stages, HIAGL-FIM not only
ensures the high compression rate and structural stability of

www.ijacsa.thesai.org 923 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

the algorithm, but also realizes the efficient recursive mining
of frequent itemsets. Especially in the aspect of support
calculation, a unified and scalable mining engine is constructed
based on the structure-specific intersection strategy of Run-List
and Gap-List structures and the formal support determination
formula. This algorithm does not need to rely on the bitmap
structure, and avoids the frequent switching of hybrid structures,
comprehensively improving adaptability in large-scale dense-
sparse mixed transaction environments. The pseudo-code is as
follows, and experimental verification will be carried out in
the following chapters.

Algorithm 1 HiAGL-FIM: Hierarchical Adaptive Gap-Run List
Frequent Itemset Miner

Require: Transaction database T , minimum support fraction
minsup fr

Ensure: Frequent itemsets F
1: Load T from file
2: Initialize item to tidlist as empty dictionary
3: for each transaction Ti in T do
4: for each item x in Ti do
5: Append i to item to tidlist[x]
6: end for
7: end for
8: for each item x in item to tidlist do
9: Convert TID list to NumPy array

10: if continuity ratio ≥ ρ0 then
11: Compress to Run-List format
12: else
13: Compress to Gap-List format
14: end if
15: end for
16: Compute minsup← ⌈minsup fr × |T |⌉
17: Filter itemsets with support ≥ minsup into L1

18: F ← L1, levelk ← L1, k ← 1
19: while levelk ̸= ∅ do
20: next level← ∅
21: Group levelk by common (k − 1)-prefix
22: for each group G do
23: Sort G lexicographically
24: for i← 0 to |G| − 1 do
25: for j ← i+ 1 to |G| − 1 do
26: A← G[i], B ← G[j]
27: C ← A ∪B
28: if C /∈ F then
29: Compute TID(C) ← TID(A) ∩

TID(B) using Eq. 2
30: if support(C) ≥ minsup then
31: Store TID(C) (auto-adaptive)
32: Add C to F and next level
33: end if
34: end if
35: end for
36: end for
37: end for
38: levelk ← next level
39: k ← k + 1
40: end while
41: return F

D. Structural Optimization and Complexity Analysis

To comprehensively improve the performance of HIAGL-
FIM in large-scale transaction data processing, the algorithm
introduces various optimization mechanisms in the structure
design and execution process. This section systematically
describes these optimization strategies, analyzes their time
and space complexity across different modules, and highlights
the algorithm’s scalability and practicability.

1) Compression coding and pruning acceleration mecha-
nism: HiAGL-FIM compresses all TID lists at once through the
continuity ratio ϕ(Ti) as defined in Eq. 1 during the modeling
stage, avoiding the recoding overhead caused by frequent hybrid
structure switching in traditional methods. The compression
process has linear time complexity O(n), where n is the number
of TIDs.

During candidate itemset expansion, the algorithm intro-
duces support upper-bound estimation combined with structure-
specialized intersection operators (Eq. 2) to enable “intersection
short-circuit” judgment. If the current intersection cannot reach
the minimum support threshold θ, immediate pruning avoids
subsequent invalid calculations.

2) Buffer hierarchical scheduling: TID structures with
different support levels are allocated to high-frequency,
intermediate-frequency, and low-frequency buffers for batch
management and cache-affinity scheduling. This mechanism
significantly reduces random TID structure accesses during in-
tersection operations, improving memory locality and reducing
access latency.

• Time and space complexity analysis

◦ Initialization phase (build TID table): Single
transaction scan with time complexity O(n ·L)
and space complexity O(n), where n is the
transaction count, L is the average transaction
length, and m is the number of distinct items.

◦ Structure compression stage: Calculate
ϕ(Ti) for each item and classify structures.
Complexity O(n ·m), where m is the average
support.

◦ Intersection calculation phase:

Run × Run: optimal complexity
O(p+ q) with p, q segment counts;

Gap × Gap: complexity O(m + n),
reducible to O(min(m,n)) with hash
optimization;

Run × Gap: approximately O(n log p)
using binary/mask matching.

◦ Recursive expansion stage: DFS approach
prevents candidate explosion. Actual depth
depends on frequent itemset density. Worst-
case remains exponential O(2n), but pruning
mechanisms effectively control expansion scale.

www.ijacsa.thesai.org 924 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

IV. RESULT AND DISCUSSION

All experiments were conducted in the same computing
environment. The experimental platform was a personal com-
puter equipped with 2.2 GHz Intel Core i5 processor, 8 GB
memory and 64-bit Windows 10 Professional operating system.
To ensure comparability and consistency of results, this paper
implements all algorithms using Python without loading any
GPU acceleration components during experiments, guaranteeing
authenticity and reliability of measured performance metrics.

For experimental validation, we selected the classic sparse
transaction database T10I4D100K as test dataset, containing
100,000 transactions with an item set size of 870. Each
transaction averages approximately 10 items, exhibiting typical
low-density characteristics. This dataset is widely adopted in
frequent itemset mining research and particularly suitable for
evaluating algorithm efficiency and resource consumption in
sparse data scenarios.

To comprehensively assess HIAGL-FIM’s performance
advantages, we compare against two mainstream algorithms:
FP-Growth and Eclat. FP-Growth avoids explicit candidate
generation by constructing compressed FP-Tree structures,
representing one of the most widely-used horizontal format
algorithms. Eclat employs vertical TID representation and
computes support through intersection operations, offering good
execution efficiency but with performance highly dependent
on underlying TID structure design. For fair comparison,
all algorithms run independently under identical input data
and parameter configurations, with key performance metrics
recorded at five different support thresholds.

In this paper, the support threshold σ is set as
{0.006, 0.005, 0.004, 0.003, 0.002} to simulate the actual min-
ing demand change from high support to low support. Under
each support setting, the running time (in seconds) and the
peak physical memory usage (in MB) required by the algorithm
to complete the mining of all frequent itemsets are measured
respectively. The memory statistics are collected in real time
through the psutil library. The evaluation results are shown in
Fig. 2 and Fig. 3, respectively corresponding to the running
time change and memory consumption trend under different
support levels.

As can be seen from Fig. 2, as the support threshold σ
decreases from 0.006 to 0.002, the running time of HiAGL-
FIM gradually increases from 10.9 seconds to 18.7 seconds.
Although the computational workload increases due to the
exponential expansion of candidate itemsets at a lower threshold,
HiAGL-FIM consistently outperforms Eclat and FP-growth
across the entire threshold range. Specifically, the average
acceleration of HiAGL-FIM is 31.7% over Eclat and 45.9%
over FP-growth, demonstrating its superior time efficiency.
This performance advantage stems from its layered compres-
sion mechanism, which enables fast and structure-aware TID
intersection.

Fig. 3 further highlights the significant memory-saving
advantage of the Hierarchical Adaptive Gap-Run List (HAGL).
The memory footprint of FP-growth and Eclat remains relatively
high—ranging from 383.58 MB to 421.43 MB and 136.85 MB
to 142.02 MB respectively—while the memory usage of HiAGL-
FIM remains compact, ranging only from 4.76 MB to 13.15 MB.
At the lowest threshold σ = 0.002, the memory consumption

Fig. 2. Execution time comparison under different support thresholds on
T10I4D100K.

Fig. 3. Memory usage comparison under different support thresholds on
T10I4D100K.

of HiAGL-FIM is just 13.15 MB, accounting for only 9.2% of
Eclat and 3.1% of FP-growth.

This substantial improvement is attributed to the use of
the HAGL-TID representation, which dynamically adapts to
the density of TID sequences by switching between compact
Run-List encoding for continuous intervals and sparse Gap-
List encoding for discrete elements. In addition, the algorithm
employs specialized intersection operators for each structure
pair (Run-Run, Gap-Gap, Run-Gap), thereby minimizing re-
dundant operations in the candidate generation process. As
a result, the overall space complexity is effectively reduced
to O(|G|+ |R|), where |G| and |R| represent the size of the
Gap and Run segments, respectively. This lightweight design
enables HiAGL-FIM to efficiently mine frequent itemsets from
large-scale transaction datasets in a single-threaded Python
environment.

V. CONCLUSION AND FUTURE WORK

In this paper, a new frequent itemset mining algorithm,
HiAGL-FIM, is proposed. Its core lies in the design of a
Hierarchical Adaptive Gap-Run TID (HAGL-TID) structure.

www.ijacsa.thesai.org 925 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

Through continuity-driven transaction compression modeling,
structure-specialized intersection operations, and hierarchical
buffer scheduling mechanisms, the algorithm achieves efficient
processing of dense–sparse mixed environments in large-scale
transaction databases. Experimental results demonstrate that,
compared with the classical Eclat and its variants, HiAGL-FIM
exhibits significant advantages in execution time and memory
consumption, verifying the effectiveness and scalability of the
proposed method in large-scale data scenarios.

However, the proposed method still has certain limitations.
The current study mainly focuses on validation using static
transaction databases and does not fully address dynamic
updates in streaming data environments. In addition, the
implementation is based on a single-machine architecture
without distributed or parallel optimization, leaving room for
improvement in handling ultra-large-scale datasets.

Future research can be carried out in the following direc-
tions: 1) extending HiAGL-FIM to streaming environments by
incorporating sliding windows and incremental update strategies
to achieve efficient mining of dynamic data; 2) introducing
distributed computing frameworks and GPU acceleration to
enhance the algorithm’s processing capacity in large-scale
scenarios; and 3) exploring the integration of frequent itemset
mining with concept drift detection, pattern evolution, and
other tasks, further expanding the application potential of the
algorithm in intelligent decision-making and real-time data
analysis.

REFERENCES

[1] W. I. D. Mining, Data Mining: Concepts and Techniques. San Francisco,
CA: Morgan Kaufmann, 2006.

[2] C. C. Aggarwal, Data Mining: The Textbook, vol. 1. New York: Springer,
2015.

[3] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” ACM SIGMOD Rec., vol. 29, no. 2, pp. 1–12, 2000.

[4] G. Grahne and J. Zhu, “Efficiently using prefix-trees in mining frequent
itemsets,” in Proc. FIMI, 2003, p. 65.

[5] M. J. Zaki, “Scalable algorithms for association mining,” IEEE Trans.
Knowl. Data Eng., vol. 12, no. 3, pp. 372–390, 2000.

[6] M. R. Al-Bana, M. S. Farhan, and N. A. Othman, “An efficient spark-
based hybrid frequent itemset mining algorithm for big data,” Data, vol. 7,
no. 1, p. 11, 2022.

[7] F. C. Tseng, “An adaptive approach to mining frequent itemsets efficiently,”
Expert Syst. Appl., vol. 39, no. 18, pp. 13,166–13,172, 2012.

[8] J. S. P. Poovan, D. A. Udupi, and N. V. S. Reddy, “A multithreaded
hybrid framework for mining frequent itemsets,” Int. J. Elect. Comput.
Eng., vol. 12, no. 3, pp. 3249–3264, 2022.

[9] S. Bashir and A. R. Baig, “HybridMiner: Mining maximal frequent
itemsets using hybrid database representation approach,” in Proc. INMIC,
2005, pp. 1–7.

[10] S. Bashir and A. R. Baig, “Ramp: Fast frequent itemset mining with
efficient bit-vector projection technique,” arXiv:0904.3316, 2009.

[11] T. Martin, G. Francoeur, and P. Valtchev, “CICLAD: A fast and memory-
efficient closed itemset miner for streams,” in Proc. KDD, 2020, pp. 1810–
1818.

[12] L. Huang, H. Chen, X. Wang, and G. Chen, “A fast algorithm for mining
association rules,” J. Comput. Sci. Technol., vol. 15, pp. 619–624, 2000.

[13] J. Lepping, Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery. Hoboken, NJ: Wiley, 2018.

[14] M. J. Zaki and C. J. Hsiao, “CHARM: An efficient algorithm for closed
itemset mining,” in Proc. SDM, 2002, pp. 457–473.

[15] M. J. Zaki and K. Gouda, “Fast vertical mining using diffsets,” in Proc.
KDD, 2003, pp. 326–335.

[16] B. Vo, T. Le, F. Coenen, and T. P. Hong, “Mining frequent itemsets
using the N-list and subsume concepts,” Int. J. Mach. Learn. Cybern.,
vol. 7, pp. 253–265, 2016.

[17] B. Wang, X. X. Fang, R. R. Lv, and J. J. Ma, “Weighted frequent itemset
mining algorithm based on WNegNodeset structure,” J. Comput. Appl.,
vol. 37, no. 7, 2020.

www.ijacsa.thesai.org 926 | P a g e

