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Abstract—As sixth-generation (6G) and Internet of Things
(IoT) networks expand rapidly, concerns are growing about
their energy consumption and scalability. This is primarily
because more devices are being connected, resulting in increased
energy consumption.energy consumption.This study examines
three primary strategies for optimizing energy efficiency and
improving scalability in 6G-IoT networks.This research looks at
three experimental setups: 1) using software-defined networking
(SDN) with dynamic slicing to organize devices based on when
they are most and least used, 2) duty cycling, which turns
devices on and off to save energy, and 3) Al-optimized network
slicing that uses both convolutional neural networks (CNN) and
bidirectional long short-term memory (BiLSTM) models. In the
first setup, SDN with dynamic slicing helped reduce unnecessary
power consumption by matching device activity to peak times.
As more devices were added, this method kept energy use low
and improved the network’s ability to handle growth without
requiring significantly more power. This resulted in a 66.28
percent decrease in power usage. In the second setup, duty cycling
allowed only some devices to be active at a time, which reduced
power use by over 60 percent during slow periods. In the third
setup, the CNN-BiLSTM model effectively classified service types
and reduced power use by 60.14 percent. While these methods
were not combined into a single solution, each utilized slicing
techniques to more effectively allocate resources and manage
power.
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cycling; network slicing; CNN; BiLSTM; Al-driven optimization

I. INTRODUCTION

This study addresses the urgent need for smart, energy-
efficient slice management solutions in 6G networks, target-
ing the challenge of supporting advanced AI services with
new QoS requirements. By developing innovative management
strategies, the research contributes to improving energy effi-
ciency, reliability, and adaptability in next-generation SAGIN-
enabled 6G-IoT networks [1] [2]. Many technologies, includ-
ing mobile phones, transportation systems, food production,
housing, healthcare, clothing, and remote monitoring, are being
transformed by the Internet of Things (IoT). As these advances
occur, creating energy-efficient 6G-IoT networks becomes cru-
cials [3].

Existing studies have shown that 6G-IoT networks will
link billions of devices worldwide, resulting in high energy
consumption. While prior research highlights the significance
of energy efficiency for the long-term profitability of network
operators, the current study distinguishes itself by focusing

on the integration of space, air, and ground networks into a
Space-Air-Ground Integrated Network (SAGIN) [4].

Unlike earlier works centered on terrestrial networks, this
research emphasizes global coverage and intelligent manage-
ment of network slices to ensure specific Quality of Service
(QoS) needs [5]. Network slicing, as described in prior studies,
enables logically isolated virtual networks for different ser-
vices; this research extends the discussion by analyzing cost-
effective slice management strategies throughout the slicing
life cycle, which past research has only partially addressed.

Unlike earlier generations, which typically managed net-
work resources within a single domain, 6G network slicing
must coordinate across heterogeneous segments in SAGIN.
Previous studies have not fully considered the additional com-
plexity that emerges from integrating space, air, and ground
networks. The current research addresses this gap by focusing
on unique challenges and management strategies necessary for
effective slice orchestration across these domains.

Therefore, the development of smart slice management
solutions in 6G networks is required.

The current research addresses this need by proposing
an approach for efficient and intelligent network slice man-
agement specific to SAGIN-based 6G-IoT environments. This
work aims to advance current practice by focusing on enhanced
resource allocation and tailored slice management strategies
that specifically address the emerging challenges identified
above. In addition, with the availability of powerful computing
capabilities and advanced.

Al services are being enhanced with new QoS require-
ments, such as data quality, training latency, and inference
accuracy. As a result, dedicated network slices must be es-
tablished to support emerging Al services in 6G networks.
To address these challenges, innovative solutions are urgently
needed to enhance energy efficiency without compromising
network performance [6]. The objective of this paper is to:

e  Analyzing the impact of SDN on energy consumption
in 6G-IoT networks, by evaluating the dynamic allo-
cation mechanism for devices based on peak and idle
periods.

e Evaluating the effectiveness of Duty Cycling in re-
ducing unnecessary energy consumption by regulating
device on- and off-duty times based on daily work
schedules.
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e  Testing the performance of a deep learning model con-
sisting of CNNs and BiLSTM networks in classifying
network data into multiple categories and accurately
estimating the energy requirements for each category.

e Identifying the energy efficiency differences between
each technology separately without combining them,
to obtain a clear and independent picture of the impact
of each approach under different operating conditions.

e Providing a scientific basis for comparing energy
management methodologies to enable 6G-IoT network
developers to choose or develop flexible and scalable
solutions based on the nature of network load and
future applications.

This study presents a set of contributions used to reduce
energy consumption and increase efficiency in the 6G-IoT
network through the following points.

e SDN-based dynamic slicing was combined into one
model to reduce energy consumption and increase
energy efficiency.

e  Slicing and duty cycling to reduce energy consumption
and increase energy efficiency.

e  Explain how energy efficiency changes with increasing
device density, ensuring the ability to adapt to network
expansion processes.

e hybrid CNN-BILSTM model was implemented,
achieving 99% classification accuracy, enabling intel-
ligent slicing and adaptation.

This paper is organized as follows. To begin, Section II
covers the key features of 6G and the role of Al-powered
network chips, laying the groundwork for the subsequent
discussion. Building on this, Section III reviews previous work
on energy efficiency and scalability in 6G IoT. Then, Section
IV outlines our research approaches, which are expanded
upon in Section V with details on the proposed approaches,
including SDN-based chips, duty cycle, and Al-enabled chips.
Following that, Section VI reviews the results and effectiveness
of these techniques. In Section VII, we further discuss our
experimental results on energy usage. Finally, Section VIII
concludes the paper and suggests future research directions.

II. BACKGROUND

Network slicing is a technology that divides a network into
multiple dedicated “slices”. Each slice operates independently,
allowing flexible allocation of resources based on specific
needs. This technology significantly enhances network perfor-
mance and quality, particularly in expanding IoT environments
[7]. With network slicing, resources can be given to each slice
based on its unique needs.

For example, one slice can serve IoT applications that
require steady connectivity and low power, while another
can support high-speed data, such as HD video. Allocating
resources based on actual service or application needs reduces
waste and improves network efficiency [9]. Each slice works
independently, reducing interference between applications. 6G
networks can support a wide range of diverse applications,
from self-driving cars to virtual and augmented reality services.
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Each of these applications requires specific network charac-
teristics, such as instant response or high bandwidth. With
network slicing, these specific needs of each application can
be met individually. In addition, robust security strategies can
be applied to each slice to ensure data protection and provide
faster response.

Machine learning can monitor network activity and predict
the needs of devices and services [10]. It can analyze large
datasets to provide the optimal allocation of resources. In
addition, it helps reduce network congestion by optimizing
data distribution. Machine learning can be used to improve
services such as security, spam detection, and power man-
agement automatically. 6G networks will provide a range
of different services that will benefit users. These services
include enhanced mobile broadband, ultra-reliable low-latency
communication, and massive machine-type communications
[11]:

e  Super-eMBB: means broadband connectivity via mo-
bile phones, with a focus on energy efficiency.

e  Massive MTC: means connecting a very large number
of devices, such as IoT devices, that need constant
connectivity.

e  Super URLLC: provides highly reliable communica-
tions with minimal delay, such as remote control of
devices.

e  Ultra-high resolution: means using technologies to
provide high resolution in data transmission.

e  Super-immersive reality: includes virtual reality and
augmented reality experiences that provide enhanced
interaction.

III. RELATED WORK

Sixth-generation - 6G networks rely on network slicing, a
technology that is still in its infancy but is rapidly evolving
and offering a variety of services.

A. Using Software-Defined Networking

The study [16] used the energy-aware routing, multi-level,
and mapping problem (EARMLP) algorithm, which achieves
better performance by reducing the number of active nodes
and integrating the use of network resources. The number
of controllers and their optimal placement have a significant
impact on energy savings. In [17], the authors present a
comprehensive survey on SDN for various smart applica-
tions. This survey covers the infrastructural details of SDN
hardware, OpenFlow switches, controllers, simulation tools,
programming languages, open issues, and challenges in SDN
implementation using advanced technologies.

B. Using Machine Learning

Several studies have used different methods to reduce
power consumption. In a study [18], collaborative commu-
nication was used. This means that mobile phones or smart
devices work together as a team, rather than working sepa-
rately. When these devices work together, energy can be more
efficiently saved, which helps extend battery life. Machine
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learning, specifically artificial neural networks (ANNSs), is
utilized to enhance network slicing in 6G networks, focusing
on energy consumption. This approach involves a multifaceted
strategy that integrates various techniques to improve energy
efficiency while maintaining high performance. In [19], the
data rate allocation (DTRA) method was used to improve data
transmission efficiency in 6G networks. The residual energy
cluster head (RECH) method was used. Furthermore, this work
used the dynamic multipath routing protocol (DMRP)method
to improve the reliability and speed of 6G networks. After
evaluating performance metrics, the DTRA method improved
the lifetime and energy efficiency of the network by 95.3%
based on 6G networks.

C. Using Network Slicing

Flexible network slicing is one of the essential components
of 6G networks, allowing the creation of customized network
environments to meet the needs of specific applications and
services. The study of Sheena [27] aims to improve the
efficiency of the network by designing a Deep Learning-
based Network Slicing with Data Aggregation (EENS-DA)
technique, which allocates the necessary physical resources to
specific applications clearly and efficiently. The study of Phyu
[28]aims to address the problem of activating/ deactivating slic-
ing to reduce energy consumption while maintaining Quality of
Service (QoS) for users. The researchers relied on two Multi-
Armed Bandit (MAB) agents to make activating/deactivating
decisions at the level of individual base stations. Researchers
in the study [31] propose a hybrid model that combines CNN
and BiLSTM. The CNN was used to extract automatic features
from the input data. The BiLSTM was used to classify and
determine the appropriate network segment for each request.
The results showed that the hybrid model achieved an overall
accuracy rate of 97.21%, demonstrating the effectiveness of
this approach in allocating the appropriate network segments
to end users.

D. Research Gap

After reviewing existing research, several gaps in the
literature become apparent. Some studies focus on specific
techniques, such as network slicing, machine learning, and
energy-aware routing. However, a comprehensive framework
that integrates these methods to improve energy efficiency in
6G-IoT networks remains absent. Although energy efficiency
has generally improved, challenges persist in maintaining
quality of service (QoS), which includes factors such as
latency and throughput. Only a limited number of studies have
successfully addressed the simultaneous enhancement of both
energy efficiency and QoS, as demonstrated in the work by
[28]. Flexible network slicing is widely recognized as a crucial
component for the success of 6G; nevertheless, established
guidelines for the design, implementation, and management
of such slices are lacking, as noted in studies [27] and [28].
Addressing these gaps is expected to contribute to significant
advancements in energy efficiency and scalability in 6G-IoT
networks through the use of advanced technologies such as
machine learning, network slicing, and SDN. Table I provides
a comparison of the relevant studies.
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IV. STUDY CONTRIBUTIONS

The current study significantly expanded the scope of
previous research by simultaneously combining three indepen-
dent and integrated technologies: software-defined networking
(SDN)-based dynamic slicing, workflow, and Al-assisted slic-
ing using CNN-BIiLSTM, to improve energy utilization and
scalability in 6G-IoT environments. Although each previous
study focused on a single aspect, such as software-defined
networking (SDN) control plane (Study[16] ),or an artifi-
cial neural network (ANN)-based collaboration (Study [18]),
These efforts often faced critical limitations, including high
complexity, poor scalability, and limited accuracy in traffic
management.

The current study addresses the gaps in previous research
through a diverse experimental design. In the first scenario, the
study used Software-Defined Networks (SDN) to dynamically
operate devices during peak usage periods. This technology
addressed the limitations of static routing in previous studies
based on SDN. By applying the second scenario, the study
was able to improve selective activation strategies, such as
those found in studies [18] and [19]. A duty cycle was im-
plemented in the third scenario to reduce energy consumption
during periods of low activity, which is considered the most
innovative.

It utilized CNN-BIiLSTM technology to intelligently clas-
sify traffic types and allocate resources accordingly, surpassing
previous models like random forests or DRL in terms of
accuracy and energy saving. Table II presents a comparative
analysis of related studies and the contribution of the current
research.

The current study significantly expanded the scope of
previous research by simultaneously combining three indepen-
dent and integrated technologies: software-defined networking
(SDN)-based dynamic slicing, workflow, and Al-assisted slic-
ing using CNN-BILSTM, to improve energy utilization and
scalability in 6G-IoT environments. Although each previous
study focused on a single aspect, such as software-defined
networking (SDN) control plane (Study [16]), or artificial
neural network (ANN)-based collaboration (Study [18]), these
efforts often faced critical limitations: high complexity, poor
scalability, or limited accuracy in traffic management.

The current study addresses the gaps in previous research
through a diverse experimental design. In the first scenario, the
study used Software-Defined Networks (SDN) to dynamically
operate devices during peak usage periods. This technology
addressed the limitations of static routing in previous studies
based on SDN. By applying the second scenario, the study was
able to improve selective activation strategies, such as those
found in studies [18] and [19]. A duty cycle was implemented
to reduce energy consumption during periods of low activity
in the third scenario, which is considered the most innovative.
It utilized CNN-BiLSTM technology to intelligently classify
traffic types and allocate resources accordingly, surpassing
previous models like random forests or DRL in terms of
accuracy and energy saving. Table II presents a comparative
analysis of related studies and the contribution of the current
research.
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TABLE I. COMPARATIVE ANALYSIS OF RESEARCH ON ENERGY EFFICIENCY IN 6G NETWORKS

Author

Idea

Methodology

Features

Challenges

[16]

Energy-aware routing to reduce active
nodes and improve resource utilization

EARMLP (Energy-Aware Routing
Multi-Level and Mapping Problem)

Reduces number of active nodes; integrates
network resource usage

Impact of number and optimal place-
ment of controllers on energy savings

[17]

Survey on SDN for smart applications

Comprehensive survey

Covers SDN hardware, OpenFlow switches,
controllers, simulation tools, programming
languages; open issues and challenges

Implementation challenges of SDN
with advanced technologies

[18]

Reducing power consumption through
collaborative communication

Collaborative communication + ANN

Smart devices work together as a team; saves
energy; extends battery life

Coordinating  collaboration ~ while

maintaining high performance

[19]

Improving energy efficiency and life-
time of 6G networks

DTRA; RECH; DMRP

Improved transmission efficiency, reliability
and speed; network lifetime/energy efficiency
improved by 95.3%

Managing multiple methods together
in real 6G environments

ing/deactivating slicing while keeping

QoS

[27] Efficient network slicing with deep | EENS-DA (Deep Learning + Data Ag- | Allocates physical resources clearly and effi- | Balancing energy saving with applica-
learning and data aggregation gregation) ciently to specific applications tion needs
[28] Energy saving by activat- | Multi-Armed Bandit (MAB) agents Activate/deactivate decisions at base-station | Maintaining QoS while reducing en-

level

ergy consumption

[31]

Hybrid model for network-slicing clas-
sification

Hybrid CNN + BiLSTM

CNN for feature extraction; BILSTM for clas-
sification; overall accuracy 97.21%

Complex training and computational
resources

V. METHODOLOGY or concatenation. The main advantage of using BiLSTM is that
it allows each part of the input data to include information
from both past and present contexts. This results in more
accurate output because BiLSTM [22] uses LSTM layers to
analyze data from both directions. Although BiLSTM might
seem complicated, it produces strong results due to a solid
understanding of the data environment. In [34], a multilayer
BiLSTM is utilized, where each layer consists of two cells
that process information in forward and backward directions
separately.

In this section, deep learning methods are introduced for
tackling the problem of network slicing.

A. Convolutional Neural Network

1) Reasons to use CNN: CNNs [8] can find hidden pat-
terns in data without needing any manual adjustments. High
Efficiency: The convolutional layer focuses on specific parts of
the data, making it highly effective for analyzing data related
to networks. CNNs [12] can create systems that communicate
using. Human speech [32]. Making Overprocessing Simpler:
Pooling simplifies the data while retaining most of the es-
sential information. CNNss consist of several layers connected
in sequence: the first layer is the input layer, followed by
hidden layers, and the last one is the output layer. The hidden
layers process the input data and extract important features
using filters. Overall, the combination of convolutional layers,
pooling layers, and fully connected layers in CNNs enables the
network to learn and recognize patterns effectively in complex
data [33].

D. Dataset Description

In Case 3, the dataset is sourced from the University of
California, Irvine (UCI) Machine Learning Repository [35]. It
includes 87 features, each representing details of an IP flow
from a network device, such as source and destination IP ad-
dresses, port numbers, and connection timestamps. One source
collects this information, while another classifies the layer 7
protocol, which corresponds to the application level in network
communication [36]. Most features are numerical, with some
being categorical (nominal), and one feature captures dates
derived from timestamps [37].

B. Long Short Term Memory

1) Reasons to use LSTM : [13]: Long Short-Term Memory E. Data Preprocessing

Reasons to use LSTM are that it is a unique type of recurrent
neural network (RNN) [20] [21] specifically designed to ad-
dress issues such as vanishing and exploding gradients. These
problems can make it challenging for neural networks to learn
effectively. For network slicing classification, a deep learning
[15]approach was applied. LSTMs [22]are better suited for
this task because they can handle both the fading and growing
gradient issues, as well as the long-term dependency challenges
[14] that regular RNNs face. This makes LSTMs typically
more effective than traditional RNNs[33].

The diverse data (textual and numerical) were processed
to address value errors, gaps, and duplicates in accordance
with the model’s requirements. Python was used to remove
duplicate rows, handle missing values with the column mean,
detect and delete errors, then Min-Max normalization was
applied to constrain the values between 0 and 1, and the
cleaned data was saved in a new CSV file in preparation
for machine learning models. The set includes 78 labels,
and the labeling process is a pivotal step directed by device
requests and scientific literature [37]. The data was divided into
five slices: Super-eMBB, Massive MTC, super-URLLC, super-
Precision, and super-immersive; these are common categories
in 5G/6G research that represent different service require-
ments, including high speed, low latency, support for a large
number of devices, precision, and reliability.

C. Bidirectional LSTM (BiLSTM)

1) Reasons to use bidirectional LSTM: Bidirectional
LSTM (BiLSTM):Reasons to use Bidirectional LSTM (BiL-
STM) [15] include adding an LSTM layer that processes
information in both forward and reverse orders. The outputs
from the two LSTM [14]layers are then combined using
techniques such as calculating the mean, sum, multiplication,

F. Dataset Segmentation

The data is categorized into the following types:
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How the Current Study Fills the

Gaps

Integrates ML within an SDN

environment with 6G traffic

classification and end-to-end energy

impact assessment

Uses SDN with

CNN-BiLSTM-based traffic

classification to allocate resources by
data type and quantify energy gains

ML-driven traffic classification and

slicing for holistic energy-efficient

6G management

No explicit SDN integration or

traffic-type slicing; limited unified
evaluation across scenarios

Limited/implicit SDN-based

orchestration and unified energy

Lack of integration with ML-based | Combines SDN resource control with

classification and 6G slicing
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1) Super-eMBB: This chip is designed to deliver high data
speeds and large transfer capacities. It is ideal for applications
that need fast data transfers, such as streaming 4K/8K videos
and online gaming [38].

2) Massive-MTC: This chip is intended for Internet of
Things (IoT) applications, which involve communication
among many devices. Examples include smart meters, wear-
able gadgets, and embedded systems. It excels at managing
numerous low-power devices [39] [40].

3) Super-URLLC: This chip is used for applications requir-
ing both high reliability and minimal delay, like self-driving
cars and telemedicine. It ensures dependable data transfer
while keeping delays to a minimum [41] [42].

4) Super-precision: This chip caters to applications need-
ing high spatial resolution or detailed data, such as envi-
ronmental monitoring, precise measurements, and augmented
reality (AR) and virtual reality (VR) [43].

5) Super-immersive: This chip is designed for applications
requiring extensive coverage and high efficiency, such as
augmented reality (AR) and virtual reality (VR). It facilitates
immersive user experiences within advanced network environ-
ments [44].

The categorization process is as follows: when a device,
such as a smartphone or sensor, sends a request, the type of
application or service is evaluated. Based on this evaluation,
the appropriate category, or “slice”, is assigned to meet those
needs. For example, if high speed is necessary, the request will
be routed to the Super-eMBB slice.

In contrast, if minimal delay is essential, as in the case of
self-driving cars, the Super-URLLC slice will be employed.
Each slice provides distinct performance and resources cus-
tomized to the current network demands, optimizing resource
utilization and minimizing energy consumption.

VI. PROPOSED METHODOLOGY

The approach involves three key experiments designed
to address existing research gaps in energy efficiency and
scalability of 6G-IoT networks. Each of these experiments
employs various methods to reduce energy use in 6G-loT
networks.

A. Case 1 Software Defined Networking with Dynamic Slicing
(Scenario 1)

Step 1: The experiment presents a simulation model of a
6G-IoT network in Python using NetworkX [25], starting with
30 devices and gradually expanding to 500-2500 devices to
measure scalability and its impact on performance and energy
consumption. The network is managed via SDN with dynamic
slicing, which adjusts the states of devices (active/inactive)
according to peak (6 AM—-6 PM) and idle periods. Sensors
remain active during peak times, cameras are disabled outside
of these periods, and lights operate randomly. The setup
relies on networkx, numpy [22], matplotlib [24], and random,
and energy is calculated using a function that aggregates the
consumption of active devices only, then compares the values
before and after slicing. Hourly readings were collected over
24 hours and analyzed using the mean and standard deviation
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to estimate efficiency gains and assess the contribution of
SDN in optimizing consumption and enabling adaptive device
management.

Step 2: The code was improved by introducing a new idea
to track power consumption in the “No Slicing” state. A base-
line was established for the No Slicing case, recording power
consumption for each device category with fixed reference val-
ues: sensors (10 units), cameras (8 units), and lighting (6 units).
Representative device values (10 sensors, 8 cameras, 6 lighting
units) were selected based on real-world datasheets such as the
NXP SLN-VIZN-IoT platform (= 0.9W) when the camera is
on) and the LSM6DSV16X sensor from STMicroelectronics,
as well as low-power optical sensors (193-277 uW). This
distribution is further supported by the results of the paper [26],
which provided practical measurements of power consumption
in real industrial environments. These values were developed
to standardize comparison conditions and highlight the impact
of energy optimization techniques, particularly duty cycle and
grid slicing [45].

The results of this case are stored in the no-slicing energy
history list and are used with different network sizes to test
robustness and allow subsequent replacement with real data
without changing the methodology. When applying dynamic
slicing within an SDN environment, power is allocated ac-
cording to peak periods; specific categories (such as sensors)
remain active while others are disabled during idle times, and
power is measured using the calculate energy function. In this
case, the readings are stored in the slicing energy history list,
and a direct comparison is made between the no-slicing energy
history and slicing energy history lists to measure efficiency
gains and estimate the actual reduction in consumption.

Step 3: The simulation of the 6G-IoT network was ex-
panded with SDN management to cover multiple slicing use
cases across three device categories (50, 500, and 2,500
devices). Slicing divides the network into smaller, service-
oriented segments, reducing energy consumption by distribut-
ing loads more efficiently. For each category, energy consump-
tion is measured in both the non-partitioned and partitioned
states, and then the percentage reduction attributed to the
application of partitioning is calculated.

B. Case 2 Duty Cycling (Scenario 2)

Duty Cycling is applied as a time-based control mechanism
to turn devices on and off with the aim of reducing overall
energy consumption. In the experimental design, the devices
are activated during even hours and deactivated during odd
hours, and the consumption of each device is calculated
according to its operational state and type. A fixed reference
power is used to represent the nominal consumption during
continuous operation: sensors 10 watts, cameras 8 watts,
and lighting 6 watts. The SDN controller holds the control
layer. It activates/deactivates devices according to the duty
cycle schedule, ensuring consistent transitions between the two
states (active/inactive) at the network level. A baseline without
duty cycling is defined where devices are considered always
active, Energy is calculated hour by hour as the sum of the
consumption of active devices only, allowing the isolation of
the impact of scheduling from other factors.
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For evaluation purposes, measurements are collected hourly
and stored in two separate lists: one for the baseline (no duty
cycling energy history) and another for the scheduled case
(duty cycling energy history). A direct comparison is made be-
tween the two lists to derive the reduction ratio in consumption,
with a stratified analysis comparing performance during peak
hours versus quiet periods to measure the system’s response
to load changes. This procedure provides a clear, systematic
description: defining reference capabilities for each device
category, enforcing scheduling via SDN, consistent hourly
measurement, and then an organized before/after comparison,
which allows for a more accurate estimation of the efficiency
gains resulting from managing on/off states according to a duty
cycling schedule.

C. Case3 CNN + BiLSTM (Scenario 3) Model Training

A new Al-driven network slicing model (Scenario 3) has
been developed to dynamically improve resource allocation.
It relies on a hybrid architecture that combines (CNN for
feature extraction) and (BiLSTM for capturing temporal de-
pendencies), classifying network flows into five categories:
(super-eMBB, massive-MTC, super-URLLC, ultra-precise ap-
plications, and ultra-immersive experiences). The Unicauca IP
Flow dataset was used with an 80testing split, and performance
was measured using Precision, Recall, and F1 metrics. The
classification outputs guide the decision on slice assignment
and resource allocation, and then the energy consumed before
and after allocation is compared; this demonstrates a better
alignment between network traffic requirements, reduced en-
ergy consumption, and support for efficient slice management
in 6G environments. The study examined the scalability by
increasing the number of devices between 500 and 2500
devices, measuring the power consumption of each device as
the size changed, and analyzing the relationship between the
number of devices and energy efficiency. The features of CNN
and BILSTM were combined through a concatenation layer,
and the model was trained on 80% of the data and evaluated
on the remaining portion; the results indicate an improvement
in efficiency after model-based optimization, as shown in Fig.
1

Comolutonal Neaal Network (OHN) Archicture

Comlagert Conlagr2 Pooig Lager 1 Conelagerd Pooing Layer 2 Fuly Conneced Layer OupuLager
“"”‘“*” (FilerExtrecton) Featue Extacton) Reduce Dinersionaty e Festues) (FurherReducton)  {Clssfcaton Npoing) | (Predictions)

Fig. 1. The architecture of a basic convolutional neural network (CNN).

Components of the CNN Model Used:

e Input Layer: This layer takes in the data that has
already been prepared for processing

e Shape Used: The data is organized in a one-
dimensional format for each feature, represented as
(features. Shape [1], 1).

e  Convolutional Layer: This is the first layer of the
model, where it applies a mathematical operation. The
model examines three interconnected values simulta-
neously, which enables it to recognize patterns

e Kernel Size: The model looks at three connected
values at once, which helps it recognize patterns.
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e Activation Function: The ReLU (Rectified Linear
Unit) function is used here. It helps the model handle
complex, non-linear relationships in the data.

e Pooling Layer: This layer reduces the number of
features from the convolutional layer by selecting the
highest value from small groups in the data. The
pooling size is set to 2, meaning it looks at every
two values.

e Flatten Layer: This layer transforms the multi-
dimensional data into a one-dimensional format so
that it can be processed by the following layers in
the network.

e Dense Layer: This layer has 128 units (or neurons),
and it also uses the ReLLU function to help improve the
model’s performance. This layer is key in identifying
and finalizing the important patterns from the features
extracted earlier.

e  Dropout Layer: To prevent the model from becoming
too reliant on specific neurons (a problem known as
overfitting), this layer randomly ignores 30% of the
neurons during training.

Integration with BiLSTM: The features extracted from
the CNN are combined with the results from the BiL-
STM’s analysis of time dependencies in a concatenation
layer, which enhances the overall accuracy of the model.
To strengthen the proposed methodology, we integrated our
hybrid CNN-BiLSTM segmentation model into a broader
comparison framework that considers recent energy-efficient
approaches such as Reinforcement Learning (RL) and Feder-
ated Learning (FL). While our primary focus remains on deep
sequence modeling of traffic flows, RL-based network slicing
has demonstrated strong adaptability for energy-aware policy
design, and FL has shown the ability to train collaborative
intrusion/traffic models with high accuracy in distributed IoT
settings. Therefore, we included these techniques in our bench-
marking to contextualize the CNN-BiLSTM results within
state-of-the-art 6G-IoT optimization strategies. This integration
not only allows a fair benchmarking against RL and FL
approaches but also directly relates to our core objectives of
reducing energy consumption and improving scalability in 6G-
IoT environments.

D. Conceptual Unified Framework Integrating

Conceptual Unified Framework Integrating AI-Slicing,
Duty Cycling, and SDN for Energy-Efficient and Scalable 6G-
IoT Networks.

Fig. 2 illustrates the proposed conceptual unified frame-
work. First, node-level application requirements are clustered
using the Al-slicing module, which uses artificial intelligence
to create logical network segments based on similar needs.
Next, the duty cycling module, which controls when devices
are active or inactive to save energy, filters the grouped nodes
based on set energy thresholds. Finally, the SDN (Software-
Defined Networking) controller, which centralizes the man-
agement of data flow across the network, routes and allocates
resources to the active nodes in an energy-aware manner.
The combined workflow ensures optimized energy usage and
scalable operation in large-scale 6G-1oT deployments.
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Application Layer
(Node-level Demand)

[Node-level Application Requirements

Al-Slicing Module
(Clustering by Demand)

[Clustered Node Groups

Duty Cycling Module
(Energy Thresholding)

[Filtered Active Nodes

SDN Controller
(Routing Active Nodes)

[Energy-aware Routing & Allocation

Optimized Energy Usage
& Scalable Operation

Fig. 2. Conceptual unified framework integrating Al-slicing, duty cycling,
and SDN for energy-efficient and scalable 6G-IoT networks.

VII. RESULT

This section presents the experimental results obtained
from the three proposed scenarios: SDN-based dynamic slic-
ing, duty cycling, and the hybrid CNN-BiLSTM model.
The evaluation focuses on energy consumption, scalability
with increasing numbers of devices, and classification ac-
curacy for traffic flows. To provide a broader perspective,
the CNN-BiLSTM results are further compared with recent
energy-efficient approaches, including Reinforcement Learning
(RL) and Federated Learning (FL). Figures and tables are
included to illustrate the performance metrics and highlight
the improvements achieved.

A. Scenario 1: Result of Implementing SDN Technology in 6G-
IoT Networks Scenario 1)

1) First implementing SDN technology in 6G-loT networks:
A simulation model for a 6G-IoT network was developed using
SDN technology to reduce energy consumption and improve
network performance by applying dynamic slicing. The model
was built using the networkx library to create and analyze
network diagrams, the numpy [23] library for mathematical
calculations, the matplotlib library for visualizing data, and
the random library for generating random number [31]s.

Thirty devices were integrated into the network, includ-
ing sensors, cameras, and lighting, with each device’s status
assigned as active or passive based on specific rules such as
peak hours and energy requirements.

Fig. 3 shows a comparison of energy consumption in a 6G-
IoT network before and after implementing dynamic slicing.
The results show that the dotted blue line, representing the
power consumption without slicing, remains almost constant at
approximately 115 units across all hours of the day. In contrast,
the green line, representing the system with dynamic slicing,
shows a clear variation in consumption, ranging from 60-106
units depending on peak times.
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Comparison of Energy Consumption Before and After Slicing in 10T-6G with SDN
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Energy Consumption
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—— Energy Consumption With Slicing (SDN)
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Fig. 3. Comparison of energy consumption before and after network slicing
in 6G-IoT using SDN (Step 1).

2) Second, improving the measurement model: In the sec-
ond phase, the model was developed by assigning specific
power consumption values to each type of device(Sensors: 10
units (continuously active) - Cameras: 8 units (continuously
active)- Lighting: 6 units (continuously active)

Comparison of Energy Consumption Before and After Slicing in 10T-6G with SDN

~= Energy Consumption Without Slicing
—— Energy Consumption With Slicing (SDN)

100
75

50

Energy Consumption
g

Hour

Fig. 4. Comparison of energy consumption before and after network slicing
in 6G-IoT using SDN (Step 2).

Fig. 4 compares energy usage in a 6G IoT network with
(SDN) before and after implementing dynamic slicing.

Energy Consumption Without Slicing (No slicing):

Mean: 246.00, Standard Deviation: 0.00, Min: 246, Max: 246
Energy Consumption With Slicing (SDN):

Mean: 82.96, Standard Deviation: 15.53, Min: 53, Max: 106
Energy Savings Percentage: 66.28%

Energy Consumption (No Slicing) - Peak Hours:

Mean: 246.00, Standard Deviation: 0.00

Energy Consumption (No Slicing) - Non-Peak Hours:
Mean: 246.00, Standard Deviation: 0.00

Energy Consumption (With Slicing) - Peak Hours:

Mean: 94.62, Standard Deviation: 8.16

Energy Consumption (With Slicing) - Non-Peak Hours:
Mean: 69.18, Standard Deviation: 9.86

Fig. 5. Evaluating energy consumption using (SDN) before and after
implementing dynamic slicing.

Fig. 5 shows that energy consumption in the no-slicing
scenario remained constant at an average value of 246 units,
with no variation between peak and off-peak hours. In contrast,
the SDN-based slicing Implementation showed a significant
decrease in consumption, averaging 82.96 units with variations
ranging from 53 to 106 units, achieving an energy savings
rate of up to 66.28%. The results also showed that energy
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consumption during peak hours reached 94.62 units, while
it decreased further during off-peak hours to 69.18 units,
reflecting the ability of dynamic slicing to adapt to demand
fluctuations.

In this phase, estimated power consumption values
were assigned to each type of device based on values
reported in scientific papers and manufacturer datasheets.
As explained previously in the proposed Methodology section.

Energy consumption without slicing for 50 devices (6G): 508.3 units
Energy consumption with slicing for 50 devices (6G): 295.8 units
Energy reduction percentage for 50 devices (6G): 41.81%

Energy consumption without slicing for 500 devices (6G): 5450.2 units
Energy consumption with slicing for 500 devices (6G): 3218.1 units
Energy reduction percentage for 500 devices (6G): 40.95%

Energy consumption without slicing for 2500 devices (6G): 26661.95 units
Energy consumption with slicing for 2500 devices (6G): 16124.5 units
Energy reduction percentage for 2500 devices (6G): 39.52%

Fig. 6. Energy consumption with and without network slicing in 6G
networks across three device categories (50, 500, and 2,500) devices.)

Fig. 6 presents the results of Scenario 1, where the energy
consumption of 6G-IoT networks was measured with and
without the application of SDN-based dynamic slicing. The ex-
periments were conducted across three different device scales
(50, 500, and 2500). The results show a clear reduction in
energy usage when slicing is enabled, highlighting the ability
of SDN to optimize resource allocation under varying traffic
loads.

Energy Consumption Comparison with 6G loT and SDN

Hmm Without Slicing
25000 With Slicing
S
= 200001
o
£
3
2 15000
o
Q
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[
C
w
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0 > — —
50 Devices 500 Devices 2500 Devices

Number of Devices

Fig. 7. Comparison of power consumption with and without slicing.

3) Thrid, the simulation of the 6G-IoT network was ex-
panded: SDN management to cover multiple slicing use cases
across three device categories (50, 500, and 2,500 devices).
Slicing divides the network into smaller, service-oriented seg-
ments to reduce energy consumption by distributing loads
more efficiently. For each category, energy consumption is
measured in both the non-partitioned and partitioned states,
and then the percentage reduction attributed to the application
of partitioning is calculated.

Fig. 7 illustrates a comparison of power consumption under
the following scenarios:
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e  Without Slicing: This reflects the power drawn when
slicing techniques are not implemented.

e  With Slicing: This indicates the power consumed
after the application of slicing and power optimization
methods.

Dark red signifies power consumption in the absence
of slicing. Light green indicates power consumption when
slicing is utilized. In the graph, it is evident that the power
consumption with slicing is substantially lower in each sce-
nario compared to the cases without slicing. As observed an
increasing the number of devices correlates with a greater
percentage reduction in power usage.

B. Scenario 2: Results of Energy Consumption With and
Without Applying Duty Cycling

R OComparison of Energy Consumption Before and After Duty Cycling
50+

200
c
S
£ 150}
E == Energy Consumption Without Duty Cycling
8 Energy Consumption With Duty Cycling
2 100}
2
v
f=4
w
50
ol
0 5 10 15 20
Hour
Fig. 8. Evaluating energy consumption and savings using Duty Cycling

technology.

Fig. 8 shows a comparison between energy consumption
before and after use of duty cycling.

e The X-axis shows time measured in hours.

e The Y-axis shows power consumption, but the units
are not specified.

Shows a comparison between energy consumption with and
without duty cycling. The dashed blue line remains constant
at a high level, close to the upper limit (240), reflecting
the continuous operation of the devices without responding
to load changes. In contrast, the orange curve exhibits a
periodic oscillating behavior, peaking during activation hours
and dropping sharply to nearly zero during deactivation hours,
which is consistent with an alternating on/off schedule. The
peaks are below the fixed baseline, and the low periods reduce
the area under the curve throughout the day, resulting in a
lower daily average and a lower total consumption. This pattern
demonstrates the effectiveness of duty cycling in aligning
consumption with actual demand, with an expected increase
in temporal variation against a clear improvement in energy
efficiency. It is recommended to conduct a complementary
statistical analysis (mean, standard deviation, and area under
the curve) and assess the impact on service quality during
downtime hours to adjust the optimal cycle parameters.

Fig. 9 shows that power consumption during no-duty
cycling remained constant at 240 units, with no variations
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Energy Consumption Without Duty Cycling (No Duty Cycling):
Mean: 240.00, Standard Deviation: 0.00, Min: 240, Max: 240
Energy Consumption with Duty Cycling:

Mean: 87.50, Standard Deviation: 87.50, Min: 0, Max: 175
Energy Savings Percentage: 63.54%

Energy Consumption (No Duty Cycling) - Peak Hours:

Mean: 240.00, Standard Deviation: 0.00

Energy Consumption (No Duty Cycling) - Non-Peak Hours:
Mean: 240.00, Standard Deviation: 0.00

Energy Consumption (With Duty Cycling) - Peak Hours:
Mean: 94.23, Standard Deviation: 87.24

Energy Consumption (With Duty Cycling) - Non-Peak Hours:

Mean: 79.55, Standard Deviation: 87.14

Fig. 9. Figure X: Energy consumption results under two settings: (i) no duty
cycling, and (ii) with duty cycling. Includes detailed statistics (mean,
standard deviation, minima, maxima), comparison during peak and non-peak
hours, and overall savings percentage.

during peak and off-peak hours. In contrast, applying duty
cycling reduced average consumption to 87.50 units, with a
fluctuation range of 0—175 units. This mechanism achieved an
energy savings rate of 63.54%. The results also showed that
average consumption during peak hours was 94.23 units, while
during off-peak hours it decreased to 79.55 units, reflecting the
effectiveness of duty cycling in adjusting device consumption
according to periods of activity and inactivity.

C. Scenario 3: CNN + BiLSTM Model Powered by Machine
Language

The key performance metrics—accuracy, precision, recall,
and Fl-score are calculated using specific formulas [31].

Recall is a measure of how many true positives were
identified, which means it reveals how many correct results
were found among the total cases that should have been
recognized.

TP
Recall = ——— 1
= TPYFN M

Precision: The proportion of hits that are truly positive or
accurate is known as precision.

TP
Precision = —— 2
recision TP 2)

F1 Score: The F1 score is a metric that combines both
recall and precision (accuracy). It ranges from O to 1 and is
calculated as an asymmetrical mean of recall and accuracy.

Precisi Recall
Fl-score — 2 x —ooision x Reea 3)
Precision + Recall

Accuracy: The percentage of accurately anticipated values
for the test data is used to evaluate accuracy. By dividing

www.ijacsa.thesai.org

935|Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

the total number of forecasts by the total number of accurate
guesses, one can easily determine the result.

Accuracy = TP+TN 4
Y= TPYTN+FP+FN

Python is used to develop a simulation model using the
“TensorFlow” and “Keras libraries”. These packages are im-
portant tools for creating neural network-based designs. In this
work, the performance of the proposed hybrid CNN-BiLSTM
model is evaluated using several performance metrics, includ-
ing accuracy, recall, precision, and F1 score. The parameters
of the performance matrices are described in the following: In
Fig. 10, the model achieved consistently high performance with
precision and recall values exceeding 0.98 across most classes,
leading to strong Fl-scores ; 0.98. The large support for
classes such as super-eMBB further reinforces the reliability
of these metrics.

Experimental results demonstrate that the proposed
CNN-BiLSTM model achieved high accuracy in traffic flow
classification, reaching approximately 99%, with a remarkable
balance between precision and recall. When compared to
other algorithms such as reinforcement learning (RL) [29]
and federated learning (FL) [30], several distinct strengths
emerged. Reinforcement learning-based segmentation demon-
strated strong adaptability to dynamic network loads, resulting
in stable energy efficiency during periods of heavy traffic.
In contrast, federated learning demonstrated high scalability
by supporting distributed training across a large number of
IoT devices, while reducing communication costs. Although
RL and FL techniques demonstrated competitive performance,
CNN-BiLSTM maintained the lowest false positive rate and
achieved the highest sustained energy reduction (approxi-
mately 60%), enhancing network sustainability and deliver-
ing greater efficiency as the number of connected devices
increases.

Classification Report:

precision recall fl-score support
2} .99 1.00 1.00 347683
1 0.99 0.98 0.99 57808
2 .99 .97 .98 9891
3 .99 1.00 .99 111056
- .93 0.86 0.89 14530
accuracy 0.99 540968
macro avg .98 0.96 .97 540968
weighted avg 0.99 0.99 0.99 540968

Fig. 10. Results of the hybrid CNN-BiLSTM model.

Fig. 10 of the classification report shows that the
CNN-BiLSTM model achieved high performance in almost
all categories, with precision ranging from 0.93 to 0.99,
while recall ranged from 0.86 to 1.00. The Fl-score metric
demonstrated a good balance between precision and recall,
with a minimum of 0.89 and a maximum of 1.00. The overall
accuracy of the model reached 99% with a weighted mean
of nearly 0.99, confirming the model’s strength in classifying
traffic flows across different categories.
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ROC Curve

1.0 =

0.8 PR

0.6 -

0.4 1 -~

True Positive Rate
\

g ——— super-eMBB (AUC = 1.00)
-7 massive-MTC (AUC = 1.00)

0.2 4 - -
- super-URLLC (AUC = 1.00)
- —— super-precision (AUC = 1.00)
Pl ——— super-immersive (AUC = 1.00)
0.0 +=
0.0 0.2 0.4 0.6 o.8 1.0

False Positive Rate

Fig. 11. ROC curve results of the proposed model.

Fig. 11 shows that all IoT network models achieved an
Area Under the Curve (AUC) of 1.00, confirming excellent
classification performance. This indicates that the models
consistently deliver the intended results with high accuracy.

Confusion Matrix

super-eMBB JERTTSE] 165 19 158 728
300000

massive-MTC 899 56707 57 98 a7 250000
200000
super-URLLC 129 s4 2608 s9 a1
150000

True label

super-precision 263 160 16 110527 90 100000

50000
super-immersive 989 106 1 969 12465

Fig. 12. Confusion matrix.

Fig. 12 presents the confusion matrix used to evaluate
the model’s classification accuracy. The matrix highlights
the performance across different data classes using standard
evaluation parameters.

Calibration Curve

1.0 { —— super-eMBB
massive-MTC
—=— super-URLLC
0.8 { —— super-precision
—=— super-immersive

0.6 1

0.4 4

Fraction of Positives

0.2

0.0 4

0.0 0.2 0.4 0.6 o.8 1.0
Mean Predicted Probability

Fig. 13. Calibration curve of the proposed model.

Fig. 13 illustrates the calibration curve analysis for net-
work slice classification in 6G-IoT, specifically examining
the model’s ability to predict probabilities accurately. The
calibration curve is a valuable tool for evaluating the accuracy
of a system’s operation based on specific parameters.

Fig. 14 compares power consumption before and after
slicing:
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Energy Consumption Comparison:

Energy Consumption Before Slicing: 10000.00 watts
Energy Consumption After Slicing: 3986.42 watts
Percentage Reduction in Energy Consumption: 60.14%

Details of Energy Consumption per Slice:
super-eMBB: 833.33 watts

massive-MTC: 769.23 watts

super-URLLC: 800.00 watts
super-precision: 714.29 watts
super-immersive: 869.57 watts

Fig. 14. Comparison of power consumption before and after slicing.

Energy Consumption Comparison

10000

8000
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Energy Consumption (Watts)
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Before Slicing After Slicing
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Fig. 15. Comparison of energy consumption with and without the proposed
techniques.

Fig. 15 compares the energy usage of 6G-IoT networks
before and after the introduction of network slicing technology.

Energy Consumption vs Number of Devices

25000 { —®— Before Slicing

—e— After Slicing

20000

15000

10000

Energy Consumption (Watts)

500 750 1000 1250 1500 1750 2000 2250 2500
Number of Devices

Fig. 16. Energy consumption vs. number of devices in 6G-IoT.

Fig. 16 shows the relationship between the number of
connected devices (500-2500).

D. Summary of the Results

1) Scenario 1 — Segmentation via SDN: Reduced overall
consumption by 66.28%. In the scalability test, the savings
reached 41.81% (50 devices), 40.95% (500), and 39.52%
(2500), confirming the effectiveness of slicing independent of
network size.

2) Scenario 2 — Duty Cycling: Achieved a reduction of
63.54%; consumption was 94.23 units during peak hours and
79.55 units during off-peak hours.
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3) Scenario 3 — Machine Learning-Driven Segmentation:
Previous studies indicate that reinforcement learning (RL)
[29]in the 6G-IoT context achieved energy reductions of
45-55% with high adaptability to changing network loads.
Federated learning (FL)[30] demonstrated an efficiency of
40-50% energy reduction, with clear superiority in scalabil-
ity across thousands of connected devices without the need
to transfer raw data. Compared with these methods, our
CNN-BiLSTM model achieved the highest consistent energy
reduction of 60% with a classification accuracy of 99%,
demonstrating its superior combination of energy efficiency
and high accuracy.

VIII. DISCUSSION

Scenario 1 Fig. 5 highlights the importance of slicing
as a dynamic mechanism for adapting to varying network
loads. While the traditional system (without slicing) exhibited
constant, inflexible consumption, slicing allowed for intelligent
control of energy consumption based on traffic intensity. This
variation between peak and off-peak hours indicates that
SDN-based slicing not only achieves an overall reduction in
consumption but also enhances network sustainability by bal-
ancing energy efficiency with maintaining quality of service.
This lays the foundation for adopting slicing techniques as
an essential part of energy management strategies in 6G-IoT
environments.

Fig. 6, the results indicate that slicing technology signif-
icantly reduced energy consumption across different network
sizes, with consumption decreasing by 41.81% at 50 devices,
by 40.95% at 500 devices, and by 39.52% at 2,500 devices. Al-
though the energy savings gradually decrease with the increas-
ing number of devices, this reflects slicing’s ability to achieve
stable energy efficiency even in environments with high device
density. This highlights the importance of adopting SDN-based
slicing as a strategic option for improving scalability in 6G-
IoT networks, as it provides a balance between reducing energy
consumption and ensuring quality of service amid the massive
expansion of the number of connected devices.

Scenario 2 Fig. 9 indicates that adopting a duty cycle
mechanism is an effective strategy for reducing energy con-
sumption in IoT environments within 6G networks. This mech-
anism periodically shuts down devices during idle periods,
contributing to a significant reduction in energy consumption.
The variation in consumption between peak and off-peak hours
highlights the flexibility of this technology in adapting to
different usage patterns, enhancing its scalability as the number
of connected devices increases. Therefore, duty cycle not
only provides a significant reduction in energy consumption
but is also a practical option that can be combined with
other strategies such as SDN slicing to achieve greater energy
management efficiency.

Scenario 3 This result reflects that the proposed model
has a very high level of reliability and generalizability. The
model’s superior performance is attributed to the combination
of the capabilities of CNNs to extract spatial features with
the strength of BiLSTMs to capture temporal dependencies.
The proposed model exhibits similar or superior performance
to recent models such as [47]which achieved 99% accuracy
using Attention-Based CNN-BIiLSTM on N-BaloT data, and
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also Sinha et al. (2025) with 99.87% accuracy and a very low
false positive rate [48], supporting that fusion provides a real
improvement in deep learning for similar problems.

Fig. 10 show this result:

Precision: The ratio of the number of samples correctly
classified for a given class to the total number of samples
classified as belonging to that class.

High precision (> 0.99) for classes such as super-eMBB
and massive-MTC shows the model’s ability to reduce false
positives.

Recall: the ratio of the number of samples correctly
classified for a given class to the total number of actual samples
for that class.

Strong recall (0.98-1.00) for most classes shows the
model’s ability to capture almost all correct samples.

F1-Score: A metric that balances precision and recall.

High values (> 0.98) for a model show its strong and
balanced performance.

Support: Indicates the number of samples in each class.
For example, the super-eMBB class has very high support
(347,683 samples), which enhances the accuracy of the metrics
due to its large representation.

Class Analysis: super-eMBB: Precision: 0.99, Recall:
1.00, F1-Score: 1.00.

e The perfect performance in this class reflects
the model’s ability to accurately recognize high-
bandwidth applications such as video streaming

massive-MTC: Precision: 0.99, Recall: 0.98, F1-Score: 0.99.

e This class has a large number of connected devices,
and the high performance shows the success of model
in dealing with this challenge.

super-URLLC: Precision: 0.99, Recall: 0.97, F1-Score: 0.98.

e Good performance in latency-sensitive applications
such as industrial control.

super-precision: Precision: 0.99, Recall: 1.00, F1-Score: 0.99.

e  The strong performance reflects the model’s ability to
handle high-precision applications.

Super-immersive: Accuracy: 0.93, Recall: 0.86, F1-Score:
0.89.

e  Although the performance in this category is lower
than the other categories, the model shows a rea-
sonable improvement in applications with complex
requirements such as virtual reality.

Finally, the result reflects strong performance of the model
across all categories with a particular focus on achieving a
balance between precision and recall.

Significant improvement: The results show improved
efficiency in classifying different segments, supporting the use
of the model to improve resource management in 6G IoT
networks.
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Areas for improvement: The super-immersive class shows
room for improvement, perhaps through more data or improved
model architecture.

Fig. 11 presents the Receiver Operating Characteristic
(ROC) curve, which illustrates the connection between true
positive rates (TPR) and false positive rates (FPR) for IoT
networks. Here, the FPR shows how often a test incorrectly
identifies a positive result, while the TPR shows how often
the test correctly identifies a negative result. All the networks
have an Area Under the Curve (AUC) of 1.00, which indicates
that they are performing very well and achieving their intended
goals efficiently. The fact that every network shows an AUC
of 1.00 confirms their effectiveness in delivering the desired
results.

Fig. 12 displays the confusion matrix, which is a tool
used to determine how accurate a model is when comparing
different types of data. This matrix helps in assessing the
performance of model. The accuracy of the model is measured
using the following parameters:

e True label: Represents the actual class of the data as
it appears in the dataset.

e Predicted label: Represents the class that the model
has assigned to the data based on its prediction.

o Diagonal values: Indicate correctly classified in-
stances where the predicted label matches the true
label. Higher values along the diagonal signify better
classification accuracy.

e  Super-eMBB: The Super-eMBB category has the
highest number of correctly classified instances
(346,613), indicating strong model performance in this
category.

e  Massive-MTC: The Massive-MTC category demon-
strates a high number of correctly classified instances
(56,707), though some misclassifications are present.

e  Super-URLLC: The Super-URLLC category has
9,608 correctly classified instances, with some con-
fusion among other categories, indicating room for
improvement in classification accuracy.

Fig. 13 shows the calibration curve. It compares predicted
outcomes with actual results [46]. The X-Axis allows us to
compare predicted values to the real values, and the Y-Axis
shows how many predictions were positive based on those
calculations. The diagonal line in the figure represents perfect
performance, meaning the predicted probabilities align exactly
with the true outcomes. When a point falls on this line, it
signifies that the model is making accurate predictions.

For the different classes—super-eMBB, massive-MTC,
super-URLLC, and super-precision—most points are very
close to the ideal line, showing that the model works well for
predicting probabilities in these cases. However, some points
deviate from the ideal line, suggesting that there are difficulties
in calibrating the model for the class labeled super-immersive.

Use a Model for Power Consumption:

Fig. 14 compares power consumption before and after
slicing:
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e  Super-eMBB: This chip used 833.33 W, indicating it
is very efficient (efficiency rating of 1.2) for broadband
applications, such as video streaming.

e  Massive-MTC: It consumed 769.23 W, showing an
efficiency rating of 1.3, which is suitable for Internet
of Things (IoT) applications that need many connec-
tions while using less power.

e  Super-URLLC: This chip used 800.00 W, with an
efficiency rating of 1.15, making it fit for low-latency
applications like industrial control processes.

e  Super-precision: It consumed 714.29 W and has the
highest efficiency rating of 1.4, making it ideal for
tasks such as micro-analysis or working with big data.

e  Super-immersive: This chip used 869.57 W. Al-
though it is less efficient (efficiency rating of 1.05)
compared to the others, it still performs better than
the traditional network.

Understanding the results: Energy efficiency measures
how much useful energy a system produces compared to
the total energy it uses. It shows how well the system can
deliver the most output while using the least amount of energy.
Enhancing energy efficiency.

_( Useful energy output
~ \ Total energy consumed

) x 100% (5)

Where:

e 1) (eta) represents energy efficiency as a percentage
[%].

e Useful energy output refers to the energy that is
actually used to perform the necessary work.

o Total energy consumed is the complete amount of
energy that the system has taken in.

Value for 7 (eta)

e 7 =1 indicates standard efficiency where there is no
improvement or additional energy loss.

e 1 > 1 means that the system is operating more effi-
ciently than a conventional grid, either by improving
performance or reducing losses.

e 7 < 1 indicates less than desired efficiency, meaning
that there is significant loss in the grid or system.

Based on the earlier formula and our results shown in Fig. 14:

leftmargin=1.5em

o Efficiency: The network slicing allocates resources so
that the power usage of each chip is optimized based
on its actual needs.

e  Power reduction: The slicing reduces the power con-
sumption significantly due to the reduction of waste
in the network.

e Balance: Highly efficient chips (such as super-
precision) show greater power savings, while other

Vol. 16, No. 9, 2025

chips such as super-immersive reflect greater con-
sumption due to their higher requirements.

Fig. 15 compares the energy usage of 6G-IoT networks
before and after the introduction of network slicing technology.

e Before Slicing: The energy usage is represented by
the red column. This shows that before slicing, the
network was less efficient (n = 0.5) because it
consumed a lot of power—up to 10,000 watts—even
for resources not assigned to any devices.

e  After Slicing: The energy usage after implementing
slicing is illustrated in the green column. As shown,
energy consumption decreased to 3,986.42 watts. This
reduction indicates that the network’s efficiency has
improved (n > 1) because resources are now allocated
more effectively based on the individual needs of each
network slice.

e Reduction Ratio: Network slicing positively affects
energy usage, resulting in a significant 60.14% de-
crease in power consumption.

Fig. 16 shows the relationship between the number of
connected devices (500-2500) and power consumption: before
slicing (red line), consumption increases linearly with the size,
while it decreases after applying network slicing (green line)
due to improved resource allocation. The area between the
curves represents energy savings, and the increasing gap with
the rise in the number of devices indicates improved efficiency
and scalability.

IX. CONCLUSION

This study revealed three separate strategies to optimize
energy usage and improve 6G network performance in IoT
contexts with escalating device connectivity. Each method
was evaluated separately to elucidate its effect: 1) Dynamic
slicing utilizing SDN resulted in energy reduction surpassing
66% by synchronizing device operation with actual usage.
2) Duty cycling decreased energy consumption by over 60%
through an adaptive on/off mechanism. 3) A CNN-BiLSTM
classification model enhanced slice allocation, achieving high
Precision and Recall while providing improved estimations
of energy requirements by service. These results provide
evidence of the efficacy of each technology and establish a
foundation for realistic, consumption-conscious, and adaptable
resource management frameworks. Due to the complexity and
unpredictability of 6G settings, adaptive operational solutions
that harmonize energy conservation with service quality are
becoming increasingly essential. Future research may expand
this study to encompass simultaneous multi-layer resource
allocation, including spectrum, power, and processing time, to
attain holistic network performance enhancements in 6G-IoT
contexts.
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