
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

Chaotic Compressed Sensing for Secure Image
Transmission in LoRa IoT Systems

Chatchai Wannaboon1, Shamsul Ammry Bin Shamsul Ridzwan2, Sorawit Fong-In3*
Intelligent Electronics System Laboratory,

Thai-Nichi Institute of Technology, Bangkok, Thailand 102501,3

School of Engineering, Temasek Polytechnic, Singapore 5297572

Abstract—Transmitting image data reliably over long dis-
tances with low cost and minimal storage consumption is critical
for LoRa-enabled IoT devices. Conventional methods often rely
on high-power consumption or computationally intensive hard-
ware, rendering them unsuitable for cost-sensitive and resource-
limited IoT deployments. This paper presents a hybrid com-
pressed sensing approach designed for efficient image transmis-
sion in LoRa-based IoT systems. The proposed method utilizes
a chaotic map-based sensing matrix to enhance randomness and
incoherence in the sampling process, which also serves as an
encryption key to secure the transmitted data. While wavelet
transform is combined with Total Variation (TV) minimization
to accurately recover high-quality images from the sparse mea-
surements on the reconstruction side. The system is implemented
on low-power development boards, with the ESP32-CAM used for
image capture and initial compression, and the CubeCell-AB01
handling LoRa-based wireless transmission. Experimental results
demonstrate significant reductions in data size and transmission
cost, while preserving image fidelity and enhancing data security,
making the proposed method well-suited for resource-constrained
IoT applications.
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I. INTRODUCTION

The rapid growth of the Internet of Things (IoT) has led to
the widespread deployment of low-power embedded devices
in various fields, including smart agriculture, environmental
monitoring, industrial automation, and remote surveillance.
These applications require the transmission of image data from
edge devices to centralized servers or cloud platforms for
real-time analysis and decision-making. However, transmitting
image data over constrained wireless communication protocols
remains a major challenge. One of the most promising tech-
nologies for long-range, low-power wireless communication
is LoRa (Long Range), which operates in the sub-GHz ISM
band and enables communication over distances of several
kilometers while consuming minimal energy. LoRa is a core
component of LoRaWAN, a Low Power Wide Area Network
(LPWAN) protocol that supports battery-operated devices with
low data rates and long-range connectivity [1], [2], [3]. Despite
its benefits, LoRa’s limited bandwidth makes it unsuitable for
direct transmission of large multimedia data such as images
without significant pre-processing or compression. This lim-
itation highlights the need for innovative methods that can
enable efficient and secure image transmission over LoRa net-
works, particularly in resource-constrained IoT environments.

*Corresponding authors.

To address this, researchers have combined LoRa with data
reduction strategies. For example, [4], [5] used downsampling
and lightweight encoding for transmitting grayscale images
over LoRa. However, such approaches often compromise im-
age quality or fail to address security concerns.

Image compression and transmission techniques are often
require intensive computation or large memory storage, both
of which are impractical for resource-constrained IoT devices.
Moreover, ensuring the security and privacy of image data
during wireless transmission is becoming increasingly impor-
tant, particularly in applications involving sensitive or personal
information [6], [7], [8]. Conventional compression algorithms
such as JPEG and JPEG2000 are widely used in standard
multimedia systems but are not well-suited for resource-
constrained IoT devices. These methods often require sub-
stantial computational resources for encoding and decoding, as
well as a significant memory footprint for storing compressed
images. Such a study has proposed by [9], [10], [11] highlights
the limitations of traditional algorithms like JPEG in IoT
scenarios, particularly under power and bandwidth constraints.
Moreover, such methods typically do not address data privacy
or encryption, leaving image data vulnerable to interception
during wireless transmission.

Recently, compressed sensing (CS) has emerged as a
promising alternative for image acquisition and transmission in
IoT systems [12], [13], [14]. CS enables signal recovery from
a small set of linear, provided the original signal is sparse in
some domain. Its application to image data allows significant
reductions in the number of transmitted samples, thereby
saving bandwidth and energy. In [15], the authors demonstrated
the effectiveness of CS for single-pixel imaging, laying the
groundwork for its use in bandwidth-limited environments. In
addition, [16] applied Total Variation (TV) minimization and
wavelet transforms to enhance image reconstruction quality
from sparse measurements. In [17], [18], CS offers significant
advantages for improving data acquisition and transmission
efficiency. By leveraging sparse representation and reconstruc-
tion algorithms, CS bypasses the constraints of the Shannon-
Nyquist sampling theorem, enabling accurate signal recovery
from a reduced number of measurements. This approach
supports energy-efficient processing and reduces bandwidth
requirements, making it particularly suitable for applications
with limited communication resources. Consequently, CS is a
promising solution to address the challenges of data transmis-
sion and storage in resource-limited environments.

The use of chaotic maps to generate sensing matrices
has gained popularity due to their inherent randomness, un-

www.ijacsa.thesai.org 942 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 9, 2025

Compressive 
Sensing

Noise ReductionCapture Image

SPI

Sender Node

Reconstruction

UART

Receiver 

ESP32‐CAM CubeCell
LoRa Module

Fig. 1. Overview of the proposed system.

predictability, and suitability for lightweight encryption [19].
Chaotic systems, such as the Logistic or Tent maps, have
been shown to produce pseudo-random sequences with high
sensitivity to initial conditions, making them ideal for both
compressed sampling and security [20]. In [21], a chaotic
sensing matrix was integrated into CS to achieve both efficient
sampling and data confidentiality. Such dual-purpose matrices
reduce the need for separate encryption steps, thereby saving
computational resources in IoT applications. Recent work
in [22] explores advancements in Compressed Sensing (CS)
within the context of emerging IoT technologies. Among the
various sensing techniques discussed, Chaotic Compressed
Sensing stands out for its effectiveness in enhancing image
security and improving randomness in the sampling process.
While this approach offers advantages in both data protection
and acquisition efficiency, the quality of image reconstruction
remains highly dependent on the use of suitable recovery
algorithms. Even minor variations in system parameters or
the presence of environmental noise can significantly degrade
reconstruction accuracy, highlighting the sensitivity and com-
plexity of the process. The paper is organized as follows:
Section II provides the equipments and data collection; Section
III describes the proposed model architecture and its compo-
nents in detail; Section IV presents experimental results and
comparative analysis; and Section V concludes the paper with
a summary of findings.

Therefore, this paper presents a hybrid compressed sensing
framework that combines chaotic map-based sensing with
advanced reconstruction techniques. The proposed approach
leverages the inherent randomness and sensitivity of chaotic
systems not only to improve measurement incoherence but also
to embed encryption at the acquisition stage, ensuring data
security. The reconstruction process employs a combination
of wavelet transform and Total Variation (TV) minimization,
enabling accurate image recovery from a limited number of
compressed measurements. This framework is implemented
and validated on resource-constrained development boards,
demonstrating its practicality for real-world IoT deployments.
By integrating efficiency, robustness, and security, the pro-
posed method provides a comprehensive solution for image
transmission in bandwidth-limited and energy-constrained IoT
environments.

II. SYSTEM OVERVIEW

The proposed system is designed to enable efficient and
secure image transmission over LoRa-based IoT networks
by integrating a hybrid compressed sensing framework that
leverages chaotic maps and advanced image reconstruction
techniques. The architecture consists of two main components:
an edge device responsible for image acquisition and compres-
sion, and a LoRa node for wireless transmission to a receiver.
The overview of the proposed system is shown in Fig. 1.
An ESP32-CAM module is used to capture images from the
environment. Due to the limited computational resources of
the device, traditional image compression techniques are un-
suitable. Instead, the system applies Compressed Sensing (CS)
using a chaotic map-generated sensing matrix, which not only
reduces the number of measurements needed for transmission
but also introduces inherent randomness that functions as a
lightweight encryption mechanism. This dual-purpose matrix
allows secure and compressed data acquisition with minimal
processing overhead. Once the image has been compressed
into sparse measurements, the data is transmitted from the
ESP32-CAM to a LoRa node (CubeCell-AB01) via Serial
Peripheral Interface (SPI), a high-speed, full-duplex commu-
nication protocol suitable for real-time microcontroller inter-
connection. The CubeCell-AB01, equipped with an SX1276
LoRa transceiver, then transmits the compressed and encrypted
measurements wirelessly over long distances using the LoRa
modulation scheme, which is ideal for low-power and low-
bandwidth applications.

On the receiving side, the data is collected and processed
using a reconstruction algorithm that combines wavelet trans-
form with Total Variation (TV) minimization. The wavelet
transform provides a sparse representation of the original
image, while TV minimization enhances the quality of re-
construction by preserving edge information and reducing
noise artifacts. The reconstruction process is executed on a
computational node with sufficient resources, such as a laptop
or a cloud server, to restore the image with high fidelity from
the limited number of compressed samples. This architecture
is specifically designed to operate under the constraints of IoT
environments, offering a balance between transmission effi-
ciency, energy consumption, and image quality. The integration
of chaotic sensing and hybrid reconstruction ensures that the
system not only minimizes the amount of data transmitted but
also maintains privacy and robustness against channel noise.
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Algorithm 1: Image Sampling with Chaotic Com-
pressed Sensing

Input: Grayscale image I of size (H,W ) (8-bit)
Input: Chaotic control parameter r, initial value X0,

threshold ∈ [0, 1]
Output: Array ynonzero of (index, value) pairs

1 x← reshape(I,N), N ← H ×W ;
2 X ← X0;
3 for i← 1 to N do
4 X ← X/|X| − r ·X ; // Signum chaotic

map
5 chaotic seq[i]← X;
6 end
7 Normalize chaotic seq to range [0, 1];
8 for i← 1 to N do
9 if chaotic seq[i] > threshold then

10 mask[i]← 1;
11 else
12 mask[i]← 0;
13 end
14 end
15 for i← 1 to N do
16 y[i]← mask[i] · x[i];
17 end
18 ynonzero ← ∅;
19 for i← 1 to N do
20 if y[i] ̸= 0 then
21 Append (i, y[i]) to ynonzero;
22 end
23 end
24 Transmit ynonzero over SPI to LoRa transmitter;

A. Chaotic-Based Sensing Matrix Generation

The compressed sensing process relies on a pseudo-random
measurement matrix that satisfies the Restricted Isometry
Property (RIP) and ensures incoherence with the sparsifying
basis. In order to meet these requirements while also provide
lightweight encryption, this work employs a chaotic map-based
approach to generate the sensing matrix. The signum chaotic
map, which is sensitivity to initial conditions and ability
to generate highly random-like sequences from deterministic
equations [23], [24], is given by:

Xn+1 = sign(Xn)− rXn (1)

where r is a chaos tuning parameter. The simple form of
(1) can be considered by

Xn+1 =
Xn

|Xn|
− rXn (2)

where, Xn is the state at iteration n, and r, is the control
parameter that determines the chaotic behavior. For appropriate
values of r, the system exhibits aperiodic, non-converging
sequences, making it suitable for generating random mea-
surement matrices with strong incoherence properties. The
measurement matrix generation can be achieved, following this
procedure:

Algorithm 2: Image Reconstruction
Input: Compressed data ynonzero (index, value pairs),

image size (H,W ), chaotic map parameters r,
X0, threshold, initial threshold λ, decay factor
λdecay, number of iterations

Output: Reconstructed image xrecon of size (H,W )
1 N ← H ×W ;
2 Initialize xfull as a zero vector of length N ;
3 for (i, val) ∈ ynonzero do
4 xfull[i]← val;
5 end
6 yreshaped ← reshape(xfull, H,W );

7 Step 1: Regenerate chaotic binary mask;
8 X ← X0;
9 for i← 1 to N do

10 X ← X/|X| − r ·X ; // Signum chaotic
map

11 chaotic seq[i]← X;
12 end
13 Normalize chaotic seq to range [0, 1];
14 for i← 1 to N do
15 if chaotic seq[i] > threshold then
16 mask[i]← 1;
17 else
18 mask[i]← 0;
19 end
20 end
21 mask← reshape(mask, H,W );

22 Step 2: Iterative reconstruction;
23 xhat ← yreshaped;
24 for i← 1 to iterations do
25 (flat, slices)←WaveletTransform(xhat);
26 flat thresh← SoftThreshold(flat, λ);
27 xhat ←

InverseWaveletTransform(flat thresh, slices);
28 for pixel (m,n) do
29 if mask[m,n] = 1 then
30 xhat[m,n]← yreshaped[m,n];
31 end
32 end
33 xhat ← TVDenoise(xhat,weight = 0.025);
34 λ← λ · λdecay;
35 end
36 Clip values in xhat to range [0, 1];
37 return xrecon ← xhat;

• Select a suitable initial condition X0 ∈ {−1, 1} and a
control parameter r ∈ R that ensures chaotic behavior
(X0 = 0.1 and r = 1.99 in this experiment). Both
values can be utilized as secret keys for encryption
purposes.

• Iterate the signum chaotic map to generate a 1D
chaotic sequence {Xn}. The total number of iterations
should be equal to the number of elements required in
the measurement matrix, i.e. M ×N , where M is the
number of measurements and N is the signal/image
dimension after vectorization.

• Normalize the chaotic sequence and optionally apply
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binarization (e.g. using sign function) or map it to a
standard distribution (e.g. Gaussian or Bernoulli) to
match common CS practices.

The use of the signum chaotic map introduces an intrinsic
encryption feature, as the sensing matrix depends heavily on
the initial value X0 and parameter r. Any slight variation in
these parameters leads to entirely different matrices, making it
extremely difficult to reconstruct the original image without
the correct key. Thus, the chaotic map not only supports
compressed sensing but also secures the data at the acquisition
stage without the need for additional encryption layers.

Fig. 2. Custom-designed embedded device of transmission node.

Receiver Node

Transmission 
Node

Fig. 3. Testing site of the proposed system.

TABLE I. SUMMARIZE OF LORA COMMUNICATION PARAMETER

Parameters Value

LoRa Module SX1262

Frequency 923 MHz

Spreading Factor 7

Coding Rate 4/5

Transmission Power 14 dBm

B. Image Sampling via Compressed Sensing

The image acquisition process is carried out using the
principles of Compressed Sensing (CS), a signal processing
technique that enables accurate recovery of sparse or com-
pressible signals from a small number of linear measurements.
This is particularly beneficial for image transmission in IoT
systems, where bandwidth, memory, and energy are severely
constrained. Let x ∈ RN represent the original image signal
in vectorized form, e.g. a grayscale image flattened into a 1D
array. Under the CS framework, instead of acquiring the full
signal x, a reduced number of linear measurements y ∈ RM

can be acquired with M ≪ N by projecting the signal onto a
measurement matrix Φ ∈ RM×N . The data acquisition model
can be expressed by:

y = Φx (3)

In order to ensure that x can be reconstructed from y, the
signal must be sparse in some transform domain. That is, there
exists a sparsifying basis Ψ such that

x = Ψs (4)

where, s is a sparse coefficient vector. Substituting into the
measurement equation yields:

y = ΦΨs = Θs (5)

where, Θ = ΦΨ is the effective sensing matrix. The
reconstruction of x involves recovering the sparse vector s
from y and applying the inverse transform. In the proposed
system, the compressed sensing matrix Φ is generated using
signum chaotic map (as described in Section 2.1). This chaotic
matrix introduces both measurement incoherence and data-
level encryption. The image captured by the ESP32-CAM
is first converted into grayscale and then vectorized into x.
This vector is multiplied by Φ to produce the compressed
measurements y, which are significantly smaller in size than
the original image.

The sampling process begins with image acquisition from
the camera module, followed by preprocessing steps that
include grayscale conversion and normalization. The resulting
image is then vectorized into a one-dimensional signal x,
which is subsequently projected onto a chaotic map-generated
sensing matrix Φ to compute the compressed measurements
y = Φx. Finally, the compressed vector y is transmitted via
the Serial Peripheral Interface (SPI) to the LoRa transmitter
for wireless delivery. The pseudo-code of image acquisition
and compressed sensing is illustrated in the Algorithm 1.

C. Reconstruction Algorithm

After compressed measurements are transmitted via LoRa
and received by a computational node, the next step is to
reconstruct the original image from the sparse measurement
vector. The reconstruction process is designed to recover the
original image from the received compressed measurements by
leveraging the same chaotic sequence used during sampling.
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TABLE II. PERFORMANCE EVALUATION OF COMPRESSED AND RECONSTRUCTED IMAGES OVER DIFFERENT COMPRESSION RATIOS

Original Image CR Compressed Image Reconstructed Image MSE PSNR
(dB)

0.2 0.159 31.97

0.3 0.123 32.92

0.4 0.102 34.03

This approach ensures both spatial consistency and security by
deterministically regenerating the sampling pattern.

First, the receiver regenerates the chaotic sequence (2)
using the same initial condition and control parameter r as
used during the sampling process. This sequence is normal-
ized and binarized with a fixed threshold to reproduce the
binary sampling mask, which distinguishes between known
(non-zero) and unknown (zero) pixel locations. The received
measurements are reshaped into the original image dimensions,
and zero values are re-inserted at positions determined by
the chaotic mask. This forms a sparse image matrix where
only a subset of pixel values is available. The reconstruction
process begins with this sparse image as the initial estimate and
iteratively refines it using a combination of wavelet-domain
sparsity enforcement and total variation (TV) denoising. Next,
the reconstruction loop proceeds by transforming the current
image estimate x̂ into the wavelet domain using a two-
dimensional discrete wavelet transform, resulting in a sparse
representation of the image coefficients. A soft-thresholding
function is then applied to these coefficients to suppress noise
and enforce sparsity. This function shrinks coefficients toward
zero based on a threshold λ that decays over iterations as
follows:

X̃ = sign(X) ·max(|X| − λ, 0) (6)

where, X and X̃ are the wavelet coefficient and the thresh-

old coefficient, respectively. The threshold coefficients are
subsequently transformed back into the spatial domain via the
inverse wavelet transform, resulting in an updated image esti-
mate. To ensure consistency with the original measurements,
the known pixel values identified using the chaotic mask are
reinserted into their respective positions. This operation can be
mathematically expressed as:

x̂(k)[i] =

{
y[i], if i ∈ Ω.

x̂(k)[i], otherwise
(7)

where, Ω is the set of known pixel indices from the
chaotic sampling mask, and x̂(k) is the reconstructed image
at iteration k. To further refine the output, total variation
denoising is applied to the reconstructed image to reduce
artifacts and preserve edge structures. This can be formulated
as the minimization of the TV norm, given by:

min
x
∥|x||TV subject to x ≈ x̃ (8)

This iterative refinement is performed for 350 iterations.
The threshold λ is initialized at 0.1 and decayed by a factor
of 0.95 after each iteration to gradually enhance image de-
tails. Finally, the reconstructed image is clipped to the valid
grayscale range [0, 1]. This hybrid reconstruction approach
effectively balances sparsity promotion, noise suppression, and
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data fidelity, allowing high-quality image recovery from highly
compressed chaotic measurements. The pseudo-code of image
reconstruction process is illustrated in the Algorithm 2.

III. EXPERIMENTAL RESULTS

To validate the effectiveness of the proposed hybrid com-
pressed sensing approach for image transmission over LoRa-
based IoT networks, real-world experiments were conducted
using ESP32-CAM as the image acquisition and compression
node, and CubeCell AB01 as the LoRa communication. Fig. 2
illustrates the custom-designed embedded system used for field
deployment of the proposed image transmission framework.
These tests aimed to evaluate system performance in practical
conditions, including image quality, transmission efficiency,
and hardware feasibility in a low-power wireless environment.
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Fig. 4. Compression ratio vs (a) MSE and (b) PSNR.

A. Field Deployment

Fig. 3 shows the real-world testing site of the proposed
image transmission system at the Thai-Nichi Institute of Tech-
nology (TNI) campus, specifically across the length of the
Faculty of Engineering building. The devices were powered by
portable USB battery packs and tested over a range of distances
(up to 300 meters) with clear line-of-sight. The transmission
path included partial obstructions such as walls, corridors, and
concrete pillars, making it a meaningful scenario to assess

LoRa signal reliability, data transmission performance, and
image reconstruction quality over medium-range distances.
Table I summarizes the LoRa parameters in the experiment.

B. Evaluation Metrics

This paper selects Mean Squared Error (MSE) as the
primary loss function for training the reconstruction model.
It measures the average squared difference between the recon-
structed image and the original image, defined mathematically
as:

MSE =
1

N

N∑
i=1

[yi − f(xi)]
2 (9)

where, N represents the total number of image pixels (or
samples), yi is the ground truth pixel value, and f(xi) is
the predicted pixel value. MSE serves as a direct indicator
of reconstruction accuracy. Otherwise, the lower of MSE
indicates the closer the reconstructed image is to the original.

To further assess the quality of the reconstructed images,
Peak Signal-to-Noise Ratio (PSNR) is employed as quanti-
tative evaluation metrics. PSNR is a widely used objective
metric in image processing that reflects the ratio between
the maximum possible pixel value and the magnitude of the
reconstruction error, and is expressed in decibels (dB). It is
calculated as:

PSNR = 10 · log10(
M2

MSE
) (10)

where, M is the maximum possible pixel intensity value
of the image. A higher PSNR indicates better reconstruction
quality and lower image distortion, e.g. a PSNR value above
30 dB generally suggests that the reconstructed image is of
good visual quality.

C. Performance Analysis

Table II presents a visual and quantitative analysis of the
proposed reconstruction system under varying compression
ratios (CR) of 0.2, 0.3, and 0.4. The original image is shown
in the first column. The second column shows the encrypted or
compressed image as produced by chaotic compressed sensing,
appearing as random patterns with no visual resemblance to the
original. The third column displays the reconstructed images
after applying the wavelet-based soft-thresholding and total
variation (TV) denoising algorithm. As the CR increases from
0.2 to 0.4, the quality of the reconstructed image significantly
improves. This is further supported by the quantitative metrics
in MSE and PSNR. At CR = 0.2, the MSE is 0.159 with
a PSNR of 31.97 dB, while at CR = 0.4, the MSE reduces
to 0.102 and the PSNR increases to 34.03 dB. These results
confirm that higher compression ratios yield more accurate
image reconstruction due to the availability of more non-
zero measurements. However, even at low CR, the recon-
struction preserves the essential features of the original image,
demonstrating the robustness and effectiveness of the proposed
chaotic compressed sensing and reconstruction framework.
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TABLE III. COMPARISON WITH EXISTING SYSTEMS

Criteria Edirisinghe et al. (2024)
[25]

Kirichek et al. (2017)
[26] Wei et al. (2021) [27] Guerra et al. (2023)

[28] Proposed

Technology ESP32CAM, SX1278 Raspberry Pi Zero,
SX1267

Raspberry pi 3B+,
SX1276

Raspberry Pi 3B+,
SX1272 ESP32CAM, SX1262

Compression
Method JPEG JPEG/JPEG 2000 WebP with Base64 YCoCg, Wavelet

Subbands

Compressed Sensing,
Wavelet, TV
Minimization

PSNR (dB) - 23 33.84 21.5 to 27 32.92 (CR = 0.3)

Transmission Time
(s) 20 - 25.7 90 30

Security None None None None Chaotic Masking

Additionally, Fig. 4 depicts the relationship between MSE
and PSNR as the compression ratio (CR) varies. These plot in-
dicates that using more measurements results in a reconstructed
image which is closer to the original in terms of pixel-wise
accuracy. Conversely, the PSNR increases with higher CR,
reflecting improved visual quality of the reconstructed image.
It can be consider that, the proposed chaotic compressed sens-
ing and wavelet-TV reconstruction framework achieves a good
balance between compression and image quality. Notably, even
at moderate compression ratios (CR = 0.4–0.5), the system
maintains acceptable reconstruction performance, suggesting
suitability for deployment in bandwidth-constrained LoRa-
based IoT applications where transmission efficiency is critical.

Table III presents a comparative evaluation between the
proposed method and several existing image transmission
techniques over LoRa networks. The comparison is based
on key parameters such as technology framework, compres-
sion method, image quality in terms of PSNR, transmission
time, and security features. The proposed system employs the
chaotic compressed sensing, wavelet transform, and TV min-
imization, which enable high efficiency image reconstruction
with significantly reduced data volume. Notably, the proposed
method achieves a PSNR of 32.92 dB at a compression ratio
of 0.3, which is comparable to or better than other approaches,
such as the 33.84 dB reported by Wei et al. (2021) using
WebP compression, and considerably higher than the 23 dB
and 21.5–27 dB reported by Kirichek et al. (2017) and Guerra
et al. (2023), respectively. In terms of transmission time,
the proposed method achieves a practical 30-second duration,
which is faster than the 90 seconds required by Guerra et
al., and close to the 25.7 seconds achieved by Wei et al.,
while also incorporating inherent chaotic masking for data
security, unlike all compared works, which offer no security
measures. Additionally, while most competing methods rely
on image-centric compression formats like JPEG, WebP, or
wavelet subbands, the proposed approach achieves compres-
sion and encryption simultaneously through chaotic sampling.
Overall, this comparison highlights the efficiency, security, and
image quality advantages of the proposed method, making it
highly suitable for low-power, bandwidth-constrained image
transmission in IoT scenarios.

IV. CONCLUSION

This paper presents a hybrid compressed sensing approach
tailored for efficient and secure image transmission in LoRa-
based IoT systems. The proposed method achieves both sig-

nificant data compression and reliable image reconstruction by
integrating a chaotic map-based sensing matrix with wavelet
transforms and total variation (TV) minimization. The use of
a chaotic sequence not only improves incoherence during the
sampling process but also serves as a lightweight encryption
mechanism, enhancing data privacy without additional compu-
tational overhead. Experimental evaluations on real embedded
hardware demonstrate the practical feasibility of the proposed
system in low-power environments. The results indicate that
even with low compression ratios, the reconstructed images
maintain high perceptual quality, with PSNR values exceeding
32 dB. Furthermore, transmission times are reduced to under
30 seconds per image, significantly outperforming traditional
JPEG-based and wavelet-subband techniques used in LoRa
imaging. A comparative analysis with existing methods high-
lights the advantages of the proposed approach in terms of
image quality, transmission efficiency, power consumption,
and embedded security. These benefits make the system par-
ticularly well-suited for IoT applications where bandwidth,
energy, and processing resources are severely constrained. The
proposed system has potential for a wide range of applications,
including environmental monitoring, smart agriculture, struc-
tural health monitoring, and wildlife surveillance. It can also be
applied for remote industrial inspections, where timely visual
data from resource-constrained IoT nodes can significantly
improve decision-making efficiency and operational safety.
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