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Abstract—AI-generated content detection is vital because it 

helps to uphold digital integrity in most fields of application, such 

as in academic publishing and content verification. The process 

of identifying text authenticity and traceability of the source is 

dependent on proper detection means. The approach introduced 

in this paper is a novel ensemble method that combines machine 

learning and linguistic analysis for AI content detection. The 

ensemble approach uses a set of classification algorithms to 

identify the most important differences between human-authored 

and AI-generated text. To validate the proposed method, this 

study utilized an extensive collection of text samples (20,000) 

obtained from SQuAD 2.0, CNN/Daily Mail, GPT-3.5, and 

ChatGPT datasets. The proposed ensemble model achieved 

precision, accuracy, recall, and F1-score of 97.2%, 97.5%, 

96.4%, and 97.3%, respectively, demonstrating superior 

performance compared to individual classifiers. The 

experimental results demonstrate that the ensemble approach 

offers efficient detection performance, which can be applied to 

various text types and lengths, and thus can be implemented in 

practical systems for content verification and academic integrity 

assessment. 
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I. INTRODUCTION 

The content creation in various spheres has undergone a 
paradigm shift through [1] the creation of AI-enabled content 
creation. Large language models, and GPT architectures in 
particular, have very high quality in terms of the generated 
content, as they can produce extremely [2][3] human-like 
content in terms of coherence, stylistic consistency, and 
semantics. As much as the advances present enormous 
potential in terms of productivity and creativity, they also pose 
enormous problems in terms of content authentication, [4] 
verification protocols, and maintenance of textual integrity in 
mission-critical applications. 

The imperative to develop robust methodologies for 
distinguishing [5] AI-generated from human-authored text has 
emerged as a paramount concern across multiple domains. 
The rise in the popularity of AI-generated writing at the 
academic level has introduced some of the most significant 
questions regarding academic integrity, [6] the accuracy of 
plagiarism detectors, and the preservation of academic 
originality. The issue of content authenticity has become 
increasingly critical in the journalism and media sectors [7] to 
ensure that people trust and believe in the editorial integrity. 

 There is a need to establish reliable authorship through 
document validation, compliance auditing, and evidence 
authentication in legal and regulatory settings where human 
and AI differences in authorship can lead to differing legal 
implications and regulatory action. 

The current machine learning methods for detection 
incorporate various computational strategies [8]—traditional 
statistical analysis deals with textual patterns, [9] linguistic 
peculiarities, and stylometric characteristics. Machine learning 
techniques utilize advanced classification models, such as 
support vector machines, random forests, and gradient 
boosting [10][11], which are based on supervised learning 
[12]. Deep learning methods utilize advanced neural networks, 
including CNNs, RNNs, and transformer-based models, to 
identify the intricacies of patterns in text structure, semantic 
connections, and stylistic peculiarities employed to detect 
artificial generation. 

Although remarkable advancements have been made, the 
current methodologies have serious shortcomings [13] that 
have hindered their large-scale implementation. Various 
methods are found to lack the necessary precision when 
compared to newer AI models that produce high-quality text 
[14] that is contextually relevant. The issue of cross-domain 
adaptability is also problematic, where the detection models 
trained on types of texts have shown [15] worse performance 
when transferred to another type. Moreover, computational 
efficiency is also a significant issue, as many of these systems 
consume large amounts of processing [16][17], which renders 
them unusable in real-time applications. 

This study proposes an integrative ensemble learning 
algorithm to overcome these inherent limitations by 
introducing novel contributions to the field such as: (1) Multi-
classifier combination that capitalizes on the synergistic 
effects of multiple machine learning classifiers, (2) Extended 
feature engineering that includes linguistic complexity 
measures, stylometric analysis, semantic coherence 
evaluation, and syntactic pattern recognition, and (3) 
Optimized implementation based on the prioritization of 
computational efficiency without compromising the accuracy 
standards applicable to the real-world setting. 

Previous work in AI content detection is outlined in 
Section II. The proposed methodology of an ensemble with 
preprocessing data, feature extraction, and model development 
is outlined in Section III, experimental design, and the entire 
results are described in Section IV. Findings and implications 
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are discussed in Section V, and concluding remarks and future 
directions are discussed in Section VI. 

II. RELATED WORK 

The study of AI-generated content detection has evolved 
through various computational schemes and has been applied 
to address multiple aspects of text authentication issues. The 
section discusses the significant methodological contributions 
and highlights the shortcomings of the current state-of-the-art 
practices. 

A. Traditional and Machine Learning Approaches 

Research on early detection concentrated on textual 
features using statistical analysis found in stylometric methods 
of studying linguistic patterns, [18][19] sentence length 
distributions, and vocabulary richness. Extensive surveys of 
AI-generated content detection were presented by Cao et al., 
and Bakhtin et al.  proposed methods that utilize syntactic 
features and analyze grammatical structure. These methods 
proved to be useful in controlled situations, but when 
subjected to complex generation models [20] that closely 
resemble human writing, the methods failed. The gradual 
transition of approaches towards machine learning techniques 
signified the scale of sophistication of detection. Literature has 
shown systems based on logistic regression and support vector 
machines [21], which provided considerable advances on 
controlled data sets but suffered from real-world heterogeneity 
of text and cross-domain adaptation. SOLAIMAN et al. [22] 
contributed to the field through neural network-based 
classifiers that could learn intricate feature dependencies and 
performed better in controlled settings. However, they showed 
impaired effectiveness with various types of texts. 

B. Deep Learning and Ensemble Methodologies 

Modern studies have leveraged high-level deep learning 
architectures for content detection. Harada et al. [23] 
demonstrated that transformer-based methods, such as BERT 
and RoBERTa models, exhibit outstanding performance in 
recognizing semantic connections and contextual 
dependencies that cannot be identified in traditional ways. 
Bakhtin et al. [24] also showed that transformer models of 
large scales could achieve an astounding level of accuracy in 
the authentication process. Nonetheless, these advanced 
methods require high computational power, large amounts of 
labeled data, and considerable computational time, and thus, 
they cannot be used practically in resource-limited settings. 

Developing ensemble techniques for learning has been 
identified as a potential solution to address the shortcomings 
of individual models. Fagni et al. [25] have shown the 
effectiveness of deepfake detection when using ensemble 
approaches, and De Santis et al. [26] have illustrated the fact 
that the strategic combination of multiple classifier 
architectures can also play a significant role in the 
effectiveness of the system. Their study emphasized the 
importance of ensuring algorithmic diversity in ensemble 
systems to maintain consistent cross-content and cross-
generation model performance, thereby offering the best 
resilience to variable AI generation methods. 

C. Research Gaps and Current Limitations 

Several significant obstacles continue to challenge AI 
content detection systems, despite notable advancements in 
the field. First, cross-domain performance limitations present 
ongoing difficulties, as detection models typically demonstrate 
reduced accuracy when applied beyond their original training 
parameters. Models designed for one text category often fail to 
perform adequately when encountering different writing styles 
or subject areas. Second, resource-intensive processing 
requirements create practical barriers, as numerous current 
detection methods, especially those utilizing deep learning 
architectures, demand considerable computational power and 
extended processing periods, which restrict their 
implementation in time-sensitive scenarios. Third, adaptability 
and scale management remain problematic, as detection 
frameworks must simultaneously accommodate rapidly 
advancing AI text generation capabilities while preserving 
detection accuracy and efficiently processing substantial 
document volumes. Finally, vulnerability to circumvention 
techniques poses a persistent concern, with existing systems 
requiring strengthened defenses against increasingly 
sophisticated generation methods and intentional evasion 
strategies employed by users seeking to bypass detection 
protocols. This paper is part of the efforts to overcome these 
inherent limitations as it proposes a new ensemble learning 
system that combines several machine learning algorithms to 
yield higher detection rates, efficiency, and resilience to 
different forms of content and content generation patterns. 

III. MATERIALS AND METHODS 

A. Methodological Framework Overview 

This research presents a comprehensive ensemble learning 
approach designed to systematically differentiate between 
content written by humans and text generated by artificial 
intelligence systems. The proposed methodology employs a 
well-organized strategy that integrates sophisticated feature 
extraction processes with ensemble classification methods, 
aiming to achieve reliable and precise detection performance. 

The proposed approach implements a methodical six-stage 
process, as demonstrated in Fig. 1: (1) gathering and 
organizing datasets, (2) preprocessing data while 
implementing quality assurance measures, (3) partitioning 
data into training and testing subsets, (4) developing 
individual classification models, (5) combining and training 
ensemble models through integration techniques, and (6) 
assessing performance through comprehensive evaluation and 
validation procedures. This structured methodology provides 
dependable classification results when applied to various text 
categories and subject areas. 

The methodology was specifically developed to overcome 
some of the significant limitations found in current detection 
methods, particularly in terms of accuracy, computational 
efficiency, and cross-domain adaptability. All the components 
play their role in the overall framework to detect slight 
differences in the characteristics of human-written patterns 
and AI-generated texts, making them useful in real-world 
content verification tasks. 

We explain every component of our model, such as data 
preparation and preprocessing guidelines, feature extraction 
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steps, the model construction of all single models, and 
Ensemble combination methods as follows. 

 

Fig. 1. Six-phase ensemble learning methodology for AI content detection. 

B. Dataset and Preprocessing 

To make our experiment paradigm more balanced, we 
focused on the dataset of 20,000 text samples obtained in 
various fields to guarantee diversity and representativeness. 
The data consists of 10,000 human-written samples (5,000 
samples generated in SQuAD 2.0 question-answering dataset 
with a natural flow of conversation and 5,000 samples 
generated in CNN/Daily Mail dataset with a professional 
journalistic style) and 10,000written samples (5,000 samples 
generated using GPT-3.5 and 5,000 samples using ChatGPT, 
focusing on a variety of writing styles and conversational 
outputs). 

The dataset demonstrates substantial structural diversity 
with text lengths ranging from 50 to 2,000 words (mean: 387 
± 285 words). Statistical analysis confirms variation across 
sources: CNN/Daily Mail articles exhibit the most significant 
length variability (445 words average), SQuAD 2.0 entries are 
shorter and uniform (285 words), while AI-generated texts 
occupy intermediate ranges (GPT-3.5: 412 words, ChatGPT: 
406 words). Frequency analysis reveals a log-normal 
distribution, with 68% of samples falling within the 200-800 
word range, supporting rigorous evaluation across diverse 
textual complexity levels while minimizing length-based 
classification bias. 

1) Text length distribution analysis 

a) Statistical distribution patterns: Statistical analysis 

confirms substantial variation in text lengths across the four 
data sources—an essential characteristic for training models 
capable of handling diverse content. Among the datasets, 
CNN/Daily Mail articles exhibit the best length and 
variability, with an average of 445 words. In contrast, SQuAD 
2.0 entries are shorter and more uniform, averaging 285 

words. AI-generated texts occupy an intermediate range, with 
GPT-3.5 and ChatGPT samples averaging 412 and 406 words, 
respectively. The presence of wide interquartile ranges and 
natural outlier distributions across sources further enhances 
the robustness of model training by exposing it to realistic 

variations in content length and structure. 

b) Frequency distribution and implications: Frequency 
analysis of text lengths reveals a long-normal distribution 
pattern, a common trait in large linguistic corpora. 
Approximately 68% of the samples fall within the 200–800-
word range, with a peak frequency between 400 and 500 

words—closely matching the dataset mean of 387 words 
(±285standarddeviation). The distribution exhibits positive 
skewness, with minimal instances below 100 words, in 
alignment with the applied 50-word minimum threshold. 
These characteristics suggest that AI-generated content tends 
to mirror the length profiles of human-authored news articles 

more closely than question-answering formats. 

This insight has important implications for our feature 
engineering strategy, helping ensure that the ensemble model 
can generalize effectively across the full spectrum of text 
lengths without introducing length-based classification bias. 

C. Text Preprocessing Pipeline 

Our preprocessing pipeline preserves linguistic features 
that distinguish human from AI writing patterns through a 
structured, four-stage approach that balances textual 
authenticity with data quality. Unlike conventional NLP 
methods, we deliberately retained case sensitivity and 
punctuation patterns as potential discriminative markers, while 
applying controlled normalization and quality filtering to 
ensure consistent input for feature extraction. 

The preprocessing stages included: (1) Case sensitivity 
preservation to capture systematic differences in proper noun 
usage and sentence initiation patterns, (2) Punctuation 
retention to preserve stylistic cues in frequency, variety, and 
positioning within grammatical structures, (3) Controlled 
normalization removing only non-linguistic characters while 
standardizing whitespace and enforcing UTF-8 encoding, and 
(4) Quality filtering with specific criteria for text length, 
language detection, and duplicate removal. 

The quality filtering was implemented with strict 
requirements to preserve the integrity of the dataset: the 
samples with fewer than 50 words were filtered out with 
NLTK word tokenization to provide sufficient text length to 
carry out valid feature extraction, dataset in English language 
was filtered with the langdetect library (confidence > 0.95) to 
get rid of non-English samples and the duplicate filtering was 
implemented with exact string matching before semantically 
similar samples were screened (cosine similarity > 0.98) to 
avoid data leakage [27][28]. The tokenization followed the 
word_tokenize function in NLTK, using punkt sentence 
splitting to preserve the original boundaries of the tokens and 
retain punctuation as individual tokens for downstream feature 
extraction. 

The ultimate preprocessing pipeline cleaned the initial 
22,847 samples by removing 1,203 short texts, 891 non-
English samples, and 753 duplicates, leaving us with 20,000 
high-quality samples. Statistical justification was obtained that 
preprocessing preserved the original properties of distribution 
among the text sources (Chi-square test, p = 0.847). It 
removed the low-quality samples that are likely to break the 
model training and testing. 
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D. Feature Engineering and Extraction  

Feature engineering represents a critical component in our 
text classification framework, where raw textual data is 
transformed into numerical representations suitable for 
machine learning algorithms. This process enables our models 
to effectively distinguish between human-authored and AI-
generated content by extracting meaningful linguistic patterns 
and characteristics. 

1) Lexical diversity measurement: Measure of Textual 

Lexical Diversity (MTLD) is handy in computational 

linguistics [McCarthy & Jarvis, 2010], so to counteract the 

text length bias and measure the vocabulary richness, we used 

MTLD. MTLD [29] quantifies the average number of word 

sequences with a specified level of type-token ratio (TTR) 

threshold, giving a more regular indication of lexical variety 

than the standard TTR, especially in longer writings. 

We used the lexical-diversity Python package (version 
0.1.1) to compute bidirectional MTLD scores—processing 
each text sample both forward and in reverse, then averaging 
the results to mitigate positional biases. Samples shorter than 
50 tokens were excluded from MTLD analysis, as shorter texts 
are more susceptible to volatility in TTR-based metrics, 
leading to unreliable diversity estimates.  By incorporating 
MTLD scores into the feature set, we enabled the model to 
capture lexical richness as a discriminative signal, helping 
distinguish human-authored text—which tends to be more 
varied—from AI-generated text, which often exhibits limited 
lexical diversity and repetition of key phrases. 

2) Part-of-speech (POS) tagging: POS tagging assigns 

grammatical categories to each word in the text, such as 

nouns, verbs, adjectives, and adverbs. This technique helps 

identify structural differences [30] between human and AI 

writing patterns. Our analysis focuses on specific POS 

categories that show significant variation between the two 

content types.  The selected POS tags used in our feature 

extraction are summarized in Table I. These categories were 

chosen based on their demonstrated ability to capture stylistic 

differences in writing patterns. 

TABLE I  POS TAG CATEGORIES USED FOR FEATURE EXTRACTION 

POS Tag Category Description 

NN, NNS Singular or Plural Noun 

NNP, NNPS Proper Noun (Singular/Plural) 

JJ, JJR, JJS Adjective(Comparative, Superlative) 

VB, VBD, VBG, VBN, VBP, 

VBZ 

Various Verb Forms (Present, Past, 

Gerund, Participle) 

RB, RBR, RBS 
Adverb (Including Comparative and 

Superlative Forms) 

3) N-gram feature extraction and selection: Our N-gram 

extraction strategy captures local lexical patterns and 

contextual structures, distinguishing human from AI writing 

styles through systematic word-based n-gram analysis (n = 1 

to 3).  Implementation utilized scikit-learn's CountVectorizer 

with optimized frequency thresholds: min_df=5 for unigrams, 

min_df=3 for bigrams, and min_df=2 for trigrams, based on 

validation experiments demonstrating optimal noise reduction 

while preserving discriminative patterns. These thresholds 

eliminated 89,347 rare n-grams while retaining semantically 

meaningful patterns that contribute to classification 

performance. 
The feature selection methodology employed a two-stage 

optimization process: initial frequency filtering, followed by 
statistical feature selection using mutual information scores. 
Validation experiments tested various n-gram limits from 
1,000 to 25,000 features, revealing optimal performance at 
10,000 unigrams (96.3% validation accuracy), 5,000 bigrams 
(95.8% accuracy), and 2,000 trigrams (94.7% accuracy), with 
diminishing returns beyond these thresholds. Chi-square 
feature selection confirmed that selected n-grams achieved 
91.4% discriminative power of the whole feature space while 
reducing dimensionality by 78%, preventing overfitting and 
computational overhead. 

Dimensionality reduction analysis demonstrated that 
unigrams capture individual word usage patterns (correlation 
with human/AI labels: r=0.67), bigrams identify phrase-level 
stylistic markers (r=0.71), and trigrams detect sentence 
construction patterns (r=0.63). Cumulative feature importance 
analysis revealed that the top 17,000 n-grams (10K+5K+2K) 
account for 94.8% of total variance in distinguishing human 
from AI text. At the same time, computational complexity 
decreased by 71% compared to unrestricted vocabulary. 
Cross-validation confirmed consistent performance across text 
domains, validating our feature selection strategy for practical 
deployment. 

The selected n-gram configuration effectively captures AI-
generated text characteristics, including reduced lexical 
diversity in unigrams (15% lower TTR), increased repetitive 
bigram patterns (23% higher frequency), and more rigid 
trigram structures (18% less variation) compared to human 
writing. This systematic feature selection ensures robust 
classification while maintaining computational efficiency 
suitable for real-time applications. 

4) TF-IDF vectorization implementation: Our TF-IDF 

implementation employs scikit-learn's TF-IDF Vectorizer with 

optimized [31] parameters to balance vocabulary coverage and 

computational efficiency. Key configuration parameters 

include: max_features=15,000 to limit vocabulary size while 

preserving discriminative power, min_df=3 (minimum 

document frequency) to exclude rare terms appearing in fewer 

than three documents, max_df=0.85 to filter standard terms 

appearing in more than 85% of documents, and 

sublinear_tf=True to apply logarithmic scaling for term 

frequency normalization. 

Vocabulary size optimization was determined through 
systematic evaluation on the validation set, testing feature 
limits from 5,000 to 50,000. The selected 15,000-feature limit 
achieved an optimal balance between model performance 
(96.1% validation accuracy) and computational efficiency, 
with diminishing returns observed beyond this threshold. The 
min_df=3 setting eliminated 23,847 rare terms while 
preserving semantically meaningful vocabulary, while 
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max_df=0.85 removed 127 overly standard stopword-like 
terms that provided minimal discriminative value between 
human and AI text. 

TF-IDF calculation follows the standard implementation:  

𝑇𝐹(𝑡, 𝑑) =
𝑛𝑡,𝑑

∑ 𝑛𝑘,𝑑
𝑘

     (1) 

Where 𝑛  is the number of occurrences of term t in 
document d, and the denominator is the total number of terms 
in document d. 

𝐼𝐷𝐹(𝑡, 𝐷) = 𝑙𝑜𝑔
𝑁

𝑑𝑓(𝑡)
   (2) 

where N is the total number of documents and 𝑑𝑓(𝑡) is the 
number of documents containing term t. The final TF-IDF 
score combines both components: 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑, 𝐷) = 𝑇𝐹(𝑡, 𝑑) ⋅ 𝐼𝐷𝐹(𝑡, 𝐷)     (3) 

This configuration prioritizes terms that are moderately 
frequent within documents but rare across the corpus, [32] 
effectively capturing distinctive linguistic patterns that 
differentiate human from AI authorship. Feature matrix 
dimensionality analysis revealed that our 15,000-feature TF-
IDF vectors achieved 94.2% of the discriminative power of 
unlimited vocabulary while reducing computational overhead 
by 67%. Cross-validation experiments confirmed that this 
parameter configuration generalizes effectively across 
different text types and lengths, maintaining consistent 
performance while preventing overfitting to training-specific 
vocabulary patterns. 

5) Sentiment analysis integration: Our framework 

incorporates sentiment polarity and subjectivity analysis using 

TextBlob [33], which is selected for its computational 

efficiency and demonstrated accuracy in processing large-

scale datasets. The sentiment analysis component provides 

quantitative measures of emotional orientation and subjective 

expression levels within textual content. 

a) Sentiment metrics: TextBlob calculates sentiment 
polarity on a continuous scale from -1.0 (extremely negative) 
to +1.0 (extremely positive), with neutral sentiment at 0.0. The 
subjectivity score ranges from 0.0 (objective) to 1.0 

(subjective), quantifying the degree of personal opinion versus 

factual information within the text. 

b) Distribution analysis: Our comprehensive analysis 
reveals significant differences in sentiment patterns between 

content types. Human-authored content demonstrates a 
broader emotional range with a mean polarity of 0.127 
(±0.284), while AI-generated content exhibits more 
constrained expression at 0.089 (±0.201). Similarly, a 
subjectivity analysis shows that human content averages 0.412 

(±0.198), compared to AI content at 0.376 (±0.164). 

These sentiment disparities provide valuable 
discriminative features, revealing fundamental variations in 
how artificial systems and human authors convey emotional 
content within our classification framework. 

6) Syntactic complexity features: Syntactic complexity 

analysis examines structural patterns of sentence construction 

to differentiate human-authored from AI-generated content. 

Our analysis reveals that human-authored texts exhibit 34% 

greater sentence length variability compared to AI-generated 

content, resulting in a more natural textual rhythm. Parse tree 

analysis shows human writers create more intricate structures, 

averaging 7.9 grammatical levels compared to AI systems' 6.4 

levels.  Human writers employ passive voice constructions 

18% more strategically than AI systems, utilizing complex 

clause structures for rhetorical emphasis rather than 

mechanical consistency. Statistical validation confirms the 

discriminative power of these features with p-values < 0.001, 

ranking them among the top 25% of most informative 

classification indicators. 

7) Semantic coherence metrics: Semantic coherence 

analysis evaluates logical connections and thematic unity in 

textual discourse. Human writers demonstrate superior 

thematic development with 68% topical coherence compared 

to AI systems' 82% mechanical adherence, revealing AI's 

tendency toward repetitive topic maintenance rather than 

natural evolution.  AI-generated texts demonstrate 31% higher 

usage of explicit logical connectors ("however," 

"additionally," "therefore"), creating artificially structured 

discourse. Human texts exhibit 15.6% lexical repetition rates 

with strategic vocabulary variation, while AI systems show 

19.3% repetition with less sophisticated cycling. These 

coherence metrics demonstrate significant discriminative 

power (p-values < 0.001), establishing semantic coherence as 

a robust indicator of authenticity. 

E. Model Development and Training 

1) Data splitting strategy and cross-validation 

framework: To ensure unbiased model evaluation and prevent 

overfitting, we implemented a stratified three-way data 

partitioning strategy. Our dataset of 20,000 text samples was 

divided into training (60%, 12,000 samples), validation (20%, 

4,000 samples), and testing (20%, 4,000 samples) using 

stratified random sampling to maintain proportional 

representation across all classification categories and data 

sources. This rigorous partitioning enables proper 

hyperparameter optimization while preserving the integrity of 

the test set for unbiased final evaluation. 

The training set contains 12,000 samples equally 
distributed between human-authored content (6,000 samples: 
3,000 from SQuAD 2.0, 3,000 from CNN/Daily Mail) and AI-
generated content (6,000 samples: 3,000 from GPT-3.5, 3,000 
from ChatGPT). Both the validation and test sets follow 
identical distribution patterns, with 4,000 samples each, 
comprising 2,000 human-authored samples (1,000 from each 
source) and 2,000 AI-generated samples (1,000 from each 
model). This balanced distribution across all sets ensures 
consistent representation of text types and generation methods. 

To ensure robust model evaluation and hyperparameter 
optimization, we implemented 5-fold stratified cross-
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validation on the combined training and validation sets 
(16,000 samples). Each fold maintained proportional 
distribution across all data sources and classification 
categories, enabling reliable model selection and parameter 
tuning. The validation set served primarily for hyperparameter 
optimization and model selection, while the test set remained 
completely unseen until final evaluation to provide unbiased 
performance estimates. 

Our data partitioning protocol employed a fixed random 
seed (42) for reproducibility, applied stratification across both 
binary labels and four data sources to prevent class imbalance, 
and ensured no temporal overlap between sets to avoid data 
leakage. Statistical validation using Chi-square tests (p < 0.05) 
confirmed consistent distribution of text lengths, vocabulary 
diversity, and source representation across all three sets. This 
methodology ensures that model evaluation reflects true 
generalization capability rather than dataset-specific artifacts. 

2) Machine learning algorithm selection: We employed 

five distinct machine learning classification algorithms to 

create our model; each selected for its specific strengths in 

handling complex textual data: 

a) Logistic regression: A method of statistical analysis 

of datasets in which an outcome is dependent on one or more 
independent variables. In our context, we use it to find the 
probability of a text being written by a human or not by using 

the extracted features. 

b) Support vector machine (SVM): It is one of the most 
powerful supervised machine learning algorithms for 
classification problems. In order to find the hyperplane that 
would best separate human-written [34] and AI-generated 
content, we have used an SVM model with a linear kernel, 

which is known to perform well in high-dimensional feature 

spaces of the kind seen in text classification tasks. 

c) Decision tree: Supervised learning that creates a 
binary tree to predict the outcome based on rules from the 

features of the data. A decision tree consists of each internal 
node, which is an attribute test, [35] and each edge represents 
the result of tests conducted on some chosen attributes 
(corresponding to a single class label). Decision trees facilitate 
a transparent decision-making process, which helps us identify 

the most discriminative feature. 

d) Boosting methods: We implemented three boosting 

techniques: 

e) AdaBoost classifier: An ensemble learning technique 
that enhances the performance of binary classification. 
AdaBoost works by focusing on more challenging data points 
previously classified incorrectly, allowing the weak learner to 
correct its errors gradually. The output of various learning 
algorithms (weak learners) is combined to generate a weighted 

sum: 

h(x) = sign(∑αih(xi))   (4) 

f) Gradient boosting: A learning algorithm that forms 
and corrects weak learners in series to handle challenging 

datasets. This approach uses multiple weak prediction models 

to create a powerful and effective predictive model. 

g) Bagging classifier: This technique enhances model 
accuracy and offers stability by "boosting" multiple copies of 
a predictor trained on different parts of the dataset, then 
combining them (through voting for classification or 

averaging for regression) to get one ultimate prediction [36]. 

Each algorithm was trained on the same feature set, 
allowing us to compare their performance and identify their 
respective strengths in distinguishing between human and AI-
generated text. 

3) Ensemble model selection and architecture: To develop 

an optimal ensemble framework, we systematically evaluated 

all six trained classifiers using 5-fold cross-validation. We 

applied selection criteria based on: (1) accuracy ≥ 95%, 

(2) balanced F1-score performance, (3) low prediction 

correlation (< 0.7), and (4) computational efficiency. This 

methodology ensured selected models contribute 

complementary predictive capabilities while maintaining high 

individual performance standards. 

Three classifiers qualified for ensemble integration: 
Logistic Regression (96.3% accuracy), Support Vector 
Machine (97.4% accuracy), and Gradient Boosting (96.6% 
accuracy). Pairwise correlation analysis revealed sufficient 
diversity with correlation coefficients of 0.62 (LR-SVM), 0.58 
(LR-GB), and 0.64 (SVM-GB). Decision Tree and AdaBoost 
were excluded due to lower performance (<93%), while 
Bagging Classifier showed excessive correlation (0.73) with 
Gradient Boosting, creating ensemble redundancy.  Our 
ensemble architecture employs majority averaging, where 
predictions from the three selected models are combined using 
equal weighting: 

Y_ensemble = round (average (Y_LR, Y_SVM, Y_GB))   (5) 

This approach leverages the linear boundaries of logistic 
regression, the margin optimization of SVM, and the 
sequential error correction of gradient boosting, thereby 
creating complementary decision-making capabilities while 
maintaining computational simplicity.  The selected ensemble 
configuration achieved 97.2% accuracy during validation, 
outperforming individual classifiers with improved stability 
across different text types. The combination effectively 
handles complex feature spaces in AI-generated text detection 
while maintaining computational efficiency suitable for 
practical deployment. 

Fig. 2 illustrates the overall architecture of our ensemble 
model. In this framework, (𝑌1, 𝑌2, 𝑌3) obtained from each 
base model are combined using a majority averaging 
approach. Each classifier receives the same input X and 
outputs a prediction as Y. For the ensemble model, predictions 
from each model (which are in numerical form) are averaged 
and rounded to the nearest integer to determine the final 
classification: 

𝑌𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = 𝑟(𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑌1, 𝑌2, 𝑌3))   (6) 
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Fig. 2. Ensemble model architecture with majority averaging. 

IV. RESULTS AND DISCUSSION 

In this section, we present a detailed analysis of our 
experimental findings, and we present a detailed discussion on 
the performance of different machine learning algorithms in 
the cases of distinguishing between human-authored and AI-
generated text. We then present our experimental environment 
and evaluation metrics and detail classification results. Next, 
we discuss these findings in relation to existing research, then 
examine the implications of these findings for detecting AI-
generated text. Finally, we explore various applications across 
different domains. 

A. Experimental Setup and Implementation Details 

For our experiments, we used Google Colaboratory 
(Colab), a cloud-based platform that offers a well-equipped, 
error-free environment for executing machine learning 
solutions. The reasons for choosing such a platform are its 
ability to leverage powerful computational resources, 
particularly Graphics Processing Units (GPUs), without 
requiring dedicated hardware configurations. This choice is 
suitable for implementing a scalable solution that can be 
applied to various computational environments.  Our 
implementation utilized several key software libraries and 
dependencies: NumPy for numerical computing and efficient 
array operations, Pandas for data manipulation and 
preprocessing of textual datasets, Scikit-learn (sklearn) for 
implementing machine learning algorithms and evaluation 
metrics, TextBlob for text processing and sentiment analysis, 
Matplotlib and Seaborn for creating visualizations of model 
performance, NLTK for natural language processing and 
tokenization, and lexical-diversity for computing MTLD 
scores and lexical richness metrics. All code was executed in 
Colab's cloud environment, ensuring experimental 
reproducibility and enabling efficient hyperparameter 
optimization. The implementation was designed with a 
modular architecture, allowing different classification 
algorithms to be easily compared within the experimental 
framework while maintaining consistent preprocessing and 
evaluation protocols. 

B. Evaluation Metrics and Performance Assessment 

To fully evaluate the performance of our proposed scheme, 
we employed five complementary evaluation metrics that 
provide different insights into the classification performance 
from various perspectives. In particular, these metrics are 
critical since our dataset is balanced, meaning human-authored 
and AI-generated texts are equally represented. 

1) Metrics definition and interpretation accuracy: 

Represents the proportion of correctly classified instances 

across both classes. It is calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
𝑇𝑃+𝑇𝑁

/𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (7) 

Where TP (True Positives) are correctly identified human-
written texts, TN (True Negatives) are correctly identified AI-
generated texts, FP (False Positives) are AI-generated texts 
incorrectly classified as human-written, and FN (False 
Negatives) are human-written texts incorrectly classified as 
AI-generated. 

Precision measures the proportion of correctly identified 
human-written texts among all texts classified as human-
written: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (8) 

where TP (True Positives) are correctly identified human-
written texts, TN (True Negatives) are correctly identified AI-
generated texts, FP (False Positives) are AI-generated texts 
incorrectly classified as human-written, and FN (False 
Negatives) are human-written texts incorrectly classified as 
AI-generated. High precision indicates low false favorable 
rates, meaning the model rarely misclassifies AI-generated 
text as human-written. 

Recall (also known as sensitivity) calculates the proportion 
of human-written texts that were correctly identified: 

𝑅𝑒𝑐𝑎𝑙𝑙 
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (9) 

High recall values indicate that the model captures most 
human-written texts, with few instances being incorrectly 
classified as AI-generated. 

F1-Score represents the harmonic meaning of precision 
and recall, providing a balanced measure that is particularly 
useful when class distribution is uneven: 

F1-score = 2 ⋅
 Precision ⋅ Recall 

 Precision + Recall 
              (10) 

The F1-Score is especially valuable in our context as it 
balances the trade-off between precision and recall, offering a 
single metric that captures overall classification performance. 

Matthews Correlation Coefficient (MCC) is considered 
one of the most comprehensive binary classification metrics, 
as it incorporates all four confusion matrix elements: 

MCC =
TP⋅TN−FP⋅FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
   (11) 

The MCC produces values between -1 and +1, where +1 
represents perfect prediction, 0 indicates random prediction, 
and -1 signifies complete disagreement between predictions 
and actual values. This metric is particularly valuable for 
assessing model reliability across different text types and 
lengths. 

2) Performance analysis of individual classifiers: We 

tested six different machine learning classifiers and considered 

benchmarked Multi-Layer Perceptron (MLP) models with 
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different hyperparameters. Fig. 3 illustrates the variation in 

performance metrics across all models, providing valuable 

insights into the effectiveness of each model in analyzing AI-

generated content. 

a) Detailed performance comparison: To 
comprehensively evaluate our proposed methodology, we 
conducted extensive performance analysis across all 
implemented classification models. This evaluation 
encompasses accuracy, precision, recall, F1-score, and 

Matthews Correlation Coefficient (MCC) metrics to provide a 

holistic assessment of model effectiveness. 

Table II compares our proposed ensemble and individual 
models against baseline Multi-Layer Perceptron (MLP) 
implementations with various hyperparameter configurations. 
The experimental results reveal significant performance 
improvements across all proposed models compared to their 
MLP counterparts, particularly in distinguishing ChatGPT-
generated content from human writing [37]. Most notably, our 
ensemble model achieved superior performance with 97.2% 
accuracy, 97.5% precision, 96.4% recall, and 97.3% F1-score, 
demonstrating the effectiveness of our multi-classifier 
integration approach. Individual classifiers also showed 
substantial improvements, with SVM achieving the highest 
accuracy (97.4%) among single models, followed by Gradient 
Boosting (96.6%) and Logistic Regression (96.3%). 

Fig. 3 provides a visual representation of performance 
metrics across all models, highlighting the consistency of our 
approach. The visualization reveals that accuracy values for 
our proposed models consistently hover around 0.94 or higher, 
indicating strong and reliable classification performance. 
Precision and recall values show notable improvements 
compared to baseline methods, particularly in Gradient 
Boosting and SVM models, which demonstrate exceptional 
balance between these complementary metrics. 

b) Statistical significance validation: To establish the 
statistical validity of our performance improvements, we 
conducted rigorous statistical testing using appropriate 
methods for binary classification comparisons. All statistical 
tests employed an α = 0.05 significance level with Bonferroni 
correction for multiple comparisons, while bootstrap 

confidence intervals were calculated using 1000 bootstrap 
samples from the test dataset. Pairwise Model Comparisons: 
McNemar's test results confirmed statistically significant 
superiority of our ensemble approach over all comparison 

methods. Key comparisons include Ensemble vs. SVM (χ² = 
23.7, p < 0.001), Ensemble vs. Gradient Boosting (χ² = 31.2, p 
< 0.001), Ensemble vs. best MLP baseline (χ² = 312.4, p < 
0.001), and Ensemble vs. transformer models (χ² range: 45.2-
89.6, all p < 0.001). Effect size analysis using Cohen's d 

revealed considerable practical significance for all 
comparisons (d > 1.3), indicating substantial rather than 
marginal improvements.  The comprehensive statistical 
significance analysis with confidence intervals is summarized 

in Table III. 

• Model calibration assessment: Kolmogorov-Smirnov 
tests on prediction confidence scores confirmed well-
calibrated probability outputs for our Ensemble (D = 
0.034, p = 0.847), indicating reliable confidence 
estimates. Individual classifiers showed varying 
calibration quality, with some exhibiting 
overconfidence tendencies (p < 0.05). This statistical 
validation demonstrates that our ensemble 
improvements represent genuine methodological 
advances with high practical significance, making them 
suitable for deployment in critical applications that 
require reliable AI content detection. 

• Table II describes performance confidence intervals: 
Bootstrap analysis (95% CI) for our ensemble model 
yielded: Accuracy 97.2% (96.4-97.9%), Precision 
97.5% (96.8-98.1%), Recall 96.4% (95.6-97.2%), and 
F1-score 97.3% (96.6-97.9%). Confidence intervals for 
baseline methods showed non-overlapping ranges with 
our Ensemble, confirming the statistical significance of 
improvements. Cross-validation stability analysis 
revealed low performance variance (σ² = 0.0021 for 
accuracy indicating robust and reliable model behavior 
across different data subsets. 

c) Comparative analysis of state-of-the-art methods: To 
establish the competitiveness of our ensemble approach, we 
conducted comprehensive comparisons with state-of-the-art 
AI detection methods, including transformer-based models, 
commercial detection tools, and recent academic approaches. 
All comparison methods were evaluated on our test dataset 

using identical evaluation metrics and hardware configurations 
to ensure fair comparison. Transformer-based models were 
fine-tuned on our training data using recommended 
hyperparameters, while commercial tools were accessed via 

their public APIs with default settings. 

TABLE II COMPREHENSIVE PERFORMANCE COMPARISON OF CLASSIFICATION MODELS 

Variable 
Accuracy Precision Recall F1_SCORE MCC 

Proposed MLP proposed MLP Proposed MLP Proposed MLP proposed MLP 

Logistic Regression 0.963 0.74 0.962 0.73 0.962 0.73 0.962 0.73 0.925 0.48 

SVM 0.974 0.63 0.965 0.75 0.968 0.79 0.973 0.67 0.947 0.29 

Decision Tree 0.914 0.63 0.910 0.75 0.910 0.79 0.910 0.67 0.820 0.29 

AdaBoost 0.923 0.71 0.920 0.68 0.920 0.74 0.920 0.71 0.841 0.43 

Bagging Classifier 0.961 0.74 0.965 0.71 0.965 0.75 0.965 0.73 0.930 0.47 

Gradient Boosting 0.966 0.71 0.965 0.66 0.965 0.78 0.965 0.72 0.931 0.42 

Ensemble 0.972 0.975 0.964 0.973 0.94 
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Fig. 3. Performance comparison across all classification models. 

TABLE III STATISTICAL SIGNIFICANCE SUMMARY DESCRIBING PERFORMANCE CONFIDENCE INTERVALS 

Comparison McNemar's χ² p-value Cohen's d 95% CI Difference 

Ensemble vs. SVM 23.7 <0.001 1.67 [1.2%, 3.4%] 

Ensemble vs. Gradient Boost 31.2 <0.001 1.89 [1.8%, 4.1%] 

Ensemble vs. BERT 67.8 <0.001 1.45 [1.9%, 3.2%] 

Ensemble vs. RoBERTa  45.2 <0.001 1.34 [1.5%,  2.8%] 

Ensemble vs. GPTZero 156.3 <0.001 2.34 [6.8%, 8.9%] 

Table I presents a comprehensive comparison of our 
ensemble approach with state-of-the-art methods. Our 
evaluation included three transformer-based approaches: fine-
tuned BERT-base-uncased (110M parameters), achieving 
94.7% accuracy; RoBERTa-base (125M parameters), reaching 
95.3% accuracy; and GPT-2 detector (124M parameters), 
attaining 93.8% accuracy.  Commercial tools evaluation 
revealed: GPTZero achieved 89.4% accuracy with high false 
favorable rates (14.2%), Turnitin AI Writing Detection 
reached 91.7% accuracy but struggled with shorter texts, and 
WritefullGPT Detector attained 88.9% accuracy with 
inconsistent performance across domains. A recent 
comparison of academic methods showed that DetectGPT 
(2023) achieved 92.1% accuracy, while OpenAI's official 
classifier reached 90.3% accuracy before its discontinuation. 
Performance analysis demonstrates our ensemble approach 
(97.2% accuracy, 97.3% F1-score) significantly outperforms 
all baseline methods with statistical significance (p < 0.001, 
McNemar's test). Computational efficiency analysis revealed 
that our Ensemble requires an average inference time of 23ms, 
compared to transformer-based approaches averaging 187ms, 
representing an 87% reduction in processing time while 
maintaining superior accuracy. The ensemble approach also 
demonstrates better stability across text domains with a 
standard deviation of 1.8% compared to transformer models, 
averaging 4.2% variation. 

Cross-domain robustness evaluation on three additional 
test sets (academic papers, social media posts, and technical 
documentation) confirmed that our Ensemble maintains 

consistent performance (with an average accuracy of 95.4%), 
including the effective detection of AI-generated creative and 
poetic content [38]. At the same time, baseline methods show 
degraded performance (transformer models: 88.7%, 
commercial tools: 82.3%). This comprehensive comparison 
establishes our ensemble methodology as a superior 
alternative for practical AI text detection applications, 
addressing the challenges identified in recent plagiarism and 
AI detection research [39]. It combines high accuracy with 
computational efficiency and cross-domain generalization. 

d) Ensemble model performance: The most significant 
finding from our experiments is the superior performance of 
the ensemble model, which combines Logistic Regression, 
SVM, and Gradient Boosting classifiers. This ensemble 

approach achieved an accuracy of 97.2%, a precision of 
97.5%, a recall of 96.4%, an F1-score of 97.3%, and an MCC 
of 0.94, outperforming all individual classifiers across most 
metrics. The ensemble model's balanced performance across 
all evaluation metrics demonstrates its robustness in 
distinguishing between human and AI-generated text. 

Particularly noteworthy is the high Matthews Correlation 
Coefficient (0.94), which indicates exceptional reliability in 
binary classification performance across various text types and 

conditions. 

e) Error analysis and model: To understand the 
boundaries and failure modes of our ensemble approach, we 
conducted a comprehensive error analysis on misclassified 
samples from the test dataset. Our ensemble model 
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misclassified 112 out of 4,000 test samples (2.8% error rate), 
providing valuable insights into challenging scenarios and 

model limitations for future improvements. 

• Error Pattern Analysis: False negatives (72 cases, 3.6%) 
occurred primarily with sophisticated AI-generated 
academic texts containing deliberate stylistic variations, 
technical jargon, and complex argumentation structures 
that closely mimic human scholarly writing. These 
samples exhibited atypical characteristics, including 
increased lexical diversity (MTLD scores 15% higher 
than typical AI content), strategic grammatical 
imperfections, and domain-specific terminology usage. 
False positives (40 cases, 2.0%) involved human-
authored texts with highly structured, formal writing 
styles, minimal figurative language, and technical 
precision resembling AI-generated patterns. 

• Content-Specific Error Distribution: Academic papers 
showed the highest misclassification rates (4.2% error) 
due to formal structure convergence between human 
and AI writing in scholarly contexts. Conversational 
texts achieved the lowest error rates (1.8%) due to more 
apparent stylistic distinctions, while news articles 
demonstrated intermediate performance (2.9%) with 
errors concentrated in highly edited, wire service 
content. Text length analysis revealed increased errors 
in shorter samples (<100 words, 5.1% error rate), where 
insufficient linguistic evidence limited discriminative 
feature extraction. 

• Challenging Sample Characteristics:  Misclassified 
samples shared common characteristics: (1) Hybrid 
content - human-edited AI text or AI-assisted human 
writing creating ambiguous authorship boundaries, (2) 
Domain expertise - highly technical content where both 
humans and AI demonstrate similar formal precision, 
(3) Stylistic convergence- professional editing reducing 
natural human variation toward AI-like consistency, 
and (4) Evolving AI capabilities- recent advanced 
models producing increasingly human-like outputs 
challenging traditional discriminative features. These 
patterns inform targeted model improvements, 
including enhanced feature engineering for formal text 
types, domain-specific adaptation strategies, and hybrid 
content detection capabilities. 

TABLE IV CONFUSION MATRIX ANALYSIS PRESENTS DETAILED 

CONFUSION MATRIX RESULTS FOR OUR ENSEMBLE MODEL, ENABLING 

PRECISE ERROR PATTERN IDENTIFICATION AND PERFORMANCE ASSESSMENT 

ACROSS BOTH CLASSIFICATION CATEGORIES 

Comparison 
Predicted 

Human 
Predicted AI Total Precision 

Actual Human 1,928(96.4%) 72 (3.6%) 2000 96.4% 

Actual AI Boost 40 (2.0%) 1,96 (98.0%) 2000 98% 

Total 1,968 2,032 4000  

Recall 97.9% 96.5%  97.2% 

3) Comprehensive linguistic analysis of human and AI 

texts: To understand the linguistic foundations underlying our 

model's high classification accuracy, we conducted a 

comprehensive analysis across multiple dimensions, 

distinguishing human-authored from AI-generated content. 

This analysis revealed systematic differences in lexical 

diversity, syntactic complexity, discourse patterns, and 

stylistic markers, which enable the reliable automated 

detection of these characteristics. 

a) Lexical and syntactic characteristics: Our analysis 
revealed significant differences in vocabulary usage and 
sentence construction patterns between human and AI-

generated texts. Our analysis revealed significant differences 
in vocabulary usage and sentence construction patterns 
between human and AI-generated texts. The detailed 

breakdown of these linguistic metrics is presented in Table  IV.  

b) Key discriminative patterns: Analysis revealed nine 
primary features distinguishing humans from AI authorship, 

ranked by discriminative power: 

• Lexical Diversity: Human texts exhibit 24% higher 
type-token ratios and 32% higher MTLD scores, 
indicating greater vocabulary variation versus AI's 
repetitive patterns. 

• Figurative Language: Human writers use 100% more 
idioms and 53% more metaphors, demonstrating 
superior mastery of culturally embedded expressions. 

• Error Patterns: Human texts contain significantly more 
grammatical (300% higher) and spelling errors (375% 
higher), while AI content shows mechanical accuracy. 

• Sentence Variation: Humans demonstrate 34% greater 
sentence length variability and 23% deeper syntactic 
structures, creating more natural textual rhythm. 

• Discourse Markers: AI uses 31% more explicit 
connectives ("however," "therefore"), creating 
artificially structured discourse. 

Additional distinguishing features include strategic passive 
voice usage (humans: 12% vs. AI: 18%), emotional expression 
patterns (humans show broader sentiment range: μ = 0.127 ± 
0.284 vs. AI: μ = 0.089 ± 0.201), semantic coherence 
(humans: 0.68 vs. AI: 0.82, indicating AI's mechanical topic 
adherence), and conceptual complexity (humans show higher 
idea complexity: 0.58 vs. AI: 0.52, with greater knowledge 
domain diversity: 0.63 vs. 0.48). 

c) Classification implications: These linguistic 
differences provide the foundation for our ensemble model's 
97.2% accuracy. The systematic patterns - reduced lexical 

diversity, increased structural rigidity, mechanical error 
reduction, and formulaic discourse markers in AI content 
versus human creativity, variability, and natural imperfection - 
enable reliable automated detection. Cross-validation 
confirmed that these features maintain discriminative power 
across different text types and lengths, supporting the practical 
deployment of real-world content verification applications. 

Statistical validation using Chi-square tests confirmed all 
observed differences achieved significance (p < 0.001), while 
effect size analysis revealed considerable practical 
significance (Cohen's d > 0.8) for primary discriminative 
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features. A comprehensive linguistic analysis establishes the 
theoretical foundation underlying the effectiveness of our 

detection methodology. 

V. DISCUSSION AND IMPLICATIONS 

Our experimental results demonstrate significant advances 
in AI-generated content detection through ensemble learning 
methodologies. This section synthesizes the key findings, 
practical implications, and future research directions that 
emerged from our comprehensive evaluation (Tables V and 
VI). 

1) Key findings and contributions: Our ensemble 

approach achieved 97.2% accuracy, significantly 

outperforming individual classifiers and state-of-the-art 

methods, including transformer-based models (BERT: 94.7%, 

RoBERTa: 95.3%) and commercial tools (GPTZero: 89.4%, 

Turnitin: 91.7%). Statistical analysis using McNemar's tests 

confirmed significance (p < 0.001) with large effect sizes 

(Cohen's d > 1.3), establishing genuine methodological 

advances rather than random variations. The computational 

efficiency advantage (23ms vs. 187ms for transformer models) 

demonstrates practical viability for real-world deployment. 

The superiority of ensemble modeling validates the 
integration of multiple classifiers with diverse features   
compared to individual algorithms. Our linguistic analysis 
revealed systematic differences between human and AI 
content: humans exhibit 24% higher lexical diversity, 100% 
more figurative language usage, and greater syntactic 
variability, while AI content shows mechanical accuracy, 
formulaic discourse patterns, and reduced creativity.  These 
findings align with recent research [40] emphasizing the 
importance of multi-modal approaches in complex text 
classification tasks. 

TABLE V COMPREHENSIVE PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS 

Method Accuracy Precision Recall F1score Inference 

OurEnsemble 97.2% 97.5% 96.4% 97.3% 23 

BERT-base(fine-tuned) 94.7% 94.2% 95.1% 94.6% 182 

RoBERTa-base(fine-tuned) 95.3% 95.7% 95.2% 95.3% 195 

GPT-2 Detector 93.8% 92.9% 91.7% 93.0% 174 

GPTZero(Commercial) 89.4% 85.8% 91.2% 88.9% 145 

Turnitin AIDetection 91.7% 93.1% 90.2% 91.6% 210 

DetectGPT(Academic) 92.1% 92.4% 92.1% 92.1% 167 

OpenAI Classifier 90.3% 89.7% 91.0% 90.3% 156 

TABLE VI COMPREHENSIVE LINGUISTIC ANALYSIS OF HUMAN VS. AI CONTENT 

Linguistic Dimension Human Content AI Content Difference Significance 

Lexical Features 

Type-Token Ratio .72 .58 +24% p <.001 

MTLD Index 89.3 67.5 +32% p <.001 

Average Word Length 4.8 ± 2.7 5.2 ± 1.9 -8% p <.001 

Syntactic Features 

Avg. Sentence Length 17.3 19.8 -14% p <.001 

Parse Tree Depth 7.9 6.4 +23% p <.001 

Complex Sentence Ratio 38% 45% -18% p < .001 

Passive Voice Usage 12% 18% -50% p < .001 

Discourse Features 

Connective Density 5.2% 6.8% -31% p < .001 

Lexical Repetition 15.6% 19.3% -24% p < .001 

Topical Coherence .68 .82 -21% p < .001 

Stylistic Features 

Idioms per 1000 words 3.8 1.9 +100% p < .001 

Metaphors per 1000 words 5.2 3.4 +53% p < .001 

Cultural References 2.7 1.2 +125% p < .001 

Error Patterns 

Grammar Errors/1000 2.8 .7 +300% p < .001 

Spelling Errors/1000 1.9 .4 +375% p < .001 

Logical Inconsistencies 1.2 .9 +33% p = .043 
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2) Practical applications and impact: The framework's 

balanced performance (97.5% precision, 96.4% recall) makes 

it suitable for critical applications requiring both accuracy and 

comprehensive coverage. Educational institutions can leverage 

our system to maintain academic integrity with minimal false 

accusations while capturing most AI-generated submissions. 

News organizations benefit from rapid content authentication 

(23ms inference time) for verifying article authenticity and 

preventing misinformation spread. Cybersecurity applications 

can integrate our models for identifying automated bot-

generated content in social engineering attacks, while digital 

platforms can maintain content authenticity through real-time 

verification systems. 

Cross-domain robustness evaluation confirmed consistent 
performance across academic papers, social media posts, and 
technical documentation (95.4% average accuracy), while 
baseline methods showed significant degradation (transformer 
models: 88.7%, commercial tools: 82.3%). This generalization 
capability addresses critical limitations in existing detection 
systems that struggle with diverse content types. 

3) Future research directions: Several promising avenues 

emerge from our findings: (1) Real-time optimization through 

model compression and efficient feature extraction for 

immediate content verification, (2) Multilingual extension 

adapting our ensemble framework across different linguistic 

structures and cultural contexts, (3) Hybrid deep learning 

integration combining transformer architectures with 

traditional machine learning ensembles for enhanced 

performance, potentially incorporating insights from graph 

neural network architectures [41] and ensemble methods 

proven effective in related domains [42][43], (4) Adversarial 

robustness investigating model resilience against evasion 

attacks and developing defense mechanisms, and (5) Ethical 

frameworks addressing privacy implications, bias mitigation, 

and transparent disclosure standards for AI-generated content. 

The rapid evolution of AI generation capabilities 
necessitates continuous adaptation of detection methodologies. 
Our ensemble framework provides a robust foundation for 
these developments, offering both methodological insights and 
empirical benchmarks for advancing AI-generated text 
detection systems. Future work should focus on maintaining 
detection effectiveness while preserving computational 
efficiency and ensuring the ethical deployment of these 
systems across diverse applications. 

VI. CONCLUSION 

This work showcases the application of machine learning 
and natural language processing skills in the human-AI text 
identification dialectic. Despite the many gaps and 
shortcomings in the literature that are pointed out in the 
features of language and models in ensemble learning, the 
collective classification performed better. Also, the 
performance of the Gradient Boosting ensemble surpasses that 
of the Bagging ensemble, which is another argument in favor 
of advanced machine learning methods for text categorization. 

We highlight the features of authorship of the text, which 
show the authorship of the AI or a person, such as lexical 
richness, the use of similar phrases, error types and frequency, 
and variation in the sentence structure. As contributions to the 
ethics of artificial intelligence and policy, digital forensic 
science, and moderating systems where the endorsement of 
content plays a significant role, these facts are noteworthy. 
This study proposes that future initiatives should expand the 
refinement of these classification techniques for various types 
of texts and other fields, thereby addressing the concern of the 
growing phenomenon of AI text generation. 
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