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Abstract—Plant diseases remain a major threat to crop
productivity, especially where timely diagnosis is difficult. This
paper introduces TomDetLeaf, a new annotated dataset designed
for tomato leaf detection in diverse agricultural environments,
supporting the development of generalizable deep learning models
for edge AI deployment. Unlike existing datasets such as PlantVil-
lage, which consist mainly of single-leaf images captured un-
der controlled conditions, TomDetLeaf integrates heterogeneous
sources including the Taiwan dataset, climate-controlled green-
houses, hydroponic systems and farm environments. The dataset
combines single-leaf and multi-leaf images, realistic backgrounds
and varying illumination, addressing a key gap that limits the
real-world robustness of current models. To demonstrate its
utility, we trained and evaluated YOLOv8 on both the original
Taiwan dataset and our proposed TomDetLeaf. Results show
that YOLOv8 trained on TomDetLeaf achieved 88.3% mAP@0.5,
81.8% precision, and 82.7% recall, exceeding the Taiwan-subset
baseline of 77.4% mAP@0.5, 81.6% precision, and 67.6% recall.
This validates the contribution of TomDetLeaf in improving
detection accuracy and generalization under realistic conditions.
By providing a diverse, deployment-ready dataset, this work
bridges the gap between theoretical benchmarks and practical
real-time applications.

Keywords—Tomato leaf detection; smart agriculture; dataset;
tomato leaf dataset; real-time inference; Edge AI; object detection

I. INTRODUCTION

Ensuring tomato crop health is vital for maintaining sus-
tainable agricultural production and global food security [1].
Tomato plants are highly susceptible to multiple foliar diseases
that cause severe yield losses and economic constraints for
farmers worldwide [2], [3]. Early and accurate detection of
diseased leaves is therefore critical for timely intervention and
disease management. Conventional detection methods, such as
expert visual inspections or laboratory analysis, are limited by
subjectivity, high costs and the lack of accessibility in rural or
resource-constrained regions [4].

In recent years, the combination of deep learning (DL)
and computer vision has shown promising results for plant
disease recognition. Convolutional neural networks (CNNs),
trained on large-scale datasets such as PlantVillage, have
achieved remarkable classification accuracy, often exceeding
99% [5]. However, these models typically rely on synthetic
or laboratory-controlled images with plain backgrounds and
uniform lighting, conditions that do not reflect the complexity
of real-world agricultural environments. As a result, models
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trained on such data may perform well in academic bench-
marks but fail to generalize when deployed in greenhouses,
hydroponic systems or open-field farms [6].

To address these limitations, there is a pressing need for
annotated datasets that capture the diversity of real-world
conditions, including single and multiple leaves per image,
heterogeneous backgrounds, variable lighting and naturally
occurring noise [7]. Without such datasets, AI systems risk
providing artificially inflated results during testing while un-
derperforming in practical deployment scenarios.

Despite the success of existing datasets such as PlantVil-
lage [8], their controlled acquisition conditions, uniform back-
grounds, isolated leaves and synthetic lighting often lead to
inflated accuracy that does not generalize to real-world deploy-
ment. Models trained on such data frequently fail when tested
in farms, greenhouses, or hydroponic environments where
multiple leaves overlap, backgrounds vary and environmental
noise is present [9]. This critical gap between laboratory
benchmarks and field performance motivates the development
of TomDetLeaf, a dataset explicitly designed to capture real-
world complexity and support the creation of robust detection
models for edge deployment [10].

This work introduces TomDetLeaf, a curated dataset de-
signed to bridge this gap by enabling robust tomato leaf
detection in diverse contexts. Unlike existing resources,
TomDetLeaf merges images from multiple sources, including
the Taiwan dataset, a climate-controlled greenhouse and hydro-
ponic environments and it is complemented with distractor im-
ages to enhance model generalization [11]. Each tomato leaf in
the dataset is annotated for detection tasks, providing a realistic
foundation for developing edge-ready models. To demonstrate
its effectiveness, we trained YOLOv8 on TomDetLeaf and
compared its performance with the same model trained on the
original Taiwan dataset [12]. Results show that TomDetLeaf
enables a substantial improvement in both mean Average Pre-
cision (mAP) and recall, while achieving stronger robustness
in real-world scenarios.

Beyond dataset development, this work sets the foundation
for an end-to-end pipeline combining detection and classifica-
tion. In future work, the detected tomato leaves will be cropped
and passed to a lightweight classification model capable of
distinguishing between healthy and multiple disease categories
in real time. The pipeline will be designed for integration into
autonomous platforms, such as agricultural robots or UAVs,
enabling continuous monitoring of crops directly in the field
[13], [14]. This vision positions TomDetLeaf not only as a
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dataset, but as a key enabler of embedded AI solutions for
smart agriculture.

The main contributions of this paper are summarized as
follows:

• Development of TomDetLeaf, a new annotated dataset
for tomato leaf detection, integrating images from
controlled and real-world environments with diverse
backgrounds, lighting and leaf arrangements.

• Cleaning and curation of existing data sources, includ-
ing the Taiwan dataset, by removing low-quality and
duplicate samples to enhance reliability.

• Incorporation of greenhouse, hydroponic and distrac-
tor images, ensuring robustness against non-ideal and
heterogeneous agricultural conditions.

• Comprehensive evaluation with YOLOv8, showing
significant performance improvements over baseline
datasets, confirming the dataset’s value for real-time
deployment in edge-based agricultural applications.

By filling the dataset gap and validating its utility through
rigorous experiments, TomDetLeaf lays the groundwork for re-
liable end-to-end systems where detection of tomato leaves can
serve as the first step toward subsequent disease classification
and full integration into autonomous agricultural platforms.

To situate the dataset within a complete decision workflow,
Fig. 4 presents the conceptual architecture of the intended
system. It comprises image acquisition, tomato-leaf detection
with YOLOv8, cropping of detected leaves, a lightweight
disease classification module and a final decision layer that
reports health status and disease type. The present study em-
pirically evaluates the detection component; the classification
component is outlined as future work.

II. PROPOSED DATASET: TOMDETLEAF

The TomDetLeaf dataset was designed to provide a realistic
and diverse benchmark for tomato leaf detection, with the
specific objective of improving the generalization of deep
learning models in real-world agricultural contexts. Unlike
existing datasets, which are often captured under controlled
laboratory conditions with plain backgrounds, TomDetLeaf
integrates heterogeneous sources and environmental conditions
[15], [16]. This deliberate design ensures that the dataset
reflects the variability of actual agricultural fields, where light-
ing, leaf density and background noise are far less predictable.
The construction process follows a structured pipeline that
includes data selection, cleaning, integration of new sources,
annotation and the addition of distractor images [17].

A. Taiwan Subset and Cleaning

The first source of TomDetLeaf is the publicly available
Taiwan tomato dataset [18], which contains both single-leaf
and multi-leaf images. From this dataset, only a relevant
subset was retained. The raw images were manually cleaned
to remove duplicates, low-quality samples and blurred images
that could negatively affect model learning. This cleaning
process ensured that the retained data maintained reliability
and quality [19]. The Taiwan subset serves as the foundation of
TomDetLeaf, contributing a balanced mixture of isolated and
overlapping tomato leaves under varying capture conditions.

B. Greenhouse Captures

To complement the Taiwan subset, we collected new high-
resolution images from a climate-controlled greenhouse. These
images introduce diversity in terms of background textures,
controlled yet variable lighting and different plant growth
stages. Including greenhouse data ensures that the dataset
better reflects the conditions of commercial tomato cultivation
systems, where disease detection systems are increasingly
deployed. The controlled acquisition process in this environ-
ment also provided consistent labeling opportunities, while
maintaining realistic challenges such as shadows, leaf overlap
and reflections [20].

C. Hydroponic Captures

Another significant contribution to TomDetLeaf comes
from hydroponic environments, where tomato plants are grown
in nutrient solutions without soil. The images captured in this
context differ substantially from those in both controlled green-
house and field scenarios. Hydroponic systems often include
artificial lighting, reflective surfaces and pipes or structural
elements in the background, which add to the complexity of the
detection task [20]. Incorporating these samples enhances the
dataset’s heterogeneity and improves the likelihood that trained
models will generalize to a broad spectrum of agricultural
settings [21].

D. Distractor Images

In addition to tomato-specific samples, TomDetLeaf in-
cludes a curated set of distractor images consisting of non-
tomato leaves, stems and other irrelevant agricultural objects.
These negative examples are essential to reduce model bias
and prevent false positives during deployment. In real-world
conditions, object detection systems are frequently exposed to
cluttered backgrounds containing various types of vegetation
and objects unrelated to tomato crops. By incorporating dis-
tractor images into the training process, TomDetLeaf strength-
ens the ability of models to distinguish tomato leaves from
irrelevant elements, thereby improving robustness in practical
applications.

E. Annotation Process

All images were consistently annotated using the Roboflow
platform. Bounding boxes were applied to each tomato leaf
with a single unified label, Tomato-leaf. The decision to anno-
tate only one class simplifies the dataset for the detection stage,
which we consider the foundation of an end-to-end pipeline.
This modular approach allows subsequent classification models
to focus exclusively on cropped leaf regions, where disease
type or health status can later be determined. The consistency
of annotations across heterogeneous sources ensures clarity
and usability for researchers and developers aiming to deploy
detection systems on embedded devices.

F. Dataset Overview

Fig. 1 presents the complete construction pipeline of
TomDetLeaf, while Fig. 2 shows representative examples of
images drawn from both the Taiwan dataset and the pro-
posed TomDetLeaf dataset. The latter clearly demonstrates its
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Fig. 1. Construction pipeline of the proposed TomDetLeaf dataset. The dataset integrates cleaned subsets of the Taiwan dataset with new captures from
climate-controlled greenhouses and hydroponic systems, complemented by distractor images and consistently annotated for tomato leaf detection.

enhanced variability, combining single and multiple leaves,
natural and artificial backgrounds and diverse environmental
conditions. This heterogeneity makes TomDetLeaf a unique
and valuable resource for training and evaluating models
intended for TinyML and Edge AI deployments in agriculture
[22], [23].

G. Dataset Statistics

Table I summarizes the composition of TomDetLeaf after
cleaning. Counts reflect the final pool used prior to splitting.

The present study addresses leaf detection only, i.e. all
leaves share a single Tomato-leaf class. The healthy/diseased

TABLE I. TOMDETLEAF COMPOSITION BY SOURCE AFTER CLEANING.
H: HEALTHY, D: DISEASED

Source Images H D

Taiwan subset (cleaned) 417 63 354

Greenhouse captures 182 78 104

Hydroponic captures 127 74 53

Distractor scenes (negatives) 34 – –

Total 760 215 511

counts in Table I were not used during training or evaluation;
they are reported to show coverage across environments and
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to motivate the forthcoming classification release.

To indicate scene complexity at a glance, TomDetLeaf
(non-augmented) comprises approximately one third single-
leaf images and two thirds multi-leaf images (see Table II).

TABLE II. SINGLE- VS. MULTI-LEAF COMPOSITION OF TOMDETLEAF
(NON-AUGMENTED)

Scene type Share Images (of 760)

Single-leaf ≈33% ≈250

Multi-leaf ≈67% ≈510

(a) Samples from the Taiwan dataset

(b) Samples from the proposed TomDetLeaf dataset

Fig. 2. Examples of tomato leaf images: (a) Samples from the Taiwan
dataset, (b) Samples from the proposed TomDetLeaf dataset. The
TomDetLeaf dataset integrates single and multiple leaves, diverse

backgrounds and images from real-world environments such as farms,
climate-controlled greenhouses and hydroponics.

PlantVillage (tomato subset) [8] is a large classification
corpus of single-leaf images captured on largely uniform
backgrounds with image-level labels only (no bounding boxes).
By design it is not detection-ready and would require re-
annotation to train a detector. In contrast, TomDetLeaf pro-
vides bounding boxes for a single Tomato-leaf class, mixes
single- and multi-leaf scenes (approximately one third vs. two
thirds), and includes complex, real-world backgrounds across
greenhouse and hydroponic settings. Consequently, direct mAP
comparison to PlantVillage is not meaningful; it serves instead
as a scale reference for classification. Key differences are
summarized in Table III.

III. EXPERIMENTAL SETUP

To evaluate the effectiveness of the proposed TomDetLeaf
dataset, we conducted experiments using YOLOv8, a state-of-

TABLE III. TOMDETLEAF VS. PLANTVILLAGE (TOMATO SUBSET)

Aspect TomDetLeaf PlantVillage–Tomato

Primary task Detection Classification

Annotation Boxes (1 class) Image labels

Leaf multiplicity Single+Multi (≈1/3:≈2/3) Single only

Backgrounds Complex, real-world Plain, uniform

Environments Greenhouse, hydroponic, farm Controlled

Images (raw) 760 18,164

Detection-ready Yes No (re-annotation)

the-art object detection model widely adopted for lightweight
and real-time applications. YOLOv8 was selected due to
its balance between accuracy and computational efficiency,
making it suitable for assessing detection performance in
agricultural edge scenarios. The implementation was based on
the Ultralytics YOLOv8 framework with PyTorch backend.

A. Datasets for Comparison

Two datasets were considered in this study:

1) Taiwan dataset: A publicly available dataset of tomato
plants [18], annotated to include a single bounding-box class
labeled Tomato-leaf. Only the relevant subset was retained,
with noisy, poor-quality and duplicate images removed.

2) TomDetLeaf dataset (Proposed): A newly curated
dataset combining selected and cleaned images from the Tai-
wan dataset with additional images collected from climate-
controlled greenhouses and hydroponic environments. The
dataset captures a wider variety of conditions, including single-
leaf and multi-leaf settings, diverse backgrounds and real-
world environmental variability. All images were annotated
with a single class Tomato-leaf.

For both datasets the detector is health-agnostic (single
Tomato-leaf class); the healthy/diseased composition in Table I
does not alter the training labels used here.

B. Training Setup

Both datasets were trained under identical conditions to
ensure a fair comparison. Images were resized to 225×225 and
the data were split 70%/20%/10% into training, validation,
and test sets (532/152/76 images, respectively). Training ran
for 100 epochs with a batch size of 64, using the Adam
optimizer (initial learning rate 0.001). Data augmentation was
applied to the training split only (random horizontal flip, mild
geometric transforms and photometric jitter) and performed
online at load time, yielding an effective 3× increase in
training samples per epoch; this corresponds to 1,596 effective
training images and an overall effective dataset size of 1,824
when counting augmented samples, while validation and test
sets remained unchanged.

C. Evaluation Metrics

The performance of the object detection models was
evaluated using three standard metrics: Precision, Recall and
mean Average Precision (mAP) [24], [25]. These metrics are
widely adopted in computer vision benchmarks and provide
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complementary insights into model reliability and robustness
in real-world scenarios.

Precision measures the ability of the model to correctly
identify tomato leaves among all predicted bounding boxes. It
is defined as:

Precision =
TP

TP + FP
(1)

where, TP denotes true positives (correct detections) and
FP false positives (incorrect detections). A higher precision
indicates that fewer non-leaf objects are misclassified as leaves.

Recall quantifies the proportion of correctly detected
tomato leaves among all ground-truth annotations:

Recall =
TP

TP + FN
(2)

where, FN represents false negatives (missed detections).
High recall is particularly critical in agricultural monitoring
since missing diseased leaves may prevent timely intervention.

Mean Average Precision (mAP) provides a holistic measure
that balances precision and recall. It is based on the area
under the Precision–Recall (PR) curve. For a single class, the
Average Precision (AP) is computed as:

AP =

∫ 1

0

P (R),dR (3)

where, P (R) is the precision as a function of recall.
For multi-class tasks, the mean of AP across all classes
yields the mAP. In practice, different intersection-over-union
(IoU) thresholds are applied to determine whether a predicted
bounding box matches a ground-truth object.

mAP@50 corresponds to AP calculated at a fixed IoU
threshold of 0.5, following the Pascal VOC standard. It is
relatively lenient, considering a detection correct if the overlap
with ground truth is at least 50%.

mAP@90 applies a stricter threshold of 0.9, requir-
ing near-perfect overlap between predicted and ground-truth
bounding boxes.

mAP@[.5 : .95], the COCO standard, averages AP over
IoU thresholds ranging from 0.5 to 0.95 in increments of 0.05.
This provides a more comprehensive assessment of detection
quality across varying levels of localization.

By reporting precision, recall and mAP under multiple
IoU thresholds, we provide a complete picture of detection
performance, highlighting both the ability to identify leaves ac-
curately (precision) and to avoid missing them (recall), as well
as the localization accuracy of bounding boxes (mAP). Unless
otherwise stated, reported mAP corresponds to mAP@0.5
(Pascal VOC).

TABLE IV. DETECTION PERFORMANCE OF YOLOV8 TRAINED ON
TAIWAN AND TOMDETLEAF DATASETS

Dataset Precision (%) Recall (%) mAP@0.5 (%)

Taiwan dataset 81.6 67.6 77.4

TomDetLeaf (Proposed) 81.8 82.7 88.3

IV. RESULTS

Table IV presents the comparative performance of
YOLOv8 [26] trained on the Taiwan dataset and on the
proposed TomDetLeaf dataset.

The results demonstrate that TomDetLeaf enables signifi-
cantly stronger detection performance, with an improvement of
+10.9% mAP@0.5 and +15.1% recall compared to the Taiwan
dataset. While precision remained similar, recall improved
markedly, indicating that models trained on TomDetLeaf cap-
ture a larger proportion of true positives under diverse condi-
tions.

An important observation from our experiments is the
significant improvement in recall (+15.1%) when training
YOLOv8 on TomDetLeaf compared to the Taiwan dataset.
In agricultural disease monitoring, recall is particularly crit-
ical: missing a diseased leaf can allow pathogens to spread
unchecked, whereas a false alarm (lower precision) may only
result in an unnecessary inspection. Thus, the higher recall
achieved by TomDetLeaf-trained models underscores its value
for real-world disease detection systems, where early and
reliable identification of all potentially diseased leaves is more
important than minimizing false positives.

Qualitative results are illustrated in Fig. 3, showing
YOLOv8 predictions on complex real-world tomato plant
images. Models trained on TomDetLeaf generalize better to
challenging backgrounds, overlapping leaves and mixed plant
structures, highlighting the importance of dataset diversity for
real-world deployment.

A. Error Analysis and Cross-Dataset Checks

We examined generalization and typical failure modes
under the same evaluation protocol as Table IV. A model
trained on TomDetLeaf maintains its performance on complex
scenes and attains even higher scores on the Taiwan test set,
which largely contains simpler, single-leaf images and plain
backgrounds. Conversely, a model trained on the Taiwan subset
degrades on TomDetLeaf due to background clutter, occlusion
and mixed structures.

TABLE V. CROSS-DATASET EVALUATION (MAP@0.5, PRECISION,
RECALL)

Training set Evaluation set mAP@0.5 (%) Precision (%) Recall (%)

TomDetLeaf TomDetLeaf 88.3 81.8 82.7

TomDetLeaf Taiwan 92.1 86.4 88.9

Taiwan Taiwan 77.4 81.6 67.6

Taiwan TomDetLeaf 65.2 79.8 55.1

Qualitative inspection indicates that false negatives are
primarily associated with heavy overlap/occlusion in multi-
leaf clusters (approximately 40% of missed instances), small
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Fig. 3. YOLOv8 detection results on sample images from the proposed TomDetLeaf dataset. The model demonstrates accurate detection in complex
backgrounds, validating the robustness of the dataset.

leaves (height < 32 px; approximately 30%), backlit or low-
contrast foliage against bright backgrounds (approximately
20%), and truncation at image borders (approximately 10%).
False positives arise mainly from confusion with petioles/stems
and tomato fruit (approximately 50%), non-tomato foliage
present in aisles or background (approximately 30%) and
specular reflections from hydroponic hardware (approximately
20%). We also observed instances where nearby leaves are
suppressed during non-maximum suppression in very crowded
scenes, which selectively reduces recall in multi-leaf images,
the scenario TomDetLeaf was designed to represent.

PlantVillage provides image-level labels only; it is there-
fore unsuitable for a formal detection benchmark without addi-
tional bounding-box annotation. A qualitative probe on single-
leaf PlantVillage images suggested that the TomDetLeaf-
trained detector localizes the visible leaf reliably, but we do
not report mAP for this corpus.

V. DISCUSSION

Fig. 4 summarizes the envisaged end-to-end pipeline for
tomato-leaf monitoring. The detector isolates candidate leaves
that are subsequently provided to a lightweight classifier.
This modular design supports embedded deployment because
detection and classification can be optimized independently.
The experiments reported here target the detection stage.

In addition, the cross-dataset results in Table V show
that models trained on TomDetLeaf transfer reliably to sim-
pler domains (Taiwan), whereas the inverse transfer degrades
markedly, underscoring the value of training on realistic,
cluttered scenes.

Across all capture settings, both healthy and diseased
foliage are present (Table I), which reduces environment–label
confounding and supports the observed generalization.

Together with the single- versus multi-leaf composition
(Table II), this coverage limits scene-type bias and helps
explain the improved recall on complex images.

The experimental results highlight the importance of
dataset diversity and realism for developing object detection
models that generalize to real-world agricultural environments.
Although the Taiwan dataset is commonly used in plant leaf
detection tasks, its limited variability in terms of background
conditions and image diversity constrained the performance
of YOLOv8, particularly in recall (67.6%). This weakness
became evident when testing in complex scenarios with mul-
tiple overlapping leaves, heterogeneous lighting and natural
backgrounds. Models trained on such restricted datasets tend to
achieve high accuracy in controlled settings but fail to maintain
robustness in deployment contexts.

By contrast, the proposed TomDetLeaf dataset demon-
strated a marked improvement in detection performance, rais-
ing recall to 82.7% and overall mAP to 88.3%. This represents
a relative gain of 10.9 percentage points in mAP and 15.1
percentage points in recall compared to the Taiwan dataset. The
improvement in recall is particularly significant, as it indicates
that fewer leaves are missed during inference, which is critical
in applications such as early disease diagnosis where every
missed detection can affect the effectiveness of downstream
classification and decision-making.

The strength of TomDetLeaf lies in its deliberate design
to reflect realistic agricultural conditions. By merging cleaned
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Fig. 4. Conceptual end-to-end pipeline for tomato-leaf monitoring. The system comprises image acquisition, detection with YOLOv8, cropping of detected
leaves, a lightweight disease classification module and a final decision reporting health status and disease type. The present work evaluates the detection stage;

the classification stage is reserved for future work.

subsets of the Taiwan dataset with additional images collected
from climate-controlled greenhouses and hydroponic systems,
the dataset introduces multiple layers of complexity: single-
leaf and multi-leaf compositions, variations in background and
differences in lighting and plant growth environments. Training
on such data enables models to encounter challenging sce-
narios that mimic real-world deployment, thereby enhancing
robustness and generalization.

Another important aspect is that TomDetLeaf focuses on
leaf-level detection as a first stage of an end-to-end pipeline for
plant health monitoring. In practice, robust leaf detection forms
the foundation for subsequent disease classification, which can
be performed on cropped leaf regions. This approach is well
aligned with embedded and TinyML systems, where modular
detection–classification pipelines allow real-time inference on
resource-constrained edge devices such as robots or UAVs
[27], [28]. Therefore, the dataset not only improves detection
metrics but also provides a realistic training ground for the next
step of integrating lightweight disease classification models
[29].

Two practical limitations are worth noting. First, the current
release uses a single detection class without disease labels;
these labels are planned for the next version. Second, images
are resized to 225×225, which can under-represent very small
leaves; increasing the input resolution, adopting multi-scale
training, or tuning the NMS IoU threshold are straightforward
mitigations for future experiments.

Finally, qualitative results confirm that TomDetLeaf-trained
models are able to detect tomato leaves under highly cluttered,
natural conditions, with consistent bounding-box precision
even in the presence of fruits, stems and overlapping vege-
tation. This demonstrates the practical advantage of training
with diverse and realistic data, bridging the gap between
controlled research benchmarks and real-world deployment in
smart agriculture [30].

VI. CONCLUSION AND FUTURE WORK

This work introduced TomDetLeaf, a customized and di-
verse tomato leaf detection dataset designed to improve the
robustness and generalization of object detection models for
real-world agricultural applications. By integrating cleaned
subsets of existing datasets with newly collected images
from climate-controlled greenhouses and hydroponic systems,
TomDetLeaf provides a richer representation of realistic field
conditions, including single- and multi-leaf scenarios, varied
lighting and heterogeneous backgrounds. Experimental eval-
uation with YOLOv8 demonstrated that models trained on
TomDetLeaf outperformed those trained on the Taiwan dataset,
achieving an mAP of 88.3% and recall of 82.7%, compared
to 77.4% and 67.6%, respectively. These results underline

the importance of dataset realism in enabling reliable real-
time deployment. Cross-dataset checks further confirmed that
TomDetLeaf-trained detectors generalize to simpler domains,
while reverse transfer degrades on cluttered scenes.

The dataset is intended as a foundation for modular end-to-
end pipelines in smart agriculture, where reliable leaf detection
constitutes the first stage of disease monitoring on embedded
and edge devices. To facilitate downstream benchmarking,
we also report per-source healthy/diseased counts and the
single- versus multi-leaf composition to support balanced,
reproducible splits. By improving detection accuracy and re-
call, TomDetLeaf contributes to enabling practical, low-cost
solutions for autonomous platforms such as robots and UAVs.

Future work will extend this contribution in several direc-
tions. First, we will evaluate the dataset using additional state-
of-the-art detection models to benchmark its generalizability
across architectures. Second, we are preparing an expanded
annotated version of TomDetLeaf that includes disease-specific
labels for tomato leaves, allowing simultaneous detection and
classification of healthy and diseased samples. Finally, we aim
to implement and validate a complete end-to-end pipeline,
combining detection and classification on embedded hardware
platforms to demonstrate real-time disease diagnosis in realis-
tic agricultural scenarios.
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