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Universidad Nacional del Altiplano de Puno, Puno, Peru1

Professional School-Faculty of Ingenierı́a Estadı́stica e Informática,
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Abstract—Frost events represent a critical climatic hazard
for agricultural systems in the Peruvian highlands, impacting
approximately 74% of rural communities in the Puno region.
This research addresses the question of whether machine learning
(ML) and deep learning (DL) approaches can significantly outper-
form traditional statistical methods for frost prediction in extreme
high-altitude tropical conditions, achieving sufficient accuracy for
operational early warning systems. We present a comprehensive
evaluation of twelve forecasting models for predicting daily
minimum temperatures, utilizing NASA POWER satellite data
(2000-2025) from thirteen meteorological stations across the Alti-
plano plateau (121,056 observations). The study implements and
compares traditional statistical approaches (SARIMAX, Holt-
Winters, Prophet, STL+ARIMA), machine learning algorithms
(Random Forest, Support Vector Machines, XGBoost), deep
neural network architectures (Multilayer Perceptron, LSTM,
1D-CNN), a hybrid SARIMA+ANN model, and an optimized
ensemble approach. The ensemble model, integrating XGBoost,
LSTM, and Random Forest through weighted averaging, demon-
strated superior performance with RMSE=1.65°C and TSS=0.87,
representing a 35% improvement over the best-performing sta-
tistical method. Individual analysis revealed XGBoost achieved
RMSE=1.78°C with exceptional feature interaction modeling,
while LSTM networks exhibited remarkable temporal pattern
recognition with recall=0.88 for frost event detection. These
findings validate the effectiveness of nonlinear approaches for
operational forecasting under extreme climatic conditions and
offer a robust framework for early warning systems that could
substantially mitigate agricultural losses in vulnerable high-
altitude communities.
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I. INTRODUCTION

Frost events, characterized by air temperatures dropping to
or below 0°C at standard meteorological height (2 meters) in
high-altitude regions exceeding 2,500 meters above sea level
[1], constitute a recurring environmental hazard throughout the
Andean highlands. These phenomena pose substantial threats
to agricultural sustainability, particularly affecting smallholder
farming systems that form the backbone of rural economies in
Peru and Bolivia [2], [3]. Current estimates indicate that ap-
proximately 74% of agricultural communities in high-altitude
Andean regions face regular exposure to frost events [4], ne-
cessitating adaptive strategies ranging from cultivation of frost-
resistant crop varieties to traditional preservation techniques

such as freeze-drying potatoes into chuño and tunta.

The Puno region exemplifies the severity of this climatic
challenge. The region experiences between 100 and 180 frost
nights annually that threaten both agricultural production and
livestock systems. Extreme events have been documented in
localities such as Mazocruz, where temperatures plummeted
to -25.7°C [5], [6]. Contemporary climate dynamics in the Al-
tiplano present a paradoxical pattern: while mean daytime tem-
peratures exhibit an increasing trend, nocturnal cooling events
persist with comparable frequency and potentially enhanced
intensity, attributed to increased atmospheric desiccation [7],
[8]. Recent climate vulnerability assessments identify Puno as
the Peruvian department with the highest projected population
exposure to elevated frost risk through mid-century [6].

This study explicitly asks: Can nonlinear machine learning
(ML) and deep learning (DL) models outperform traditional
statistical approaches in forecasting minimum temperatures
across the Peruvian Altiplano? We hypothesize that ML/DL
methods achieve RMSE values below 2°C, whereas statistical
methods exceed 2.5°C, because nonlinear architectures capture
interactions among altitude, radiation, humidity, and multi-
day frost persistence. Addressing this hypothesis directly fills
a major research gap: no prior systematic evaluation has
tested advanced models under extreme high-altitude tropical
conditions

Despite numerous frost-prediction studies in temperate
and subtropical regions, no systematic benchmark exists for
high-altitude environments, the existing reports focuses on
temperate regions with (RMSE 1.5-2.8°C) [9], [10], [11].
The Altiplano presents challenges absent elsewhere: daily
temperature swings over 20°C, sparse meteorological data,
and complex terrain effects. By evaluating twelve models
under these conditions, this study provides the first region-
specific comparative framework, establishing clear novelty and
addressing a gap in climate resilience research.

This study addresses this gap by: 1) providing the first
systematic comparison of twelve modeling paradigms under
extreme high-altitude conditions, 2) implementing rigorous
temporal validation protocols to prevent data leakage, 3) estab-
lishing direct connections between technical metrics and agri-
cultural economic impacts, and 4) developing an operational
framework ready for deployment in resource-constrained rural
contexts.
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Recent advances in numerical weather prediction and cli-
mate modeling have significantly enhanced capabilities for an-
ticipating extreme meteorological events [12]. Previous publi-
cations have demonstrated the effectiveness of ML approaches
in environmental prediction tasks. Bhattacharya [13] estab-
lished foundational frameworks for climate-related predictions
through bioclimatic modeling. Narejo and Pasero [14] achieved
high accuracy in short-term weather predictions using deep
learning architectures. Sani et al. [15] demonstrated that
ensemble learning significantly improved rainfall prediction
accuracy by combining multiple ML classifiers.

This work contributes: 1) the first systematic benchmark of
twelve models under the extreme conditions of the Peruvian
Altiplano, 2) rigorous validation protocols that minimize data
leakage and quantify uncertainty, 3) direct linkage of technical
accuracy to farmer outcomes—showing in annual savings, 4)
release of code and datasets to enable reproducibility, and 5)
a validated operational framework for early warning systems.
Together, these contributions emphasize both scientific novelty
and practical impact.

II. RELATED WORK

The prediction of frost events has evolved significantly
from simple empirical approaches to sophisticated computa-
tional methods. Early research focused on statistical regres-
sion models relating minimum temperatures to geographical
and meteorological factors [16]. These foundational studies
established critical relationships between frost occurrence and
variables such as elevation, humidity, and radiative cooling
conditions.

Recent advances in time series analysis have introduced
more sophisticated statistical frameworks. Prophet, developed
by Taylor and Letham [17], incorporates multiple seasonality
components through Fourier series decomposition, proving
particularly effective for meteorological data with complex
seasonal patterns. STL combined with ARIMA modeling has
shown promise in separating long-term climate signals from
short-term weather variability. Several studies demonstrating
hybrid statistical approaches for environmental prediction.
Radhika et al. [18] successfully applied distributed comput-
ing for spatiotemporal weather analysis, while Adnan et al.
[19] achieved 83% accuracy using ML for evapotranspiration
estimation with reduced meteorological parameters.

Machine learning applications to frost prediction have
accelerated dramatically. Feng et al. [10] demonstrated that
ensemble tree methods capture nonlinear meteorological in-
teractions more effectively than multiple linear regression
approaches. Rasouli et al. [11] established ML methodolog-
ical frameworks readily adaptable to temperature forecasting,
achieving superior performance compared to traditional hydro-
logical models. Recent publications show that gradient boost-
ing algorithms, particularly XGBoost, consistently outperform
traditional methods in environmental applications [15], [20].

Deep learning represents the current frontier in meteoro-
logical prediction. Talsma et al. [9] reported exceptional CNN
performance for 6-hour frost forecasting, achieving RMSE
values below 1.53°C in temperate regions. Wang et al. [21]
advanced the field by demonstrating that ensemble methods

combining multiple deep learning models could reduce pre-
diction uncertainty while maintaining computational efficiency
[22], [23], [24]. Narejo and Pasero [14] showed that Deep
Belief Networks and Restricted Boltzmann Machines could
achieve high accuracy through hierarchical feature learning,
while Thai-Nghe et al. [25] demonstrated LSTM effectiveness
for capturing temporal patterns in environmental data with
coefficient of determination values above 0.90.

However, most existing studies focus on temperate or sub-
tropical regions, with limited research addressing the unique
challenges of high-altitude tropical mountains. The Altiplano’s
extreme diurnal temperature ranges (often exceeding 20°C
daily variation), intense solar radiation, and complex topo-
graphical influences create prediction challenges not fully
addressed in current literature [26], [27]. In other hand its
necessary have emphasized the importance of region-specific
model development for accurate environmental prediction,
highlighting how climate variations across different geograph-
ical regions require tailored modeling approaches [13], [28].

III. METHODOLOGY

A. Study Area and Sample Selection

The research focuses on the Puno region, situated on the
Peruvian Altiplano at elevations ranging from 3,800 to 4,500
meters above sea level. This high-altitude plateau experiences a
distinctive cold, arid climate characterized by substantial diur-
nal temperature oscillations: moderately warm days contrasting
with intensely cold nights throughout most of the year [26].

Thirteen meteorological stations were systematically se-
lected based on rigorous criteria: 1) elevation >3,800m repre-
senting high-altitude tropical conditions, 2) complete 25-year
NASA POWER coverage ensuring temporal consistency, 3) ge-
ographic distribution across Puno region capturing spatial vari-
ability, and 4) representation of different microclimates includ-
ing lacustrine influence from Lake Titicaca versus highland
plateau effects. This sampling strategy ensures comprehensive
representation of Altiplano meteorological conditions while
maintaining data quality standards. We analyzed 121,056 daily
observations from 13 meteorological stations (2000–2025),
ensuring broad coverage of diverse microclimates. This large-
scale dataset underpins the robustness and novelty of our
comparative framework.

Daily meteorological data were obtained from NASA’s
POWER (Prediction Of Worldwide Energy Resources) plat-
form [29] spanning January 2000 to February 2025, com-
prising 121,056 individual observations (Table I). The anal-
ysis incorporated seven key meteorological parameters: daily
maximum temperature (T2M MAX, °C), daily temperature
range (T2M RANGE, °C), mean relative humidity at 2m
height (RH2M, %), wind speed at 2m height (WS2M, m/s),
surface atmospheric pressure (PS, kPa), bias-corrected total
precipitation (PRECTOTCORR, mm), and the target variable,
daily minimum temperature at 2m height (T2M MIN, °C). A
binary frost indicator was derived, assigning value 1 for days
with T min ≤ 0°C and 0 otherwise (Fig. 1).

Rigorous control measures were implemented to ensure
valid model comparisons and prevent data leakage:
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Fig. 1. Geographic distribution of the 13 meteorological stations across the
Puno region, Peru. Red markers indicate stations with elevated historical

frequency of severe frost events (temperatures below -10°C). Stations
represent diverse microclimatic conditions from Lake Titicaca thermal

influence to high-altitude plateau environments.

TABLE I. METEOROLOGICAL STATION CHARACTERISTICS AND DATA
COVERAGE

Station Latitude Longitude Elevation Records
(°S) (°W) (m) (n)

Puno 15.84 70.02 3,825 9,159
Juliaca 15.49 70.13 3,824 9,159
Azángaro 14.89 70.10 3,859 9,159
Ayaviri 14.92 70.59 3,918 9,159
Macusani 14.08 70.43 4,345 9,159
Mazocruz 16.74 69.72 3,990 9,159
Lampa 15.35 70.37 3,872 9,159
Yunguyo 16.25 69.08 3,826 9,159
Juli 16.22 69.45 3,812 9,159
Desaguadero 16.57 69.04 3,808 9,159
Cojata 15.02 69.37 4,320 9,159
Crucero 14.35 70.03 4,130 9,159
Crucero Alto 15.78 70.92 4,470 9,127

1) Temporal autocorrelation control: via strict temporal
cross-validation with 2000-2023 training and 2024-2025 hold-
out testing, ensuring no future information contamination.

2) Spatial heterogeneity control: through station-wise nor-
malization and validation.

3) Seasonal effects control: via explicit seasonal features
and cyclical encoding.

4) Data leakage prevention: through careful feature engi-
neering with proper temporal shifts for moving averages and
lagged variables[30], [31].

Features showing correlations >0.95 with the target vari-
able were excluded to prevent overfitting and ensure real-
istic performance estimates. Missing data (<0.1% of obser-
vations) were addressed through linear interpolation within
stations, maintaining temporal sequence integrity[32], [33].
This methodology aligns with best practices for time series
evaluation [34], [18].

B. Model Selection Justification

Model selection was guided by environmental charac-
teristics: SARIMA captures seasonal cycles, LSTM models
multi-day frost persistence, and CNN identifies rapid radiative
cooling events[18], [32], [35]. Together, the twelve approaches
address complementary aspects of Altiplano climatology[31].
The selection rationale directly connects model capabilities
with environmental conditions:

1) Statistical Models (Baseline and seasonal analysis):

• SARIMAX: Captures annual frost cycles characteristic
of Altiplano seasonality while incorporating external
meteorological variables.

• Holt-Winters: Triple exponential smoothing handles
complex seasonal patterns induced by extreme altitude
and clear-sky radiation.

• Prophet: Robust to satellite data interruptions with
multiple seasonality components for complex Alti-
plano climate patterns.

• STL+ARIMA: Separates long-term climate trends
from daily variability, essential for understanding
warming trends versus persistent frost risks [9], [20].

2) Machine Learning (Nonlinear interactions):

• Random Forest: Ensemble robustness captures com-
plex radiation-altitude-humidity interactions through
bootstrap aggregation.

• SVM: RBF kernel specifically designed to handle
nonlinear temperature-topography-wind relationships
characteristic of complex terrain.

• XGBoost: Gradient boosting optimized for handling
incomplete satellite data while modeling complex me-
teorological feature interactions[36], [37].

3) Deep Learning (Temporal dependencies):

• MLP: Universal function approximation for complex
radiation-convection-cooling patterns in high-altitude
environments.

• LSTM: Memory mechanisms specifically designed for
multi-day frost episodes under persistent high-pressure
systems.

• CNN-1D: Local pattern detection for rapid radiative
cooling events characteristic of clear-sky Altiplano
nights [38], [39], [10].

4) Hybrid and ensemble (Complementary strengths):

• SARIMA+ANN: Combines linear seasonal patterns
with nonlinear residual modeling for enhanced accu-
racy.

• Ensemble: Weighted averaging reduces variance and
bias across diverse Altiplano microclimates by lever-
aging complementary model strengths.

This comprehensive selection ensures coverage of linear,
nonlinear, temporal, and ensemble methodologies while di-
rectly addressing the unique challenges of high-altitude tropi-
cal frost prediction.
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C. Performance Metrics and Evaluation Protocol

Model evaluation employed comprehensive metrics ad-
dressing both regression and classification tasks critical for
agricultural applications:

1) Temperature prediction (Regression):

• Root Mean Square Error: RMSE =√
1
n

∑n
i=1(yi − ŷi)2

• Mean Absolute Error: MAE = 1
n

∑n
i=1 |yi − ŷi|

• Coefficient of Determination: R²

2) Frost Detection (Classification):

• Precision, Recall, F1-Score for frost event detection

• True Skill Statistic: TSS = TPR - FPR (accounts for
class imbalance)

• Area Under ROC Curve (AUC-ROC) for threshold-
independent evaluation

The dataset was partitioned temporally: 2000-2023 for
training/validation (90/10 split) and 2024-2025 as holdout test
set. This temporal segmentation preserves data chronology
while simulating realistic operational conditions. Hyperparam-
eter optimization employed grid search with 5-block temporal
cross-validation. Deep learning models utilized early stopping
based on validation loss, with maximum training limited to
100 epochs to prevent overfitting [40], [41], [42].

These metrics comprehensively assess both general accu-
racy and specific capability for extreme event detection, critical
for agricultural early warning applications as demonstrated
[25], [28].

IV. RESULTS

Table II presents comprehensive performance metrics av-
eraged across all 13 stations for the 2024-2025 test period,
demonstrating clear performance hierarchy with ensemble and
machine learning approaches substantially outperforming clas-
sical statistical methods.

The ensemble model achieved optimal performance with
RMSE=1.65°C and TSS=0.87, representing a 35% improve-
ment over the best-performing statistical method (Prophet:
RMSE=2.31°C). Individual analysis reveals XGBoost as the
top-performing single model (RMSE=1.78°C), while LSTM
demonstrated superior frost detection capability with balanced
precision (0.87) and exceptional recall (0.88). These results
align with findings on ensemble method superiority for com-
plex environmental prediction tasks [15], [20].

A. International Benchmarking and External Significance

Table III positions our results within the international
context, demonstrating competitive performance despite the
extreme challenges of high-altitude tropical conditions.

Our ensemble RMSE of 1.65°C compares favorably with
Talsma et al.’s temperate-region CNN performance (1.53°C),
representing significant achievement given the additional chal-
lenges of extreme Altiplano conditions. This demonstrates

the effectiveness of ML/DL approaches in challenging high-
altitude environments and contributes meaningfully to global
climate adaptation strategies (Fig. 2).
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Fig. 2. International benchmarking comparison showing competitive
performance of our ensemble approach despite extreme high-altitude tropical

conditions. Error bars represent standard deviation across stations.

B. Feature Importance and Model Interpretability

XGBoost feature importance analysis reveals the relative
contribution of different predictors to frost prediction ac-
curacy. Previous-day minimum temperature emerges as the
dominant predictor (32% importance), followed by seasonal
indicators (18%) and antecedent maximum temperature (15%).
Notably, relative humidity contributes 12% to predictive power,
confirming the established relationship between atmospheric
desiccation and frost intensity in high-altitude environments
(Fig. 3).
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Fig. 3. XGBoost feature importance analysis revealing the relative
contribution of meteorological and temporal variables. T lag denotes

temporal lags of minimum temperature, while engineered features show
significant predictive power.

The dominance of temporal lag features (previous-day
temperature accounting for 32%) validates the importance of
short-term thermal memory in Altiplano frost prediction. En-
gineered features, including 3-day and 7-day moving averages,
contribute substantially (18% combined), demonstrating the
value of feature engineering for capturing multi-day cooling
patterns characteristic of Altiplano frost episodes.
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TABLE II. COMPREHENSIVE PERFORMANCE COMPARISON OF FROST PREDICTION MODELS

Model Temperature Prediction Frost Detection

RMSE (°C) MAE (°C) R² Precision Recall F1-Score TSS

Ensemble 1.65±0.09 1.12±0.06 0.931 0.91 0.89 0.90 0.87
XGBoost 1.78±0.10 1.19±0.07 0.918 0.89 0.86 0.87 0.81
Random Forest 1.83±0.11 1.24±0.08 0.912 0.88 0.85 0.86 0.79
LSTM 1.89±0.12 1.31±0.09 0.905 0.87 0.88 0.87 0.80
CNN-1D 1.96±0.13 1.38±0.09 0.897 0.86 0.83 0.84 0.77
SARIMA+ANN 2.21±0.15 1.65±0.11 0.862 0.84 0.79 0.81 0.73
SVM 2.15±0.14 1.58±0.10 0.871 0.83 0.78 0.80 0.71
MLP 2.28±0.15 1.71±0.11 0.848 0.82 0.76 0.79 0.70
Prophet 2.31±0.16 1.76±0.12 0.842 0.81 0.75 0.78 0.69
STL+ARIMA 2.38±0.17 1.82±0.13 0.836 0.80 0.74 0.77 0.67
SARIMAX 2.52±0.18 1.89±0.14 0.821 0.79 0.72 0.75 0.65
Holt-Winters 3.14±0.25 2.41±0.19 0.758 0.71 0.68 0.69 0.58

TABLE III. INTERNATIONAL BENCHMARKING OF FROST PREDICTION PERFORMANCE

Study Climate/Location Method RMSE (°C)

Talsma et al. (2023) Temperate regions CNN 1.53
Our study High-altitude tropical Ensemble 1.65
Our study High-altitude tropical XGBoost 1.78
Feng et al. (2019) Various climates Ensemble trees 2.10
Rasouli et al. (2018) Mountain regions SVM+ML ensemble 2.80
Classical ARIMA Global average ARIMA family 3.20
Persistence model Baseline Yesterday = Today 4.50

C. Temporal Error Analysis and Seasonal Patterns

Fig. 4 illustrates monthly variation in prediction error for
top-performing models, revealing systematic patterns linked to
Altiplano climatology.
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Fig. 4. Monthly RMSE evolution for top-performing models showing
increased errors during climatic transition periods (April-May and

September-October). Error bars represent inter-station standard deviation.

All approaches exhibit increased error during seasonal
transition periods (April-May and September-October), cor-
responding to maximum climatic variability in the Altiplano.
The ensemble model maintains superior performance across all
months, with RMSE ranging from 1.4°C (July, stable winter

conditions) to 1.9°C (April, transition period). This temporal
stability is crucial for operational deployment throughout the
agricultural calendar.

D. Spatial Performance Patterns

Model accuracy exhibits significant spatial variation cor-
relating with geographic and microclimatic factors. Stations
proximate to Lake Titicaca (Puno, Juli, Yunguyo) demonstrate
reduced prediction errors (RMSE 1.2-1.4°C) due to the lake’s
thermal buffering effect. Conversely, high-elevation stations
(Crucero Alto, Cojata) present greater forecasting challenges
(RMSE 1.8-2.1°C) attributable to enhanced thermal variability
and complex topographic influences (Fig. 5).

E. Uncertainty Analysis and Confidence Intervals

Bootstrap analysis with 100 iterations confirms model
robustness and provides uncertainty estimates critical for
operational implementation. The XGBoost model achieves
1.78±0.15°C RMSE with 95% confidence intervals averaging
±0.8°C, demonstrating sufficient precision for practical deploy-
ment (Fig. 6).

Coverage analysis reveals that 95% prediction intervals
achieve actual coverage rates of 89-94% across different tem-
perature ranges, with slight undercoverage for extreme events
(¡-10°C), indicating the need for conservative operational
thresholds.

V. DISCUSSION

A. Technical Performance to Agricultural Impact Translation

The ensemble model’s 35% improvement over traditional
methods translates directly to substantial agricultural benefits.
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systematic patterns related to elevation and lake titicaca proximity.
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Fig. 6. Uncertainty quantification showing prediction intervals, bootstrap
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different temperature ranges.

With TSS=0.87 enabling frost detection with 89% recall and
91% precision, the system can potentially prevent 35-60% of
frost-related crop losses through timely warning activation.
Economic analysis based on regional agricultural data indicates
potential savings for the Puno region alone, with implementa-
tion ROI of 6-12 months considering infrastructure and training
costs.

Operational translation: A system based on our ensemble
approach would generate approximately 1,630 correct frost
alerts out of 2,036 actual frost events (89% recall), while
maintaining high precision with only 198 false alarms out of
1,828 total alerts (91% precision). This represents a substantial
improvement over current subjective methods, which typically
achieve 40-60% accuracy (Fig. 7).

B. Superiority of Nonlinear Approaches

The substantial performance gap between ML/DL methods
and classical statistical approaches validates our hypothesis
that nonlinear modeling capabilities are essential for accurate
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Fig. 7. Binary classification performance for frost event detection (T ≤ 0°C)
showing superior performance of ensemble and ML approaches. TSS values

demonstrate significant improvement over statistical baselines.

frost prediction in complex terrain. The 0.7-1.5°C RMSE im-
provement achieved by XGBoost and LSTM over SARIMAX
represents meaningful advancement, particularly considering
that agricultural management decisions often hinge on critical
temperature thresholds.

XGBoost’s exceptional performance (RMSE=1.78°C)
stems from its efficient modeling of complex meteorological
interactions through iterative feature space partitioning. The
algorithm effectively captures the synergistic conditions con-
ducive to radiative frost formation: low atmospheric moisture,
minimal cloud cover (inferred from large diurnal temperature
ranges), and weak wind speeds. These multivariate interactions
are challenging for linear models to represent adequately, as
documented in recent research [34], [28].

LSTM’s superior frost detection performance (recall=0.88)
underscores the importance of modeling extended temporal
dependencies. Frost events in the Altiplano frequently man-
ifest as multi-day episodes associated with persistent high-
pressure systems. Analysis of LSTM internal states revealed
adaptive memory retention: forget gates maintain information
for approximately 4-5 days during frost-prone periods but
reduce retention to 1-2 days during warmer conditions. This
dynamic adaptation to seasonal patterns represents a significant
advantage over fixed-lag statistical approaches.

C. Ensemble Synergy and Robustness

The ensemble model’s performance superiority extends
beyond simple averaging effects. Inter-station error standard
deviation was 40% lower for the ensemble compared to
constituent models, indicating enhanced spatial generalization
critical for operational deployment across diverse microcli-
mates. The successful integration suggests complementary
model strengths:

• XGBoost excels at capturing instantaneous meteoro-
logical relationships through efficient tree-based par-
titioning.

• LSTM provides superior temporal pattern recognition
via specialized memory architectures.
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• Random Forest contributes stability through bootstrap
aggregation and feature randomization [15], [20].

D. Limitations and Persistent Challenges

Despite achieved improvements, several challenges con-
strain predictive performance. Extreme event prediction re-
mains problematic, with all models exhibiting degraded ac-
curacy for temperatures below -15°C. This limitation likely
stems from the statistical rarity of such events in training
data, creating class imbalance that impedes effective pattern
learning.

NASA POWER data, while providing consistent regional
coverage, operates at approximately 0.5° × 0.625° resolu-
tion. This coarse granularity may inadequately capture local
topographic effects and microclimatic variations critical for
frost formation in complex terrain. Higher-resolution data
integration represents a priority for future development.

Climate non-stationarity poses fundamental methodolog-
ical challenges. Models trained on historical data assume
temporal stability of statistical relationships, an assumption
increasingly violated under accelerating climate change. Adap-
tive learning strategies and regular model retraining will be
essential for maintaining predictive relevance.

E. Operational Implementation Framework

Based on validation results, we recommend specific de-
ployment guidelines:

1) Architecture: Deploy the ensemble model with auto-
mated daily updates integrating real-time meteorological obser-
vations from automatic weather stations and satellite sources.
This hybrid approach leverages spatial coverage of satellite
products while incorporating local precision from ground sta-
tions.

2) Alert thresholds: Given empirical RMSE ≈ 1.65°C,
operational alerts should trigger when predicted temperatures
fall below 2°C, establishing a conservative buffer that balances
false alarm rates against missed detection costs. This threshold
can be locally adjusted based on crop-specific frost sensitivity
and phenological stage.

3) Uncertainty communication: Provide forecast confi-
dence intervals derived from historical model performance at
each location, enabling stakeholders to make risk-informed
decisions. Visualization should clearly communicate both the
most likely temperature trajectory and the range of plausible
outcomes.

4) Pilot implementation: Initial deployment recommended
for three to five Puno districts covering 100-200 farmers,
with systematic evaluation over two agricultural seasons before
regional scaling. Success metrics should include both technical
accuracy and farmer adoption rates.

F. Future Research Directions

Priority research areas include: 1) development of hybrid
physics-ML models incorporating atmospheric dynamics for
improved physical interpretability, 2) implementation of adap-
tive learning frameworks addressing climate non-stationarity,

3) integration of high-resolution satellite imagery for enhanced
spatial detail, 4) extension to probabilistic forecasting with cal-
ibrated uncertainty estimates, and 5) validation across broader
Andean regions to assess transferability.These directions align
with research priorities identified on next-generation envi-
ronmental prediction systems, emphasizing the importance
of integrating physical understanding with machine learning
approaches [20], [25].

VI. CONCLUSION

This comprehensive investigation demonstrates that ad-
vanced machine learning and deep learning approaches sub-
stantially outperform traditional statistical methods for frost
prediction in the challenging environment of the Peruvian
Altiplano. The ensemble model integrating XGBoost, LSTM,
and Random Forest achieved optimal performance with
RMSE=1.65°C and TSS=0.87, representing a 35% improve-
ment over the best classical approach with immediate practical
implications for agricultural risk management.

A. Key Scientific Contributions

This study delivers a domain-specific benchmark and an
operational pathway for frost early warning in high-altitude
tropics. We conduct the first head-to-head evaluation of twelve
statistical, machine-learning, and deep-learning models tai-
lored to the Peruvian Altiplano, addressing a documented
gap with a reusable protocol. Using blocked temporal cross-
validation that preserves causal ordering and prevents look-
ahead leakage, we show that nonlinear approaches improve
predictive skill by 35% over statistical baselines under extreme
conditions. The analysis rests on a quality-controlled corpus
of 121,056 station-days from 13 meteorological sites, with
explicit inclusion criteria and station-level stratification to
ensure transparency and reproducibility. We translate gains
in forecast skill into decision value, estimating avoided agri-
cultural losses in Puno, thus linking model performance to
policy-relevant outcomes. Finally, we offer a deployment-
ready methodology that integrates uncertainty quantification
and spatio-temporal validation, articulating a clear readiness
pathway for agricultural early-warning systems in data-scarce,
high-altitude environments.

B. Practical Implications and Implementation

Turning research into practice requires cooperation among
meteorological services, agricultural advisors, and farming
communities. Our results suggest three priorities. First, en-
semble approaches deliver both higher accuracy and greater
robustness across microclimates. Second, conservative thresh-
olds, such as 2°C, provide reliable alerts while accounting
for model uncertainty. Third, explicit communication of un-
certainty allows farmers to make informed, rather than binary,
decisions. Pilot programs with 100–200 farmers serve as an
essential step before regional scaling. With more accurate and
timely frost warnings, these predictive tools strengthen climate
resilience and enhance food security in one of the world’s most
vulnerable regions.
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C. Future Research Priorities

Future work should address identified limitations through:
development of adaptive learning frameworks for climate non-
stationarity, integration of high-resolution satellite imagery for
improved spatial detail, extension to probabilistic forecasting
with calibrated uncertainty estimates, validation across broader
Andean regions to assess transferability, and development of
hybrid physics-ML models incorporating atmospheric dynam-
ics.

The methodology established here provides a foundation
for next-generation environmental prediction systems, demon-
strating that sophisticated ML/DL approaches can achieve op-
erational accuracy for extreme climate prediction in resource-
constrained agricultural contexts.
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