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Abstract—This project addresses the critical challenge of 

stroke prediction by developing a hybrid model that integrates the 

strengths of the Random Forest (RF) and Support Vector Machine 

(SVM) algorithms. Stroke risk is highly influenced by lifestyle-

related factors such as smoking, hypertension, heart disease, and 

elevated body mass index (BMI). Although existing models, such 

as standalone Random Forest classifiers, offer moderate 

predictive performance, achieving an accuracy of approximately 

74.53%, they often fall short in clinical reliability. The proposed 

hybrid model improves prediction accuracy by leveraging 

Random Forest to capture complex, nonlinear relationships and 

determine feature importance, while SVM enhances performance 

in high-dimensional spaces by establishing precise decision 

boundaries. This study also includes a comprehensive literature 

review that evaluates existing algorithms, their implementation in 

current systems, and cross-domain insights, ultimately forming 

the development of a novel conceptual framework. The 

anticipated outcome is a robust, data-driven predictive tool that 

enhances clinical decision-making and supports early intervention 

strategies. By combining complementary machine learning 

techniques, this hybrid approach aims to set a new benchmark in 

stroke risk assessment and contribute meaningfully to patient care 

in modern healthcare environments towards sustainable public 

health. 

Keywords—Public health; Random Forest; Support Vector 

Machine; hybrid model; stroke prediction 

I. INTRODUCTION 

Stroke remains a major global health issue, consistently 
ranking among the leading causes of long-term mortality and 
disability. In Malaysia, it is the third leading cause of death [1]. 
Despite advances in medical science and healthcare 
infrastructure, the abrupt and often debilitating nature of stroke 
continues to pose serious challenges. Many patients receive little 
to no warning before a stroke occurs, which underscores the 
urgent need for early identification of risks. Detecting high-risk 
individuals is critical to reducing both the incidence and severity 

of strokes, as it allows the implementation of preventive 
strategies and targeted interventions. However, conventional 
risk assessment methods often fall short, as they typically rely 
on a narrow set of clinical indicators and do not fully utilise the 
wealth of data now available through modern healthcare systems 
and technologies. 

Recent advances in artificial intelligence (AI) and machine 
learning (ML) have transformed the landscape of medical 
diagnostics and predictive analytics, offering powerful tools to 
address complex health challenges such as stroke prediction. A 
stroke predictive system driven by AI and ML can process and 
analyse comprehensive patient datasets, including 
demographics, medical history, and lifestyle factors, to generate 
highly accurate risk assessments. These systems allow 
healthcare providers to identify high-risk individuals earlier, 
customise preventive strategies, and improve predictive 
accuracy over time as more data becomes available. Such 
technologies have the potential to significantly reduce stroke-
related emergencies, reduce long-term healthcare costs, and 
improve the quality of life of vulnerable populations. 

Nutrition, although often underestimated in clinical 
evaluations, plays a critical role in stroke risk. According to 
Spence (2019), adopting a healthy lifestyle, particularly proper 
nutrition, can reduce stroke risk by up to 80%, with poor diet 
habits being the most influential risk factor. To support this, a 
study conducted in a dental school in Pakistan found that 44.4% 
of men and 60% of women were overweight or obese. The main 
contributors to this nutritional imbalance included skipping 
breakfast, frequent consumption of high-calorie snacks, 
extended screen time, and sedentary behaviour [2]. Although 
nutrition is an important risk factor, this study focuses primarily 
on demographic, medical, and lifestyle factors as the core 
components for the prediction of stroke. 

Single-algorithm models such as Support Vector Machines 
(SVM), Random Forest (RF), and Logistic Regression (LR) 
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have been widely used in stroke prediction due to their 
algorithmic simplicity and satisfactory performance in 
controlled datasets. Despite their utility, these models exhibit 
notable limitations when applied to heterogeneous and high-
dimensional clinical data. SVMs, for instance, are effective in 
handling high-dimensional feature spaces; however, they may 
underperform when modelling complex nonlinear interactions 
or when exposed to data distributions that are not present during 
training. Similarly, while Random Forests are robust to noise 
and overfitting, their performance can degrade with imbalanced 
datasets or subtle inter-variable dependencies. Logistic 
regression, although interpretable and widely adopted, is 
inherently linear and cannot model complex interactions 
between multiple predictors [3]. 

These limitations are particularly problematic in the context 
of stroke prediction, where multifactorial influences, such as 
smoking status, hypertension, heart disease, and an elevated 
body mass index (BMI), play critical roles. For example, models 
based solely on Random Forest have demonstrated only 
moderate predictive performance, with accuracy around 74.53% 
[3]. As healthcare data becomes increasingly complex, the 
inadequacy of single-algorithm models to generalise across 
diverse populations and capture intricate feature relationships 
underscores the need for more sophisticated predictive 
methodologies. 

To address these challenges, this study proposes a hybrid 
approach that integrates the strengths of the SVM and Random 
Forest algorithms. The SVM component is utilised for its 
superior performance in high-dimensional spaces and its ability 
to establish well-defined decision boundaries, while the Random 
Forest component contributes its ensemble-based learning 
capability to model both linear and nonlinear relationships 
effectively. This dual architecture model aims to leverage the 
complementary strengths of both methods to improve predictive 
accuracy and robustness. 

Hybrid models of this nature offer several key advantages: 
they can capture nuanced patterns in data that may be missed by 
individual algorithms, reduce the risk of overfitting through 
ensemble learning, and improve the model's ability to generalise 
across varying patient demographics and clinical conditions. 
Additionally, by incorporating Random Forest feature 
importance metrics and geometric precision of SVM, the hybrid 
model enables more informed clinical interpretations and 
targeted intervention strategies. 

This study contributes to the evolving field of AI-driven 
healthcare by demonstrating that hybrid machine learning 
models can significantly improve the accuracy and reliability of 
stroke risk prediction. These advances have the potential to 
support clinicians in early identification of high-risk individuals, 
allowing timely and personalised preventive measures. 
Ultimately, the implementation of such predictive systems can 
reduce stroke incidence, improve patient outcomes, and alleviate 
the general burden on global healthcare systems. 

This paper is constructed with Section II reviewing the 
current studies of machine learning based stroke prediction. This 
is followed by Section III, which illustrates the methods and 
tools used in this study. The result of the study is presented in 
Section IV. Section V discusses the results of this study and 
compares them with previous studies. Finally, Section VI 
concludes the research findings, limitations, and future work. 

II. LITERATURE REVIEW 

A. Historical Development of Random Forest and Support 

Vector Machine 

A Random Forest or random decision tree is a cooperative 
group of decision trees cooperating to produce a single output.  
Fig. 1 presents the historical development of Random Forest. 
The Support Vector Machine (SVM) is a supervised machine 
learning algorithm that includes regression and classification. 
Fig. 2 summarises the historical development of SVM. 

 
Fig. 1. Historical development of Random Forest [4], [5]. 

Random Forest is being 
used more and more in a 
variety of fields, including 
environmental studies, 
banking, and healthcare. It 
is scalable for big datasets 
thanks to efficiency gains 
like distributed 
implementations in Apache 
Spark. 

The Random Forest 
algorithm, created and 
published by Leo 
Breiman and Adele 
Cutler, expands on 
Bagging by using 
random feature 
selection at each tree 
split to further 

minimise overfitting. 

Dr Ho created decision-
tree-based classifiers 
that increased in 
generalisation accuracy 
as they became more 
complicated, providing 
other approaches to deal 
with overfitting while 
maximising accuracy. 

A shape identification technique 
based on the combined 
induction of shape features and 
tree classifiers was presented 
by Professor Yali Amit and Dr. 
Donald Geman. This approach 
highlighted the difficulties in 
evaluating classifiers based on 
a complete feature set because 
of the large number of features. 

To minimise variance, 
Leo Breiman created 
the Bagging (Bootstrap 
Aggregating) 
technique, which 
introduces the idea of 
combining predictions 
from several decision 
trees trained on various 
bootstrapped datasets. 

Ho Tin Kam introduces 
the "Random 
Subspace Method" 
and demonstrates how 
decision tree accuracy 
is increased by 
randomising feature 
selection. 
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Fig. 2. Historical development of SVM [6], [7]. 

B. Stroke Prediction Software/Product 

1) Random Forest: This section discusses four existing 

products and their applications in healthcare and machine 

learning. 

a) AutoAI: AutoAI extends AutoML by automating the 

entire AI lifecycle, including model building. Select and 

optimise predictive machine learning models for tasks such as 

predicting cardiovascular disease (CVD) using the Random 

Forest classifier algorithm. AutoAI processes data sets with 

features such as age and medical history, improving prediction 

accuracy through automated hyperparameter tuning and feature 

classification. The Random Forest model achieved high 

accuracy in CVD prediction and is suggested for stroke 

prediction, as it manages high-dimensional data effectively. 

b) Magnetic Resonance Imaging (MRI): MRI utilises 

radio waves and strong magnetic fields to create detailed body 

images. The Random Forest algorithm improves MRI 

applications, particularly in tissue segmentation for radiation 

oncology. It enables a better identification of stroke indicators 

by segmenting brain tissue and distinguishing between healthy 

and affected areas. MRI combined with Random Forest 

improves diagnosis, reduces the need for CT scans, and aids in 

early stroke detection. 

c) Amazon SageMaker: As an ML solution, SageMaker 

simplifies the development, training, and deployment of 

machine learning models. Integrates with AWS services for 

data management and model deployment. The Random Forest 

algorithm, when used with SageMaker, helps predict stroke and 

improves cloud-based processes by handling large datasets and 

optimising model performance for risk assessments. 

d) Computed Tomography (CT): CT scans provide 

detailed cross-sectional images using X-ray imaging. Random 

Forest improves the analysis of these images for oral cancer 

diagnosis, noting excellent sensitivity in processing image data. 

For stroke prediction, CT scans, assisted by Random Forest, 

improve the detection of critical indicators and risk factors, 

supporting a timely and accurate diagnosis. 

In general, the integration of machine learning algorithms 
such as Random Forest with imaging technologies and platforms 
such as AutoAI and SageMaker offers significant improvements 
in medical diagnosis, treatment planning, and early prediction of 
conditions such as stroke and cardiovascular diseases. 

2) Support Vector Machine: This section discusses various 

applications of Support Vector Machine (SVM) and related 

technologies in different fields, with a focus on their potential 

for stroke prediction. 

a) Face++ Platform: Face++ is a commercial facial 

recognition platform that offers services such as facial detection 

and demographic analysis. It is capable of monitoring facial 

asymmetry, aiding in stroke detection by identifying facial 

drooping, a sign of stroke. In addition, demographic analysis 

can help assess risk factors such as age. 

b) Machine learning techniques: Techniques such as 

SVM, Genetic Optimisation, and Particle Swarm Optimisation 

are used in medical diagnostics with high accuracy. These 

techniques show potential for stroke prediction through brain 

imaging and physiological data analysis, which could achieve 

high prediction accuracy. 

c) Renewable energy forecasting: Methods combining 

K-Nearest-Neighbour (KNN) and SVM improve solar power 

forecasts and could improve stroke prediction by analysing 

physiological data to identify stroke risks. 

d) Sentiment analysis: SVM classifiers are used to 

analyse sentiments on social networks. A similar approach 

could classify medical data into stroke risk categories, 

improving prediction accuracy and supporting early 

interventions. 

e) Rice plant disease detection: SVM and its variant LS-

SVM are used to detect plant diseases with high accuracy. LS-

SVM, with its efficiency in handling non-linear data, could 

Ongoing 
advancements in SVM 
algorithms with 
improvements in 
computational 
efficiency and 
integration into popular 
machine learning 
libraries like scikit-
learn. 

Increased adoption 
across various fields 
such as text 
classification, 
bioinformatics, and 
image recognition due 
to its effectiveness in 
high-dimensional 
spaces. 

Publication of key 
papers detailing 
SVM algorithms and 
applications, 
solidifying its place in 
machine learning 
literature by Cortes 
and Vapnik. Soft 
margin approach is 
published. 

Development of the 
soft margin approach 
was proposed by 
Cortes and Vapnik. 

Proposal of 
nonlinear classifiers 
using the kernel trick 
by Boser, Guyon, 

and Vapnik. 

Introduction of the 
SVM concept by 
Vapnik and 
Chervonenkis, SVM's 
origins can be traced 
back to linear 
classifiers. 
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significantly boost stroke detection accuracy by analysing 

complex physiological data, helping to timely medical 

intervention. 

3) Comparing the performance of different machine 

learning algorithms: Bentley et al. (2014) compared traditional 

tools such as SEDAN and Hemorrhage After Thrombolysis 

(HAT) scores with an automated Support Vector Machine 

(SVM) model. The study found that using the National 

Institutes of Health Stroke Scale (NIHSS) and imaging data, the 

SVM achieved a higher area under the curve (AUC) of 0.744, 

surpassing traditional methods, which had AUCs between 

0.626 and 0.720 [8], [9]. 

Similarly, ML uses Random Forests and synthetic minority 
oversampling outperformed logistic regression in predicting 
long-term stroke mortality. The ML model achieved an AUC of 
0.928, significantly better than the logistic regression of 0.745, 
highlighting the superior predictive capabilities of ML in clinical 
applications. 

Furthermore, deep neural networks are more effective than 
the ASTRAL score in predicting functional outcomes for stroke 
patients. A study reported an AUC of 0.888 for the neural 
network model, compared to 0.839 for the ASTRAL score (P < 
0.001), further highlighting the growing role of ML in the 
prognosis of stroke. 

Research by Wang et al. (2019) demonstrated the precision 
of Random Forest algorithms in predicting functional outcomes 
after intracerebral haemorrhage, with AUCs of 0.899 at one 
month and 0.917 at six months [10]. Lastly, linear SVM 
regression has been used to predict rehabilitation outcomes in 
stroke patients, showing promising results for motor and 
cognitive functions, although it remains challenging to predict 
the Barthel index. These studies collectively highlight the 
transformative potential of machine learning to improve stroke 
outcome predictions and improve clinical decision making. 

Abujaber et al. (2023) predict a 90-day prognosis for patients 
with stroke: a machine learning approach [11]. Stroke remains 
an important global health issue, ranking as the second leading 
cause of death worldwide. This study aimed to create and 
evaluate a machine learning tool to predict the 90-day prognosis 
of stroke patients after discharge, using the modified Rankin 
score as the outcome measure. The research analysed data from 
a national multiethnic stroke registry, which included 15,859 
patients with ischemic or hemorrhagic stroke, of whom 7,452 
met the study criteria. Feature selection was carried out using 
correlation and permutation importance methods, and six 
classifiers were applied, including Random Forest (RF), 
Classification and Regression Tree, Linear Discriminant 
Analysis, Support Vector Machine, and K-Nearest Neighbours. 
The RF model achieved the best performance, with an accuracy 
of 0.823 and an AUC of 0.893, demonstrating excellent 
discrimination power. The most influential predictors were 
stroke type, hospital-acquired infections, admission location, 
and length of stay. Although the RF model shows potential to 
tailor patient care and improve stroke prevention, further 
prospective validation is needed to verify its effectiveness in 
real-world clinical settings [11]. 

Research by Rahman et al. (2023) predicts brain stroke using 
machine learning algorithms and deep neural network 
techniques. The study aimed to predict the likelihood of an 
early-stage stroke using both machine learning and deep 
learning techniques, using a reliable data set for stroke 
prediction. Various machine learning models, including 
XGBoost, AdaBoost, LightGBM, Random Forest, Decision 
Tree, Logistic Regression, K-Nearest Neighbours (KNN), SVM 
(Linear Kernel), and Naive Bayes, were applied alongside deep 
learning models, specifically a three-layer and a four-layer 
artificial neural network (ANN). The Random Forest classifier 
achieved the highest classification accuracy at 99%, 
outperforming all other machine learning models. Among deep 
learning models, the 4-layer ANN showed the best performance 
with an accuracy of 92.39%, surpassing the 3-layer ANN. In 
general, the findings revealed that machine learning techniques, 
particularly Random Forest, outperformed deep neural network 
models in predicting stroke occurrence [12]. 

Zhang (2023) research is from radical stroke prediction 
based on SVM which demonstrates the best overall performance 
with an accuracy of 0.792, a precision of 0.712, and a high recall 
of 0.912, resulting in an F1 score of 0.8. This indicates that SVM 
is particularly effective in identifying true stroke cases (high 
recall) while maintaining balanced precision and F1 score. 
Naïve Bayes also performs well, with an accuracy of 0.768, 
precision of 0.733, and recall of 0.772, and it shows a slightly 
higher F1 score of 0.7521 compared to other models. Random 
Forest achieves an accuracy of 0.76, and although its recall 
(0.842) is relatively high, its precision is lower (0.696), leading 
to an F1 score of 0.762. KNN matches Random Forest in 
accuracy (0.76) and shows balanced precision (0.737) and recall 
(0.736), with an F1 score of 0.737. Logistic regression performs 
moderately, with an accuracy of 0.752 and an F1 score of 0.739. 
Lastly, the Decision Tree has the lowest performance, with an 
accuracy of 0.728 and an F1 score of 0.721. In general, SVM 
stands out as the most effective model for stroke prediction, 
especially in recall, which is crucial to accurately identifying 
stroke cases [13]. 

SVM stands out as the best performing model for stroke 
prediction, with a high accuracy of 0.792 and an F1 score of 0.8. 
Its recall of 0.912 makes it particularly effective in identifying 
actual stroke cases, which is crucial for minimising missed 
diagnoses. SVM also balances well with a precision of 0.712, 
outperforming other models and making it the most reliable 
choice for real-life stroke prediction applications. 

Wu & Fang (2020) research is stroke prediction with 
Machine Learning Methods among Older Chinese. In this study, 
the significant class imbalance between stroke and non-stroke 
cases (approximately 1:19) required the use of data balancing 
techniques. Regularised Logistic Regression (RLR), Support 
Vector Machine (SVM), and Random Forest (RF) models were 
applied to both the original imbalanced data and three balanced 
datasets generated using Random Over-Sampling (ROS), 
Random Under-Sampling (RUS), and the Synthetic Minority 
Over-Sampling Technique (SMOTE). The imbalanced data set 
yielded high accuracy but extremely low sensitivity (close to 
0.00) and an AUC of around 0.50. However, once data balancing 
techniques were applied, the model performance improved 
significantly. Although precision and specificity experienced a 
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slight decrease, sensitivity increased to 0.78 and AUC rose to 
0.72, leading to a more balanced and effective model for stroke 
prediction. For the unbalanced data set, RF had a higher AUC 
(0.52, 95% CI 0.51–0.53) compared to RLR (p < 0.01), though 
RF's overall performance remained relatively low. No 
significant differences were observed between SVM and RLR 
(p > 0.05) [14]. 

In the ROS-balanced dataset, SVM outperformed RLR 
significantly, achieving an AUC of 0.71 (95% CI 0.68–0.74), 
while the difference between RF and RLR was not statistically 
significant (p > 0.05). In both the RUS-balanced and SMOTE-
balanced datasets, SVM and RF performed similarly to RLR, 
with no significant differences noted (p > 0.05). Overall, data 
balancing improved the performance of SVM and RF, with 
SVM showing the greatest AUC improvement in the ROS-
balanced dataset [14]. 

Bandi et al. (2020) research predicts the severity of brain 
stroke using machine learning. The Random Forest algorithm 
outperformed other models with an accuracy of 94.23%, a 
sensitivity of 92.16%, and a specificity of 95.07%, along with a 
low error rate of 0.04%. Due to its superior performance, it was 
chosen for further development in the prediction algorithm to 
improve accuracy. Other models, such as Decision Tree and 
AdaBoost, also performed well, but Random Forest proved to 
be the most reliable for this task [15]. 

The improvised Random Forest model shows significant 
improvements over the basic version, as indicated in the table. It 
achieves a high accuracy of 96.97%, precision of 94.56%, 
sensitivity of 94.9%, specificity of 97.81%, and an F1 score of 
94.73%, with a lower error rate of 0.03%. This enhanced model 
has been integrated into the SPN algorithm to classify stroke risk 
levels into three categories: low, moderate, and high. 
Additionally, the SPN algorithm utilises the proposed model to 
identify key features within the data set that are essential for 
detecting various types of strokes, including ischemic, 
intracerebral, and subarachnoid hemorrhagic strokes. These 
crucial attributes contribute to a better prediction of stroke risk 
and help to more effectively manage patients [15]. 

Azam et al. (2020) study focuses on evaluating the efficacy 
of high-performance machine learning algorithms for the 
prediction of stroke risk. Three techniques are investigated: 
Random Forest (RF), Decision Tree (DT) and Logistic 
Regression (LR). The research also examines important risk 
variables that lead to stroke, comparing models with and without 
the smoking status variable. Data preprocessing techniques are 
used, particularly to balance the data set and improve model 
performance. With a focus on supporting efforts to prevent 
strokes, the objective is to compare how well different 
algorithms predict stroke risk and pinpoint important 
characteristics that affect the occurrence of strokes. The data set 
used for the investigation contains 62001 rows and a total of 12 
columns. The first eleven columns contain the features that they 
will use subsequently to forecast the final column, 
“target(stroke),” which will indicate whether or not the patient 
will experience a stroke. The 62001 rows are the patient data that 
we were able to locate in the data set. The results indicate that 
the RF classifier achieved the highest accuracy at 99.98%, 
closely followed by the DT classifier with smoking status at 

98.78%, while the DT classifier without smoking status 
recorded an even higher accuracy at 99.46%. In contrast, both 
LR classifiers performed significantly lower, with accuracies of 
71.21% and 81.34%, respectively. These findings highlight the 
superior predictive capacity of DT and RF models, particularly 
when incorporating smoking status as a feature, underscoring 
the importance of feature selection in improving stroke risk 
prediction [16]. 

Islam et al. (2021) suggested employing a machine learning 
algorithm to analyse stroke risk using a healthcare dataset that 
included a variety of risk factors. There are 5110 observations 
with 12 attributes in the data set used. Characteristics include 
age, gender, heart disease, hypertension, type of work, type of 
residence, average blood sugar level, BMI, smoking status, and 
stroke. Other factors are independent and stroke is a dependent 
variable. The algorithms used are Logistic Regression, Decision 
Tree Classification, K-Nearest Neighbours and Random Forest. 
They have employed exploratory data analysis (EDA), which 
helps find patterns, spot anomalies, and create hypotheses, by 
analysing data sets and summarizing their essential features 
using data visualisation tools. Feature engineering is used after 
EDA to convert unprocessed data into useful features that 
improve model accuracy, especially when working with 
unbalanced datasets. Synthetic Minority Oversampling 
Technique (SMOTE) was specifically used in this work to 
resolve the imbalance in the target variable, which comprises 
4908 patients who did not experience a stroke and 201 patients 
who experienced one stroke. The Random Forest model 
achieved the highest accuracy on all metrics, recording a 
precision, recall, and F1 score of 96%. Following in 
performance, the Decision Tree Classifier (DTC) secured 93% 
for each metric, while the K-Nearest Neighbours (K-NN) model 
achieved 90% for both Precision and Recall, with an F1-Score 
of 90%. Logistic regression performed the least, with a 
consistent accuracy of 87% across all three metrics. These 
results indicate the superior efficacy of the Random Forest 
model in predicting stroke risk compared to other algorithms 
tested [17]. 

Alruily et al. (2023) forecast cerebral stroke illnesses; they 
presented a tuning ensemble RXLM made up of XGBoost, 
LightGBM, and RF. They used an open-access stroke dataset to 
predict cerebral stroke risk using Random Forest (RF), Extreme 
Gradient Boosting (XGBoost) and LightGBM. The dataset was 
pre-processed using the KNN imputer to handle missing data, 
feature normalisation, one-hot encoding, and outlier removal. 
Synthetic Minority Oversampling (SMO) was used to balance 
the stroke and non-stroke samples after data splitting. 
Hyperparameter tuning was performed using a random search 
technique, and the optimal parameters were then integrated into 
an ensemble model known as RXLM. When this adjusted set of 
classes was compared with conventional classifiers, all 
algorithms performed admirably. The data set comprises 249 
stroke patients and 4861 normal patients, together with 2994 
females, 2115 males, and one other. A training set of 4088 rows 
(3901, no-stroke and 187 strokes) (80%) and a test set of 1022 
rows (20%) were created from the data set [18]. 

In the first experiment, the performance of four models—
Random Forest (RF), XGBoost, LightGBM, and the ensemble 
RXLM—was evaluated before hyperparameter optimisation. 
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RXLM achieved the highest scores for precision (96.08%), 
precision (96.65%), F1 score (96.06%), Kappa (92.16%), and 
MCC (92.2%), while XGBoost had the highest AUC (99.13%). 
RF had the highest recall (96.56%), but the lowest scores for 
precision (94.49%), AUC (98.84%), precision (92.73%), F1 
score (94.6%), Kappa (88.98%) and MCC (89.06%). LightGBM 
performed similarly to RF and XGBoost, with an accuracy of 
94.82%. Overall, RXLM outperformed the other models in most 
metrics except recall, where it had the lowest value at 95.5%. 

In the second experiment, the performance of Random 
Forest (RF), XGBoost, LightGBM, and the ensemble RXLM 
was evaluated after hyperparameter tuning using the random 
search technique. The ensemble RXLM outperformed the 
others, achieving accuracy (96.34%), AUC (99.38%), precision 
(96.55%), F1-score (96.33%), Kappa (92.68%), and MCC 
(92.69%). XGBoost had the highest recall at 98.65%, while its 
other metrics included accuracy (92.42%), AUC (99.12%), 
precision (87.74%), F1 score (92.87%), Kappa (84.84%), and 
MCC (85.52%). LightGBM also performed well, with an 
accuracy of 95.18% and other metrics showing solid results 
(AUC: 98.86%, recall: 94.91%, precision: 95.45%, F1-score: 
95.17%, Kappa: 90.37%, MCC: 90.39%). On the contrary, RF 
had the lowest performance across all metrics, with accuracy at 
84.73%, AUC at 92.75%, and other scores significantly lower 
than those of the ensemble and the boosted models. 

C. Summary of Reviews 

This section summarises existing reviews on stroke 
predictions by categorising them into different domains, which 
are healthcare, dental, cloud-based software engineering, 
renewable energy systems, face recognition, sentiment analysis, 
and plantation, as shown in Table I. 

TABLE I.  CATEGORISATION OF PREVIOUS STUDIES ACCORDING TO 

FOUR DIFFERENT DOMAINS 

Criteria Domain Reference 

Random Forest (RF) A, B, E [19], [20], [21], [22] 

Support Vector Machine (SVM) A, F, G, H, I [19], [23], [24], [25] 

Note: A-healthcare technology; B-dental; C-cloud-based software engineering; D-renewable energy 
systems; E-face recognition; F-sentiment analysis; G-plantation. 

III. MATERIALS AND METHODS 

Fig. 3 shows the research methodology used in this study. 
The following sub-sections will explain each step in the 
research. 

A. Data Collection 

For the stroke prediction project, we collect data from 
Kaggle, which contains over 5,000 records, each with 12 
essential features for analysis. These features include a unique 
patient ID, gender, age, and binary indicators for hypertension 
and heart disease. Additionally, it encompasses marital status, 
work type, residence type, average glucose level, and body mass 
index (BMI). 

B. Data Pre-Processing 

Data preprocessing is essential to prepare the data set for 
stroke prediction and involves several key steps. First, missing 
values are identified and imputed using appropriate methods, 

such as mean or mode, or records may be removed if necessary. 
Techniques for noise reduction are used to improve data quality, 
including removing duplicates, cleaning data, and applying data 
transformation, to enhance data quality. Outlier detection is 
performed using visualisations and box plot methods, followed 
by capping or removing extreme values to prevent distortion in 
analysis. Categorical variables are converted into numerical 
formats through label encoding or one-hot encoding; for 
example, the gender variable, which includes "female" and 
"male," is transformed into 0 for female and 1 for male. Feature 
scaling is carried out using normalisation or standardization to 
ensure that all features contribute equally to the model. Finally, 
strategies to address class imbalance, such as oversampling, 
under sampling, or adjusting class weights, are implemented to 
improve model performance and ensure that all classes are 
adequately represented. 

 
Fig. 3. Research methodology flow diagram. 

C. Exploratory Data Analysis (EDA) 

Bar charts display the frequency of categorical variables, 
helping to assess the demographic composition of the data. Pie 
charts can illustrate the proportions of critical health indicators, 
such as hypertension and heart disease status. A correlation 
matrix assesses relationships between numerical features, 
revealing potential multicollinearity, while descriptive statistics 
summarise key characteristics, such as mean and standard 
deviation, aiding in understanding the data's distribution. 

D. Model Training 

In the model training phase for the stroke prediction project, 
I will implement and evaluate multiple algorithms, including the 
Support Vector Machine (SVM) and Random Forest. 
Specifically, I will explore hybrid approaches that combine 
SVM with Random Forests to leverage their complementary 
strengths. The data set will be divided into 80% for training the 
models and 20% for testing their performance. 

E. Model Evaluation 

The models in this research are evaluated using Table II 
equations and evaluation metrics. 
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TABLE II.  MODEL EVALUATION EQUATIONS 

Evaluation metrics Equation/Description 

Accuracy 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
=  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Note: TP-True Positive; TN-True Negative; TP-Total Population; FP-False Positive; FN-False Negative 

Precision 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Note: TP-True Positive; TN-True Negative; TP-Total Population; FP-False Positive; FN-False Negative 

Recall (Sensitivity) 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Note: TP-True Positive; TN-True Negative; TP-Total Population; FP-False Positive; FN-False Negative 

F1 Score 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 x 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= 2 𝑥 

𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 +  𝐹𝑁
 

Note: TP-True Positive; TN-True Negative; TP-Total Population; FP-False Positive; FN-False Negative 

ROC-AUC 
Receiver Operating Characteristics - Area under Curve 
The ROC curve illustrates the trade-off between sensitivity (true positive rate) and specificity (true negative rate) at various threshold 

settings. 

PR-AUC 
Precision-Recall Area Under the Curve 
The purpose of PR-AUC is to evaluate how well a binary classification model identifies the positive class, especially in cases where 

the data set is imbalanced. 
 

F. Hyperparameter Tuning 

Hyperparameter tuning will be performed to enhance model 
performance, focussing on key hyperparameters, such as 
learning rate, batch size, number of epochs, and dropout rate. By 
systematically adjusting these parameters, we aim to optimise 
the models for stroke prediction and improve their accuracy and 
generalisation. 

IV. RESULTS 

A. Dataset 

The stroke prediction data set comprises 5,110 observations, 
each with 12 attributes. Among these, 10 attributes are 
considered relevant for prediction. These attributes include 
essential patient details, such as identification number, age, 
gender, hypertension, marital status, occupation, type of 
residence, heart disease status, average glucose level, BMI, 
smoking habits, and stroke status. The 
data['stroke'].value_counts() output shows the distribution of the 
target variable stroke, where 4745 customers (92.9%) did not 
experience a stroke (0), while 365 customers (7.1%) had a stroke 
(1). The code applies the ggplot style and creates a bar chart to 
visualise the distribution of stroke cases. It uses Seaborn's 
countplot with a yellow-green colour palette to show how many 
customers had a stroke (1) versus those who did not (0). The bar 
labels display exact counts, making the imbalance in the data set 
clear: most of the customers did not experience a stroke. 

B. Data Pre-Processing  

1) Missing values: The data.isnull().sum() output shows the 

number of missing values in each column (Fig. 4). All columns 

have complete data except for BMI, which has 184 missing 

values. This means that of 5110 entries, only 4926 rows have a 

valid BMI value. The code calculates the percentage of missing 

values for each column and visualises them using a point plot. 

First, it creates a DataFrame (missing) with missing value 

percentages and then plots these values using Seaborn’s 

pointplot. The x-axis represents column names (rotated for 

readability), and the y-axis shows the percentage of missing 

data. The BMI column is expected to show around 3.6% 

missing values (184 out of 5110). This helps identify missing 

data patterns, guiding decisions on imputation or removal 

strategies. Only the BMI column has missing values, 

accounting for 3.6% of the data set. Next, the fillna() code is 

used to fill in missing values. The inplace=True parameter 

updates the DataFrame directly. After replacement, it checks 

for any remaining missing values using isnull().sum(), 

confirming that all missing BMI values are now replaced (0 

missing values remain). This technique helps maintain data 

consistency without losing records. 

2) Noise reduction 

a) Duplicates: The data.duplicated() code is used to 

check for duplicate rows in the dataset. It then filters the data 

set to display any duplicate rows. The output shows an empty 

DataFrame, which means that no duplicate rows were found. 

b) Distribution and outliers: The boxplot is used to 

visualise the distribution and outliers for the numerical columns 

age, BMI, and avg_glucose_level, as shown in Fig. 5. The age 

column appears to have a well-distributed range from 0 to 80 

years, with a median around 45 years and only a few mild 

outliers. The BMI column shows several outliers above 50, 

indicating that some individuals have significantly higher BMI 

values, although most values fall between 10 and 40. The 

avg_glucose_level column has a large number of extreme 

outliers, especially above 150 mg/dL, suggesting that some 

individuals have unusually high glucose levels. This analysis 

helps identify potential anomalies, which may need to be 

addressed through techniques such as capping, transformation, 

or removal to improve data quality for model training. 
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Fig. 4. Data missing analysis and preprocessing. 

 
Fig. 5. Box plot for numerical columns. 

Data.drop (columns = [‘id’]) code is used to remove the id 
column from the data set using. The id column is usually a 
unique identifier for each row and does not contribute to 
predictive modelling. The removal of it helps reduce the 
dimensionality and prevents the model from considering it as a 

meaningful feature, ensuring a cleaner data set for analysis and 
machine learning. 

c) Out-of-range values: The code in Fig. 6 checks for 

unrealistic values in the columns of age, BMI, and 

avg_glucose_level by filtering for values outside reasonable 

ranges (age: 0-82, BMI: 10-55, avg_glucose_level: 0-400). The 

results show no invalid values for age and glucose level, but 

some records have BMI values greater than 55, with a 

maximum of 97.6. These high BMI values may be outliers or 

data entry errors that require further investigation or treatment 

(e.g. capping or removal). Identifying and handling such 

anomalies is crucial to improving model performance and 

avoiding biased predictions. 

Next, the codes in Fig. 7 are used to filter out unrealistic 
values in the age, BMI, and avg_glucose_level columns by 
keeping only records within reasonable ranges (age: 0-82, BMI: 
10-55, avg_glucose_level: 0-400). It then ensures that any 
remaining invalid values (although none should exist after 
filtering) are replaced with the median value of the respective 
column. This approach removes extreme outliers while 
maintaining a consistent and realistic, which helps improve 
model accuracy and reliability. 

 
Fig. 6. Snippet of code used to check for out-of-range values. 
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Fig. 7. Snippet of code used to filter unrealistic values. 

 
Fig. 8. Snippet of codes used to define acceptable value ranges.

Fig. 8 codes are used to define acceptable value ranges for 
the columns age (0-82), BMI (10-55), and avg_glucose_level (0-
400) using a dictionary. It then iterates over these columns, 
filtering the data set to count the number of values that fall 
outside the specified ranges. The output confirms that no out-of-
range values remain in the dataset, which means that all extreme 
or unrealistic values have been successfully removed or 
corrected. This ensures a clean data set for analysis and 
modelling, reducing the risk of biases caused by erroneous data 
points. 

d) Inconsistent categorical values: The code in Fig. 9(a) 

is used to check for unique values in the categorical column 

smoking_status to identify inconsistencies. It then standardises 

values by converting them to lowercase, ensuring uniformity 

(e.g. changing Unknown to “unknown”). This transformation 

prevents issues such as case-sensitive mismatches during 

analysis or modelling. After standardisation, the data set 

contains four consistent categories: “unknown”, “never 

smoked”, “formerly smoked”, and “smokes”, improving the 

data quality and consistency for machine learning or statistical 

analysis. Fig. 9(b) checks for unique values in the gender 

column and detects three categories: “Male”, “Female” and 

“Other”. To ensure consistency, convert all values to lowercase, 

standardising them as “male”, “female”, and “other”. This step 

helps avoid case-sensitive mismatches, ensuring that the data 

remains clean and uniform for analysis and modelling. 

However, the presence of “other” could require further review, 

depending on the context and application. Fig. 9(c) checks the 

unique values in the work_type column and finds five 

categories: “Private”, “Self-employed”, “Govt_job”, 

“Never_worked” and “children”. To ensure consistency, it 

converts all values to lowercase, standardising them as 

“private”, “self-employed”, “govt_job”, “never_worked” and 

“children”. This step prevents case-sensitive discrepancies, 

ensuring that categorical values remain uniform for analysis 

and modelling. However, further review may be needed to 

confirm whether “children” and “never_worked” require 

special handling. 

Fig. 9(d) code checks for unique values in the 
Residence_type column and finds two categories: “Rural” and 
“Urban”. To ensure consistency, it converts all values to 
lowercase, standardising them as “rural” and “urban”. This 
prevents case-sensitive discrepancies that could cause problems 
in analysis or machine learning models. The final result 
confirms that all values are now uniform, improving quality and 
reliability. Lastly, Fig. 9(e) code checks for inconsistencies in 
the ever_married column by identifying cases where a person is 
marked as “Yes” (married) but is younger than 18 years old. If 
such inconsistencies exist, the code corrects them by changing 
“ever_married” to “No”. However, since no such cases were 
found in the dataset, no corrections were needed, and the 
message "No inconsistencies found" was displayed. This 
ensures that the data remain logical and accurate for analysis. 

a) Encoding: The mapping in Fig. 10 represents how 

categorical variables have been encoded into numerical values 

for machine learning. The gender is labelled as 0 for the female, 

1 for the the male, and 2 for other. Ever_married is binary, with 

0 for "No" and 1 for "Yes". Work_type is categorised into five 

groups: 0 for children, 1 for government jobs, 2 for never 

worked, 3 for private sector jobs, and 4 for self-employed 

individuals. Residence_type is divided into 0 for rural and 1 for 

urban. Smoking_status is assigned values based on smoking 

history: 0 for formerly smoked, 1 for never smoked, 2 for 

currently smoke and 3 for unknown status. Lastly, stroke is 

classified as 0 for no stroke and 1 for stroke occurrence. This 

encoding standardises the dataset, making it compatible with 

machine learning models while preserving essential categorical 

distinctions. 
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(a) Smoking_status 

 
(b) Gender 

 
(c) Work_type 

 
(d) Residence_type 

 
(e) Ever_married 

Fig. 9. Snippet of code used to check for unique values. 

 
Fig. 10. Categorical variables encoded as numerical variables. 

C. Exploratory Data Analysis (EDA) 

To understand the class distribution of the target variable 
stroke after data preprocessing, we analyzed both the count and 
proportion of each class (0 = no stroke, 1 = stroke) in the dataset. 
After data preprocessing, the count for “No Stroke” is 4713 
instances and “Stroke” is 364 instances: with a proportion of 
92.83% “No Stroke” and 7.17% “Stroke”. The imbalance is a 
common issue in medical datasets and will be addressed during 

model development by using class-weighted algorithms to 
mitigate this issue and improve the model's ability to detect 
stroke cases accurately. 

1) Univariate Analysis (Distribution of Individual 

Variables): The bar graph in Fig. 11 shows the frequency 

distribution of various categorical characteristics in the data set. 

This graph helps us to understand the composition and balance 

of each feature. By this bar chart, we can notice that most of the 
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gender in the dataset is female ‘0’ and the least is the other ‘2’. 

Most patients in our data set do not have hypertension ‘0’ and 

heart disease ‘0’ and most are married ‘1’. Most of the patients 

are under the private company ‘2’, and the least of them are 

under the ‘2’ category and have never worked. The resident of 

Urban ‘1’ is slightly higher than Rural ‘0’. Lastly, most patients 

never smoked ‘1’; there is almost the same proportion of 

patients who previously smoked ‘0’ and smoke ‘2’. 

Meanwhile, the histogram in Fig. 12 displays the frequency 
distribution of various numerical features in the data set. This 
graph helps us to understand the composition and balance of 
each feature. By using the histogram, we can notice that most 
patients in the data set are between 50 and 60 years old with an 
appropriate frequency of 260. For the BMI variable, most of the 
data is around 28 to 30 with appropriate 630 frequencies. Lastly, 
most average glucose levels are around 80 to 90 with 
appropriately 660 frequencies. 

2) Bivariate Analysis (Relationship between Variables and 

Stroke): The bar charts in Fig. 13 display the frequency 

distribution of various categorical features in the dataset. This 

visualisation helps us to understand the composition and 

balance of each feature and its potential relationship with stroke 

occurrence. From the chart, we observe the following: 

 Gender: The number of female patients who experienced 
a stroke is slightly higher than that of male patients. 

 Hypertension or heart disease: Patients with 
hypertension or heart disease appear to be more likely to 
have had a stroke compared to those without these 
conditions. 

 Marital Status: The number of stroke cases is higher 
among married patients than among single patients. 

 Work Type: Patients employed in the private sector make 
up the largest proportion of both stroke and non-stroke 
cases. 

 Residence Type: The deaths and non-stroke cases in 
urban areas are slightly higher than in rural areas. 

 Smoking Status: Among patients who never smoked, 
most did not have a stroke. In contrast, people who 
currently smoke have the highest number of stroke cases. 

Based on these observations, we can make a preliminary 
assumption that individuals who are married females, with 
hypertension and heart disease, work in the private sector, and 
have a habit of smoking, may be at higher risk of stroke. 

 

Fig. 11. Frequency distribution of various categorical features. 

 
Fig. 12. Frequency distribution of various numerical features. 
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Fig. 13. Frequency distribution of various categorical features in the dataset.

3) Association Between Categorical Variables (Chi-Square 

Test): To examine whether there is a statistically significant 

association between categorical variables and stroke 

occurrence, a Chi-Square Test of Independence was performed 

for each categorical variable in the data set. According to 

Table III, variables such as “hypertension”, “heart_disease”, 

“ever_married”, “work_type”, and “smoking_status” show a 

statistically significant relationship with stroke. This suggests 

that these features might be useful predictors of stroke risk in 

further modelling or analysis. The variables “gender” and 

“residence_type” do not show a statistically significant 

association with stroke. This implies that these variables may 

not play a substantial role in determining stroke risk in this data 

set. 

TABLE III.  CHI-SQUARE STATISTICS 

Variables Chi-Square Statistics p-value 

gender 

hypertension 

heart_disease 

ever_married 

work_type 

residence_type 

smoking_status 

0.1907 

1031.71 

1364.37 

86.0216 

113.968 

1.5532 

321.95 

0.9090 

2.2995e-226 

1.1635e-298 

1.7798e-20 

1.0362e-23 

0.2127 

1.7643e-69 

The box plots in Fig. 14 illustrate the distribution of three 
continuous variables “age”, “average’, “avg_glucose_evel” and 
“BMI” between stroke outcomes (0 = no stroke, 1 = stroke). 
These visualisations help us identify how these variables differ 

between stroke and non-stroke patients. Stroke patients tend to 
be significantly older than non-stroke patients. The median age 
of stroke patients is around 75, while for non-stroke patients it is 
closer to 40. There is a wider age range among non-stroke 
patients, whereas stroke cases are more concentrated among the 
elderly. This suggests that age is a strong risk factor for stroke. 
Patients who have had a stroke tend to have higher average 
glucose levels. The median glucose level for stroke patients is 
above 150, compared to below 100 for non-stroke patients. The 
presence of high outliers in both groups indicates variability, but 
stroke patients generally show higher glucose distributions. This 
supports the idea that high blood sugar or diabetes may be 
associated with an increased risk of stroke. The distribution of 
stroke and non-stroke patients shows some overlap, but stroke 
patients have a slightly higher median BMI. There are more 
extreme BMI values (outliers) in the non-stroke group. Although 
the difference is less pronounced compared to age and glucose 
level, it still suggests a potential moderate relationship between 
obesity and stroke. 

4) Correlation matrix: The correlation matrix in Fig. 15 

shows Pearson’s correlation coefficients between the numerical 

and binary variables in the data set. These coefficients range 

from -1 to 1. We are especially interested in how each feature 

correlates with the target variable stroke. The features with a 

stronger association with stroke (r≥0.3) are the features may 

have a more significant influence on stroke occurrence. Heart 

disease (r = 0.52) is the strongest positive correlation with 

stroke. This indicates that people with heart disease are more 

likely to suffer a stroke. Hypertension (r = 0.45) was positively 
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correlated, which means that high blood pressure can increase 

the risk of stroke. Meanwhile, age (r = 0.35) shows that older 

individuals are more prone to stroke. For the average glucose 

level (r = 0.30), elevated glucose levels are associated with a 

higher risk of stroke. 

 
Fig. 14. Distribution of variables. 

On the other hand, features with weak or No Significant 
Correlation to Stroke (r < 0.3) are variables do not show a strong 
linear relationship with stroke: Gender (r = 0.00), ever married 
(r = 0.13), type of work (r = 0.12), type of residence (r = 0.02), 
BMI (r = 0.08) and smoking status (r = -0.04). Although these 
features might still have some predictive power (especially in 
nonlinear models), they are not strongly linearly associated with 
stroke. Thus, through this heat map, we know that 
“heart_disease”, “hypertension”, “age”, and 
“avg_glucose_level” are the most relevant features correlated 
with stroke. Features such as “gender”, “ever_married”, and 
“BMI” show little to no correlation, suggesting that they may 
play a less significant role in stroke prediction from a linear 
perspective. 

 

Fig. 15. Correlation matrix of variables. 

5) Feature importance: To complement the correlation 

analysis, a RandomForestClassifier was trained to identify the 

most influential features in the prediction of stroke (Fig. 16). 

This model is effective because it captures not only linear 

relationships, but also non-linear patterns and interactions 

between features. According to the Random Forest model, the 

features with the highest scores (greater than 0.05) are age 

(0.29), avg_glucose_level (0.28), heart_disease (0.13), BMI 

(0.122), hypertension (0.12), and smoking_status (0.06). These 

variables contribute significantly to the predictions and are 

strongly associated with the probability of stroke. 

 
Fig. 16. Feature importance analysis (for EDA). 

On the other hand, the features with lower importance scores 
(less than 0.05) are: work_type (0.025), gender (0.02), 
residence_type (0.019), ever_married (0.01). These variables 
may still play minor roles in prediction but are not considered 
strong indicators of stroke in this model compared to clinical 
factors such as age, “avg_glucose_level” or “heart_disease”. 

After reviewing the findings of the Chi-square test analysis, 
correlation matrix, and the result of the importance of features, 
we observed that both “gender” and “residence_type” 
consistently showed a low association with stroke. As a result, 
we decided to exclude these two variables from the final model 
to improve processing efficiency and eliminate weak predictors. 
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D. Split the Data for Training, Testing and Validation 

The data set has been pre-processed by separating the target 
variable (stroke) from the feature set and applying MinMax 
Scaling to normalise all feature values between 0 and 1. This 
ensures that all features contribute equally to the model. The 
scaled data set is then divided into training subsets (70%), 
validation (10%), and testing (20%) using the split train-test. 
First, 70% of the data are assigned to training, while the 
remaining 30% is temporarily stored. Then, this temporary set is 
further split into 10% for validation and 20% for testing. The 
final data set sizes are (3553, 10) for training, (508, 10) for 
validation, and (1016, 10) for testing, ensuring a well-balanced 
distribution for model training, tuning, and evaluation. 

The SVM (Support Vector Machine) classifier is then 
evaluated on different training subset sizes to analyse its impact 
on classification performance. It first subsets the training data to 
specified sizes, applies MinMax Scaling, and then trains the 
SVM model on the subset. The model is tested in a separate test 
set and its accuracy, precision, recall, and F1 score are measured. 
The results show consistent performance across different subset 
sizes, with accuracy around 96.4%, indicating that the model 
generalises well with even smaller training data. The purpose of 
this experiment is to assess how the size of the dataset influences 
the performance of the model and determine whether a reduced 
dataset can achieve similar predictive accuracy, optimising 
computational efficiency. 

E. SVM 

The Support Vector Machine (SVM) model achieved a high 
accuracy of 96.36%, indicating strong overall performance. The 
model effectively identified non-stroke cases, with a precision 
of 97% and a recall of 99%, meaning it rarely misclassified 
healthy individuals as stroke patients. However, its ability to 
detect actual stroke cases was moderate, with a precision of 
83.64% and a recall of 62.16%, indicating that it correctly 
identified only 62.16% of actual stroke cases, while 
misclassifying some as non-stroke. The F1 score of 71.32% 
reflects a balance between precision and recall for stroke 
prediction. 

The confusion matrix Fig. 17(a) shows that the model 
correctly classifies 933 “No Stroke” cases and 46 “Stroke” 
cases, achieving high overall accuracy (96.36%). However, it 
misclassifies 28 actual stroke cases as “No Stroke”, leading to a 
low recall of 62.16%, meaning the model fails to detect nearly 
38% of stroke cases, which is critical in medical applications. 
Although precision for stroke detection is high (83.64%), 
indicating that most predicted strokes are correct, the model's 
bias toward the majority class results in missed stroke cases. The 
Receiver Operating Characteristics (ROC) curve [Fig. 17(b)] for 
the Support Vector Machine (SVM) model demonstrates its 
ability to distinguish between stroke and nonstroke cases. The 
AUC score of 0.8418 indicates that the model has a good level 
of discrimination, which means that it correctly ranks stroke 
cases higher than non-stroke cases approximately 84.18% of the 
time. The Precision-Recall (PR) curve [Fig. 17(c)] evaluates the 
model performance in distinguishing stroke cases, especially 
when dealing with an imbalanced dataset. The PR AUC score of 
0.6688 indicates that the Support Vector Machine (SVM) model 
achieves a moderate balance between precision (how many 

predicted stroke cases are actually strokes) and recall (how many 
actual stroke cases are correctly identified). 

 
(a) Confusion matrix 

 
(b) ROC 

 
(c) Precision Recall 

Fig. 17. SVM performance evaluation. 

F. Random Forest 

The Random Forest Classifier achieved a high accuracy of 
96.75%, indicating a strong overall performance. The precision 
for stroke cases (1) is 93.62%, which means that most predicted 
stroke cases were correct. However, the recall is only 59.46%, 
suggesting that the model struggles to identify all actual stroke 
cases, leading to a significant number of false negatives. The F1 
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score of 72.73% reflects this trade-off between precision and 
recall. 

The confusion matrix in Fig. 18(a) shows that the model 
correctly classifies 938 "No Stroke" cases and 44 "Stroke" cases, 
achieving high overall accuracy (96.75%). It excels at correctly 
identifying nonstroke cases (0 class, with near-perfect recall) 
with only misclassified four non-stroke cases as stroke (False 
Positives). However, it misclassifies 30 actual stroke cases as 
"No Stroke", leading to a low recall of 59.46%, meaning that the 
model fails to detect nearly 41% of stroke cases, which is critical 
in medical applications. While precision for stroke detection is 
high (93.62%), indicating that most predicted strokes are 
correct, the model's bias toward the majority class results in 
missed stroke cases. The Receiver Operating Characteristics 
(ROC) curve [Fig 18(b)] for the Random Forest (RF) model 
demonstrates its ability to distinguish between stroke and 
nonstroke cases. The AUC score of 0.8891 indicates that the 
model has a good level of discrimination, meaning it correctly 
ranks stroke cases higher than non-stroke cases approximately 
88.91% of the time. The Precision Recall (PR) curve [Fig. 18(c)] 
evaluates the performance in distinguishing stroke cases, 
especially when dealing with an unbalanced data set. The PR 
AUC score of 0.7192 indicates that the Random Forest (RF) 
model achieves a moderate balance between precision (how 
many predicted stroke cases are actually strokes) and recall (how 
many actual stroke cases are correctly identified). 

 
(a) Confusion matrix 

 
(b) ROC 

 
(c) Precision Recall 

Fig. 18. Random Forest performance evaluation. 

G. Hybrid Feature Augmentation Model (RF+SVM) 

The feature-augmented SVM model, enhanced with 
Random Forest predictions, achieved a high test accuracy of 
96.85%, with a precision of 95.65%, recall of 59.46%, and an 
F1-score of 0.7333. This indicates that the hybrid model is 
highly effective in correctly identifying stroke cases while 
minimising false positives. Although the recall is moderate, it 
reflects a significant improvement in capturing true stroke cases 
compared to standard models. 

The confusion matrix in Fig. 19(a) shows that the model 
correctly classifies 940 cases of “No Stroke” and 44 cases of 
“Stroke”, achieving high overall accuracy (96.85%). It excels at 
correctly identifying non-stroke cases (0 class, with near-perfect 
recall), with only misclassifying two non-stroke cases as stroke 
(False Positives). However, it misclassifies 30 actual stroke 
cases as "No Stroke", leading to a low recall of 59.46%, meaning 
that the model fails to detect nearly 41% of stroke cases, which 
is critical in medical applications. While the precision for stroke 
detection is high (95.65%), indicating that most predicted 
strokes are correct, the model's bias toward the majority class 
results in missed stroke cases. The augmentation model 
(SVM+RF) in Fig. 19(b) achieves an AUC score of 0.8707, 
indicating strong classification performance. An AUC close to 
1.0 suggests that the model is effective in distinguishing between 
stroke and non-stroke cases across various threshold levels. This 
score reflects a good balance between sensitivity (true positive 
rate) and specificity (1 false positive rate), supporting the 
reliability in medical decision-making where accurate 
classification is crucial. It means that it correctly ranks stroke 
cases higher than non-stroke cases approximately 87.07% of the 
time. The Precision-Recall (PR) Curve analysis [Fig. 19(c)] for 
the feature-augmented SVM model yields a PR AUC score of 
0.7038, indicating a moderately strong ability to identify stroke 
cases, especially given the class imbalance. This score reflects 
how well the model maintains high precision and recall when 
predicting the minority class (stroke). A PR AUC closer to 1.0 
suggests better performance in minimising false positives while 
capturing most true stroke cases. Thus, the value of 0.7038 
demonstrates that the model is reasonably effective in 
prioritising stroke detection with fewer false alarms. 
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(a) Confusion matrix 

 
(b) ROC 

 
(c) Precision Recall 

Fig. 19. Performance evaluation of the hybrid SVM + RF model. 

H. Model Evaluation (RF, SVM, Feature Augmentation) 

The bar chart in Fig. 20 compares the Support Vector 
Machine (SVM), the Random Forest (RF) and a hybrid 
Augmented SVM model on four performance metrics: accuracy, 
precision, recall, and F1 score. Although SVM shows the 
highest recall (0.622), it falls behind in precision and F1 score, 
indicating that it captures more positives, but also introduces 

more false alarms. Random Forest performs more consistently, 
especially in precision (0.917), but still lags slightly behind in 
recall and overall balance. The feature-augmented SVM, which 
combines the strengths of both SVM and RF, achieves the best 
overall performance with the highest accuracy (0.969), precision 
(0.957), and F1 score (0.733), while maintaining recall 
comparable to RF. This improvement demonstrates that 
integrating the high recall ability of SVM with the precision 
strength of Random Forest leads to a more robust and well-
rounded hybrid model. 

 
Fig. 20. Performance comparison between Random Forest, Support Vector 

Machine, and hybrid model (SVM+RF). 

The confusion matrices for the SVM, Random Forest (RF), 
and Feature-Augmented Model (SVM+RF) in Fig. 21 illustrate 
how each model performs in classifying stroke and non-stroke 
cases. The SVM model correctly predicts 933 nonstroke cases 
and 46 stroke cases, while misclassifying 9 non-stroke cases as 
stroke and 28 stroke cases as non-stroke. Both the RF and 
Feature-Augmented models correctly predict 44 stroke cases 
and misclassify 30 stroke cases as non-stroke. However, RF 
correctly classifies 938 non-stroke cases and misclassifies 4 as 
stroke, while the Feature-Augmented model improves further by 
correctly predicting 940 non-stroke cases and misclassifying 
only 2. This demonstrates that combining the strengths of SVM 
and RF reduces the number of false positives (non-stroke cases 
wrongly classified as stroke), enhancing the model's precision 
by reducing unnecessary stroke predictions, leading to a more 
reliable and balanced classification system. 

The comparison of the Precision Recall (PR) curve in Fig. 19 
illustrates the trade-off between precision and recall for the 
SVM, Random Forest, and Feature-augmented model. Among 
the three, Random Forest achieves the highest PR AUC score 
(0.7192), indicating a more stable performance across all 
thresholds. Although the hybrid model shows superior point 
metrics (higher precision and F1 score at the default threshold), 
its slightly lower PR AUC (0.7038) suggests less consistent 
performance across varying thresholds. Similarly, the SVM has 
a PR AUC of 0.7101, reflecting moderate performance. In 
general, the hybrid model demonstrates strong effectiveness at 
the default classification threshold, while the Random Forest 
offers more reliable confidence across a range of threshold 
values. 
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Fig. 21. Confusion matrices for the SVM, Random Forest (RF), and Feature-Augmented Model (SVM+RF).

 
(a) Precision-Recall (PR) curve. 

 
(b) ROC AUC scores. 

Fig. 22. Performance comparison for the SVM, Random Forest (RF) and 

hybrid model (SVM+RF). 

The ROC AUC scores for the models are as follows: the 
Augmented (Hybrid) model achieved 0.8707, the Random 
Forest model achieved 0.8891, and the SVM model achieved 
0.8747 (Fig. 22). These scores reflect the ability of each model 
to distinguish between stroke and non-stroke cases, with the 
Random Forest model showing the highest performance in this 
regard. The Augmented (Hybrid) model, although slightly lower 
in the ROC AUC compared to Random Forest, demonstrated 
improvements in other key evaluation metrics, such as precision 
and the F1 score, compared to the individual models. This 
suggests that the hybrid model effectively balances performance 

across different metrics, making it a viable alternative in stroke 
classification tasks. 

I. Hyperparameter-Tuning Feature Augmented Model 

(SVM+RF) 

1) Grid search: The feature augmented model was 

developed to improve model performance in predicting stroke 

cases using a VotingClassifier that combines Support Vector 

Machine (SVM) and Random Forest (RF) classifiers. Both 

models were optimised using GridSearchCV with 5-fold cross-

validation and class weight adjustments to address class 

imbalance. The best SVM model used a linear kernel, C = 10, 

and class_weight = “balanced”, while the best RF model used 

200 estimators, max_depth = 10, min_samples_split = 5, and 

class_weight = “balanced_subsample”. The final ensemble 

applied soft voting based on predicted probabilities. An optimal 

decision threshold (0.5805) was selected using the precision-

recall curve to maximise the F1-score. The tuned model 

achieved an accuracy of 96.85%, a precision of 95.65%, a recall 

of 59.46%, and an F1 score of 73.33%. Furthermore, the model 

achieved a PR AUC of 0.7262 and a ROC AUC of 0.9031, 

indicating strong overall performance and improved ability to 

identify stroke cases while effectively managing the class 

imbalance. 

2)  Random search: Another way to perform 

hyperparameter tuning is to optimise Random Forest using 

RandomizedSearchCV with 5-fold cross-validation, and its 

predicted probabilities and class labels were appended as new 

features to the original dataset. These augmented data were 

used to train an SVM, also optimised via 

RandomizedSearchCV. Evaluated on a test set with an 

optimised for recall, the hybrid model achieved an accuracy of 

97.05%, perfect precision (1.0000), a recall of 59.46%, and an 

F1 score of 0.7458. Despite slightly lower ROC AUC scores 

(0.8421) and PR AUC (0.6886) compared to the standalone 

Random Forest, the tuned hybrid approach significantly 

improved precision while maintaining reasonable recall, 

demonstrating its efficacy in balancing high precision with 

improved detection of stroke cases. 

After comparing the results of the two hyperparameter 
tuning methods, we decided to proceed with the Random Search 
outcome, as it demonstrated superior classification performance 
compared to Grid Search. This decision aligns with the objective 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 9, 2025 

18 | P a g e  

www.ijacsa.thesai.org 

of this investigation, which is to improve the overall 
performance of the model. The tuned feature augmented model 
performance is saved for later development usage. 

3) Performance evaluation: The confusion matrix in 

Fig. 23(a) shows that the model correctly classifies 942 "No 

Stroke" cases and 44 "Stroke" cases, achieving high overall 

accuracy (97.05%). It excels at correctly identifying non-stroke 

cases (0 class, with near-perfect recall) without misclassifying 

any non-stroke cases as stroke (False Positives). However, it 

misclassifies 30 actual stroke cases as "No Stroke", leading to 

a low recall of 59.46%, meaning the model fails to detect nearly 

41% of stroke cases. Although precision for stroke detection is 

high (100%), indicating that most predicted strokes are correct, 

the model's bias toward the majority class results in missed 

stroke cases. The ROC AUC score for the hybrid model 

[Fig. 23(b)] after applying random search for hyperparameter 

tuning is 0.8421, indicating the strong ability to distinguish 

between stroke and non-stroke cases. The ROC curve rises 

steeply towards the top left corner, reflecting a high true 

positive rate (TPR) and a low false positive rate (FPR), 

suggesting effective classification performance. The Precision-

Recall (PR) Curve analysis [Fig. 23(c)] for the feature-

augmented SVM model resulted in a PR AUC score of 0.7038, 

indicating a moderately strong ability to identify stroke cases, 

particularly in the context of class imbalance. After tuning 

through Random Search, the model’s PR AUC score decreased 

slightly decreased to 0.6886. This change reflects the model's 

performance adjustment after the tuning process, aiming for an 

improved balance between precision and recall. 

J. Model Evaluation After Hyperparameter Tuning (SVM, 

RF, SVM+RF, Tuned SVM+RF) 

The bar chart in Fig. 24 compares the performance of four 
models: Support Vector Machine (SVM), Random Forest, 
Feature-Enhanced SVM and Tuned Feature Augmented SVM 
using accuracy, precision, recall, and F1 score. Among them, the 
tuned Augmented SVM achieved the highest accuracy (0.970), 
high precision (1.000), and F1 score (0.746), indicating a strong 
ability to correctly identify positive cases while balancing 
precision and recall. Although its recall (0.595) matches that of 
Random Forest and Feature Augmented SVM, its exceptional 
precision significantly increases its overall effectiveness. 
Random Forest showed high accuracy (0.967) and strong 
precision (0.917), but a lower recall (0.595) reduced its F1 score 
to 0.721. The standard SVM performed well with high accuracy 
(0.964) and better recall (0.622), resulting in an F1 score of 
0.713. The enhanced SVM improved over the standard SVM 
with higher precision (0.957) and an F1 score (0.733), although 
its recall remained unchanged. Overall, the Tuned Augmented 
SVM demonstrated the best balance between metrics, 
highlighting the impact of augmentation and hyperparameter 
tuning. 

The confusion matrices of the four models reveal a 
consistent reduction in the number of false positives (cases 
where "No Stroke" was incorrectly classified as "Stroke") 
(Fig. 25). The SVM model had 9 false positives, whereas the 
Random Forest model reduced this to 4. The hybrid model 

(SVM + RF) further reduced the number to 2. The tuned hybrid 
model achieved zero false positives, correctly classifying all 942 
"No Stroke" cases. Importantly, the number of correctly 
classified "Stroke" cases remained consistent at 44 across all 
models, and the number of False Negatives (Stroke cases 
misclassified as "No Stroke") remained at 30. 

 
(a)  Confusion Matrix 

 
(b) ROC AUC 

 
(c) PR AUC 

Fig. 23. Performance evaluation after hyperparameter tuning. 
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Fig. 24. Performance evaluation among four models. 

According to Fig. 26(a), the tuned hybrid model achieved an 
AUC score of 0.842, slightly lower than the Random Forest 
(0.889) and SVM (0.875) models. However, it demonstrated a 
significant advantage by eliminating all false positives, as 
indicated in the confusion matrix, correctly classifying all 942 
"No Stroke" cases. Despite a minor decrease in AUC, the tuned 
hybrid model maintained consistent performance in identifying 
true stroke cases, achieving a balanced outcome between 
sensitivity and specificity. In the performance comparison of 
Fig. 26(b), the Random Forest model achieved the highest PR 
AUC of 0.724, followed by the SVM with a PR AUC of 0.709, 
and the hybrid model with a PR AUC of 0.703. The tuned hybrid 
model achieved a PR AUC of 0.688, showing a slight drop 
compared to the other models. 

 
Fig. 25. Confusion matrices of four models.

 
(a) ROC curve 

 
(b) Precision-Recall curve 

Fig. 26. Performance evaluation (ROV curve and Precision Recall curve) for 

four models. 

V. DISCUSSION 

In this project, the metrics used to evaluate the model 
performance included accuracy (overall correctness), precision 
(the proportion of predicted positives that are actually correct), 
recall (the proportion of actual positives correctly identified), 
F1-score (the harmonic mean of precision and recall), confusion 
matrix (detailed breakdown of predictions), ROC AUC (model's 
ability to distinguish between classes), and PR AUC (trade-off 
between precision and recall, particularly valuable for 
imbalanced datasets). 

The confusion matrix highlights four key components: True 
Positive (TP), where the model correctly predicts a positive case; 
False Negative (FN), where the model correctly predicts a 
negative case for a positive instance; True Negative (TN), where 
the model correctly predicts a negative case; and False Positive 
(FP), where the model incorrectly predicts a positive case for a 
negative instance. 

The standalone SVM achieved an accuracy of 96.36%, a 
precision of 83.64%, a recall of 62.16%, an F1 score of 71.32%, 
an ROC AUC of 0.8418, and a PR AUC of 0.6688, with a 
confusion matrix of 933 TN, 9 FP, 28 FN, and 46 TP. For 
Random Forest (RF), the performance improved with an 
accuracy of 96.75%, a precision of 93.62%, a recall of 59.46%, 
an F1 score of 72.73%, an ROC AUC of 0.8891, and a PR AUC 
of 0.7192, with a confusion matrix of 938 TN, 4 FP, 30 FN, and 
44 TP. The feature-augmented model achieved 96.85% 
accuracy, 95.65% precision, 59.46% recall, 73.33% F1 score, 
0.8707 ROC AUC, and 0.7038 PR AUC, with 940 TN, 2 FP, 30 
FN and 44 TP. 
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The feature-augmented model demonstrated an 
improvement in accuracy, precision and F1-score, particularly 
in identifying stroke cases. Despite a slight decrease in the ROC 
AUC and PR AUC scores, the reduction in false positives (from 
9 and 4 to 2) suggests that the model is more reliable, with fewer 
false alarms. This makes the model more robust for real-world 
deployment, especially where false positives could lead to 
unnecessary tests, anxiety, and increased healthcare costs. 

To further enhance model performance, a Random Search 
hyperparameter tuning was applied. After tuning, the model 
achieved 97.05% accuracy, 100% precision, 59.46% recall, 
74.58% F1-score, 0.8421 ROC AUC, and 0.6886 PR AUC. The 
confusion matrix showed 942 true negatives, 0 false positives, 
30 false negatives, and 44 true positives. 

The tuned feature-augmented model showed improvements 
in accuracy, precision and F1 score, although recall remained the 
same. The reduction of false positives to 0 and the slight increase 
in true negatives (from 940 to 942) indicate that the tuning 
process further optimised the model. This highlights the 
importance of minimising false alarms, particularly in medical 
applications, as false positives can result in unnecessary tests, 
increased anxiety, and additional healthcare costs. 

This final tuned model provides a reliable and precise tool 
for stroke prediction, making it highly applicable in clinical 
environments where timely and accurate decision-making is 
essential. By reducing false positives and improving prediction 
reliability, the system is well suited for deployment in real-world 
applications, ensuring better health outcomes. 

VI. CONCLUSIONS 

In this project, a stroke prediction system is developed and 
evaluated using machine learning techniques. The hybrid model, 
combining Support Vector Machines (SVM) and Random 
Forest (RF), demonstrated a significant improvement over 
standalone models, achieving better accuracy, precision, and F1 
score. The feature-augmented model, which incorporated 
additional features, further enhanced predictive performance, 
showing improved classification metrics, including a reduction 
in false positives and an increase in true negatives. 

Through the process of hyperparameter tuning using 
Random Search, the model's performance was further 
optimised. The final tuned model achieved a high level of 
precision (100%), improved accuracy (97.05%), and maintained 
the same recall (59.46%) compared to the original feature-
augmented model. Although there was a slight reduction in the 
ROC AUC and PR AUC, the ability to minimise false positives 
and improve true negatives makes it more reliable and suitable 
for real-world deployment in medical applications. 

The practical implications of this project are significant, as it 
shows the potential of machine learning models to improve 
stroke prediction and aid healthcare providers in identifying 
high-risk patients. By reducing false alarms and increasing 
prediction accuracy, the model can help streamline healthcare 
processes, reduce unnecessary tests, and ultimately lower 
healthcare costs. This system has the potential to revolutionise 
stroke prediction by enabling early detection and intervention, 
thus significantly reducing the burden of stroke-related 
healthcare challenges globally. 

Despite the strong performance, there are a few limitations. 
A major challenge is class imbalance, which is common in 
medical data sets, where positive stroke cases are significantly 
fewer than negative cases. This imbalance can affect recall, as 
seen with the relatively lower recall rate of 59.46%, suggesting 
that some true stroke cases are still being missed. There is also 
room for improvement in recall, which would ensure fewer 
missed stroke cases. Although high precision is critical, 
improving recall is equally important to ensure that at-risk 
patients are not overlooked. 

To enhance the performance and utility of the stroke 
prediction system, several directions for future development can 
be considered. 

 Incorporating additional features: Including more 
comprehensive patient data, such as laboratory test 
results, imaging data, or genetic markers, could improve 
the model’s ability to detect subtle risk factors. 

 Handling imbalanced datasets: Given the natural 
imbalance in stroke datasets (fewer stroke cases than 
non-stroke cases), applying techniques such as SMOTE 
(Synthetic Minority Oversampling Technique), 
ADASYN, Random Oversampling, or cost-sensitive 
learning can help improve recall without sacrificing 
precision. 

 Exploring advanced ensemble techniques: Approaches 
like Gradient Boosting Machines (e.g. XGBoost, 
LightGBM) or stacking multiple models could 
potentially yield better performance by capturing 
complex patterns more effectively. 
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